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Overview

Motivating Examples
Hermitian Eigenvalue Problem — Basics
Steep Descent/Ascent Type Methods

Extending Min-Max Principles: Indefinite B
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m Conjugate Gradient Type Methods
[

m Linear Response Eigenvalue Problem
[

Quadratic Hyperbolic Eigenvalue Problem



Motivating Examples

u Density Functional Theory — Kohn-Sham Equation

m Data Mining — Trace Ratio Maximization

More in Chapter 10 of

Y. Saad. Numerical Methods for Large Eigenvalue Problems.
SIAM, 2011.



Density Functional Theory (DFT)

Kohn-Sham Equation (Hohenberg and Kohn'64, Kohn and Sham'65):

1 n(r’) ;, 0Exc(n(r))
§V2+/| _,dr—l— 6n(r)

vks[n](r)

+ Vet (r) | 6(F) = i (r),

a remarkably successful theory to describe ground-state properties of condensed
matter systems.

A nonlinear eigenvalue problem: Kohn-Sham (KS) operator depends on electronic
Ny
density n(r) = Z ¢i(r)¢7 (r) which depends on eigen-functions ¢;(r).
i=1
Usually solved by Self-Consistent-Field (SCF) iteration:
1) initial no(r) = M ¢ (r)e!? " (r), and
2) repeat [—V2/2 + vks[nj](r)] ¢§j+1) = )\Sj"'l)qbgj"'l)(r).
Each inner-iteration is an eigenvalue problem.



Discretized Kohn-Sham Equation

Ways of discretizations: plane waves, finite differences, finite elements, localized
orbitals, and wavelets.

Discretized Kohn-Sham Equation: H(X)X = SXA, XHSX = Iy, .
H(X) is symmetric, depends on X, eigenvalue matrix A is diagonal, and S > 0. Some
discretizations: S = .

Nonlinear eigenvalue problem, dependent on eigenvectors, as oppose to usually on the
eigenvalues.

Usually solved by Self-Consistent-Field (SCF) iteration:

1) initial Xp, and

2) repeat H(X;)Xj41 = SXj14; for j=0,1,... until convergence.
Each inner-iteration is a symmetric eigenvalue problem.
References more accessible to numerical analysts:

Yousef Saad, James R. Chelikowsky, Suzanne M. Shontz, Numerical Methods for Electronic Structure
Calculations of Materials, SIAM Rev. 52:1 (2010), 3-54.

C. Yang, J. C. Meza, B. Lee, and L.-W. Wang. KSSOLV—a MATLAB toolbox for solving the Kohn-Sham
equations. ACM Trans. Math. Software, 36(2):1-35, 2009



In Fisher linear discriminant analysis (LDA) for supervised learning, need to

solve
trace(VTAV)

max — ———~%

vTv=i, trace(VTBV)’
where A, B € R"™" symmetric, B positive semidefinite and rank(B) > n — k.
trace(VT AV) represents the in-between scatter, while trace(VTBV) represents
the within scatter. Maximizer V is used to project n-dimensional vectors (data)

into k-dimensional vectors that best separates n-dimensional datasets into two
or more datasets.

KKT condition for Maximizers:

trace(VTAV)

~ trace(VTBV) B V=VIVIEW)V]

=:E(V)

such that eigenvalues of VTE(V) V are the k largest eigenvalues of E(V).

Can be solved via SCF-like iteration; each inner iteration is a symmetric
eigenvalue problem.



Trace Optimization

References for trace ratio problem:

T. Ngo, M. Bellalij, and Y. Saad. The trace ratio optimization problem for
dimensionality reduction. SIAM J. Matrix Anal. Appl., 31(5):2950-2971,
2010.

L.-H. Zhang, L.-Z. Liao, and M. K. Ng. Fast algorithms for the
generalized Foley-Sammon discriminant analysis. SIAM J. Matrix Anal.
Appl., 31(4):1584-1605, 2010.

More eigenvalues arising from Data mining can be found in chapter 2 of

S. Yu, L.-C. Tranchevent, B. De Moor, and Y. Moreau. Kernel-based Data
Fusion for Machine Learning: Methods and Applications in Bioinformatics
and Text Mining. Springer, Berlin, 2011.



Basic Theory

= Hermitian Ax = Ax
= Hermitian Ax = ABx (B > 0)
» Justifying Rayleigh-Ritz



rmitian

Hermitian A = A € Cnxn,
Eigenvalues A; and eigenvectors u; € C".

M< <<, dly =85, Aui = N
Rich, elegant, and well-developed theories in “every” aspect ...

Popular References

R. Bhatia. Matrix Analysis. Springer, New York, 1996.
R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

J. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.

=) =) =) =)

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore,
Maryland, 3rd edition, 1996.

B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998.

Lloyd N. Trefethen and David Bau, Ill. Numerical Linear Algebra. SIAM, Philadelphia, 1997.

=) =) =)

G. W. Stewart and Ji-Guang Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.



Courant-Fischer Theorem

Hermitian A = AH € C"*". Eigenvalues: A\; < Ay < --- < Ap.

xHAx

XX

Rayleigh quotient: p(x) =

Courant (1920) and Fischer (1905)

M i R0 M= ek, et
In particular,
A1 = minp(x), Ap = maxp(x). (1)
X X

m Can be used to justify Rayleigh-Ritz approximations for computational purposes.

u (1) is the foundation for using optimization techniques: steepest descent/ascent,
CG type, for computing A1 and, with the help of deflation, other J;.



Trace Min/Trace Max

A= A" € C"*". Eigenvalues: A\; < Mo < - < Ap.
Trace Min/Trace Max

k
Z)\J: mm trace(XHAX)
Jj=1
k
ZA n—jtl = m)?x trace( X" AX).
Jj=1

m Can be used to justify Rayleigh-Ritz approximations for computational purposes.

= Rayleigh quotient matrix: X"HAX, assuming X" X = I.



Cauchy Interlacing Theorem

Hermitian A = AH € C"*". Eigenvalues: A\; < Xy < --- < Aj.

X € C"*k, k < n, X"X = I,. Eigenvalue of XHAX: p3 < pp < -+ < puy.

Cauchy (1829)

A S S Ajpp—k for1<j < k.

Numerical implication: Pick X to “push” each u; down to A; or up to Aj i, .



Hermitian Ax = A\Bx (B > 0)

A= A" B = B" c C"™", and B positive definite.
Equivalency:  Ax=ABx < B Y2AB"Y2%= )%, &= B/2x.
N——

—A
so same eigenvalues, and eigenvectors related by X = B!/2x.

Eigenvalues \; and eigenvectors u; € C".
M <A< < Ay, U,HBUJ' =djj, Au; = \Bu;.

xHAx — sHAx

xHBx — &Hg

Rayleigh quotient: p(x) :=

Verbatim translation of theoretical results for A% = A% to ones for Ax = ABx.



Hermitian Ax = A\Bx (B > 0)

Courant (1920) and Fischer (1905)
A= dim X rxneaa)c(p(x)’ A= codim ni—1 ?e'?cp(x)'

In particular, Ay = min p(x), and A, = max p(x).
X X

Trace Min/Trace Max

K
A= min trace(X"AX), Z)\n_j_,.l = max trace(X"AX).
= XHBX=I = XHBX=I

Cauchy (1829)

X € Cn¥k Kk < n, rank(X) = k. Eigenvalues of XHAX — A XHBX:
< pp < cee < g
A S S Ajppk for 1 <j < k.



Why Rayleigh-Ritz?

Two most important aspects in solving large scale eigenvalue problems:

building subspaces close to the desired eigenvectors (or invariant subspaces).
E.g., Krylov subspaces.

seeking “best possible’ approximations from the suitably built subspaces.

For 2nd aspect: given Y € C" and dimY = m, find the “best possible’ approximations
to some of the eigenvalues of A — AB using Y.

Usually done by Rayleigh-Ritz Procedure. Let Y be Y's basis matrix.

Rayleigh-Ritz Procedure

Solve the eigenvalue problem for YHAY — AYHBY: YHAYy; = 1; YHBYy;;

Approximate eigenvalues (Ritz values): pi(= \;);
approximate eigenvectors (Ritz vectors): Yy;.

But in what sense and why are those approximations “best possible”?



Why Rayleigh-Ritz? (contd)

Courant-Fischer: A\j = p mg\ maxp(x) suggests that best possible approximation to
im X=i xXe€

A; should be taken as

i = min max p( X
Hi= XCY, dim X=i xEI)Cp( )

which is the ith eigenvalue of YHAY — AYHBY.

k

Trace min principle: E A= mln trace(X™AX) suggests that best possible
XHBX=I,
j=1

approximations to A; (1 < i < k) should be gotten so that

trace(XHAX) is minimized, subject to span(X) C Y, XHBX = I,.

The optimal value is the sum of 1st k eigenvalues u; of YHAY — AYHBY.
Consequently, u; &~ \; are “best possible’



Steepest Descent Methods

m Standard Steepest Descent Method
m Extended Steepest Descent Method
m Convergence Analysis

m Preconditioning Techniques

m Deflation



Problem: Hermitian Ax = ABx (B > 0)

A= A" B =B" c C"™", and B positive definite.

Eigenvalues \; and eigenvectors u; € C".

M < << Ay, U,HBUJ' =djj, Au; = \Bu;.

HA
Rayleigh quotient: p(x) := XH X
xHBx
Interested in computing 1st eigenpair (A1, u1). Later: Other eigenpairs with the help

of deflation.

Largest eigenpairs: through considering (—A) — AB instead.



SD in general

SD method: a general technique to solve min f(x).

Steepest descent direction: at given xp, along which direction p, f decreases fastest?

.d .
min —f(xo + tp) =minp'Vf(x) = —||VF(x0)|2 2)
P dt =0 P

optimal p is in the opposite direction of the gradient Vf(xp).

Plain SD: Given xp, for i = 0,1,... until convergence
i = arg min f(X,' + tVf(X;)), Xjit1 = Xj + t;Vf(X,'). (3)
t
Major work: solve mtin f(x;i + tp), so-called line search.

Food for thought. Derivation in (2) not quite right for real-valued function f of complex vector x.
In (3): t € Rort € C makes difference. t € C potentially much more complicated!



Application to p(x) = x"Ax/x" Bx

Recall A1 = min p(x).
X

2 2

Gradient: Vp(x) = B [Ax — p(x)Bx] =: B r(x). Note: x"r(x) =0.

|lq]| tiny, up to 1st order:

-~ (x+q)HA(x+ q) B xHax + qHAx + xMAq

X+ = =
plx+a) (x+aq)HB(x+q) xHBx+qHBx +xHBq
<MAx + qHAx + xHAq qH Bx + xH Bq qH r(x) + r(x)Hq
= - = (o) + TS
xHBx xHBx xHBx

Steepest descent direction: Vp(x) parallel to residual r(x) = A — p(x)Bx.

Plain SD: Given xp, for i = 0,1,... until convergence

t; = arginf p(x; + tr(x;)), xit1 = x;i + t r(x;).
3

= Major work: solve ir:f p(xi + tp), so-called line search.

= When to stop?



Line Search inf; p(x; + t p)

Can show inf p(x + tp) = min x +
inf p(x + tp) |£|2+|4|2>op(£ ¢p)

which is smaller eigenvalue 1 of 2 x 2 pencil XHAX — AXHBX, where X = [x, p].
Let v = [2] be the eigenvector. Then p(Xv) = u, and Xv = v1x + v2p. So

v /vy, ifv #0,

arginf p(x + tp) =: topt = .
teC 00, if v =0.

Interpret topt = 00 in the sense t|—|>r20 p(x + tp) = p(p).

{x + toptp if topt is finite,

Py) tlgcp(x—l- Py otherwise



A Theorem for Line Search

Suppose x, p are linearly independent. Then x"r(y) =0 and pHr(y) = 0.

Proof
pr(y) = 0: True if y = p, i.e., topt = 00. Otherwise

y=x+toptp,  ply) = minp(x + tp) = min p(y + sp).

Optimal at s = 0. p(y + sp) = p(y) + szByéR(spHr(y)) + O(s?) implies p"r(y) = 0.

xMr(y) = 0: True if y = x, topt = 0. and thus xHr(y) = xHr(x) = 0. Otherwise

y = arginf p(p + sx).
seC

Therefore x"r(y) = 0.



Stopping Criteria

Common one: check if ||r(x)]|| tiny enough. Reason: Easy to use and available.

l[r()ll2
[Ax]l2 + [p(x)| [|Bx]|2

< rtol.

Implication: (p(x),x) is an exact eigenpair of (A + E) — AB for some Hermitian
matrix E.

Can prove that (suppose ||x||2 = 1)
min [|Ell2 = [[r(x)ll2, min[[E]lF = V2][r(x)]2-

More can be found in Chapter 5 of:

Zhaojun Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst (editors).
Templates for the solution of Algebraic Eigenvalue Problems: A Practical Guide.
SIAM, Philadelphia, 2000.



Framework of SD

Steepest Descent method

Given an initial approximation xq to u;, and a relative tolerance rtol, the algorithm
attempts to compute an approximate eigenpair to (A1, u1) with the prescribed rtol.

[y

xo = xo/||x0llg, po = xt Axo, ro = Axq — poBxo;
2: for£=0,1,... do

3 if rell2/(1Axell2 + pel [ Bxe]l2) < Tl then

4: BREAK;

5 else

6 compute the smaller eigenvalue p and corresponding eigenvector v of
ZH(A — AB)Z, where Z = [xy, ry];

7 &= 2v, x41 = X/|X|l6;

8: Pey1 =, For1 = AXpi1 — pey1Bxetr;

9:  endif

10: end for

11: return (pyg,x,) as an approximate eigenpair to (A1, u1).

Note: At Line 6, rank(Z) = 2 always unless ry = 0 because X?l’g =0.



SD: Pros and Cons

Pros: Easy to implement; low memory requirement.
Cons: Possibly slow to converge, sometimes unbearably slow.

Well-known: SD slowly moves in zigzag towards an optimal point when the contours
near the point are extremely flat.
Ways to rescue:
m Extended the search space: “line search” to “subspace search”
= Modify the search direction: move away from the steepest descent direction
—Vp(x)
u Combination



Extended SD Method

Seek to extend the search space naturally.

SD search space span{x, r(x)}. Note r(x) = Ax — p(x)Bx = [A — p(x)B]x.
span{x, r(x)} = span{x, [A — p(x)Blx} = Ka([A — p(x)B], x)
the 2nd Krylov subspace of A — p(x)B on x.
Naturally extend X5 ([A — p(x)B], x) to
Km([A = p(x)B], x) = span{x, [A — p(x)B]x; ..., [A = p(x)B]"~*x},

the mth Krylov subspace of A — p(x)B on x.

Call resulting method extended steepest descent method (ESD). It is in fact the
inverse free Krylov subspace method of Golub and Ye (2002).



Framework of ESD

Extended Steepest Descent method

Given an initial approximation xq to uj, a relative tolerance rtol, and an integer
m > 2, the algorithm attempts to compute an approximate eigenpair to (A1, u1) with
the prescribed rtol.

1: xo = xo/|[x0ll8, pPo = x5 Axq, ro = Axo — poBxo;

2: for £=0,1,... do

3. i [lrell2/(1Axell2 + el [|Bx¢|l2) < rtol then

4 BREAK;

5: else

6: compute a basis matrix Z € C"*™ of Krylov subspace Xm(A — p¢B,x;);
7 compute the smallest eigenvalue p and corresponding eigenvector v of

ZH(A - 2B)Z;

8: y=2v, xer1 =y/|ylls:

9: Pey1 =, For1 = AXgi1 — pey1Bxeqr;

10: end if
11: end for

12: return (pyg,x;) as an approximate eigenpair to (A1, u1).

Note: If B =1, it is equivalent to Restarted Lanczos



Basis of X,,(A — pB, x)

C = A — pB is Hermitian.

Lanczos process

Lz =x/||x])2, 5020; 20 =0;
2: for j=1,2,...,k do

3: z = Cz, aJ = ZJHZ

4 z=1z—qjzj— Bj—1zj—1, Bj = ||z|l2
5 if 3; = 0 then

6: BREAK;

7: else

8  z=2z/f;

9: end if

10: end for

= Keep Azj and Bz; for projecting A and B later. Or, just z; but solve
ZHCZ — A\ZHBZ instead

= Implemented as is, Z = [z1, ..., zm] may lose orthogonality — partial or full
re-orthogonalization should be used. Pose little problem since usually m is
modest.

u Possibly dim Xm(A — pB,x) < m. Pose no problem — Z has fewer than m
columns



Global Convergence

For SD and ESD, py converges to some eigenvalue X of A—AB and
||(A = )\B)Xg”z — 0.

|

Proof

1) {p¢} monotonically decreasing and py > A1 = pp — A.

2) {xz} bounded in C" = convergent {xn,}, Xn, — X.
3) xt (A= pn,B)xn, =0 = sMt=sH(A-AB)x=0.

4) Clalm ? = 0. Otherwise 7 # 0, rank([X, ?]) = 2, and

oy N ¢H ~ [¢H
A—SB:= [’;H] A%, 7] — A [’;H] B[%, 7] = [? b pH(A_ AByp| IS indefinite

Smaller eigenvalue 1 of A — AB: < X. Let
= [Xg,f,e]HA[X,e,rg], BZ = [Xe,rg]HB[Xg,rg],
fre41 smaller elgenvalue of Ag — )\Bg Then

()A"e_)A B"e_’B = Mg+l = M

(i)png+1 < tmg41 = A= 1iMjy00 Pyt < liMjsyo0 g1 = 1,
a contradiction! So ? = 0. O



Digression: Chebyshev Polynomial

The jth Chebyshev polynomial of the first kind 7;(t)

J;(t) = cos(j arccos t) for |t| <1,

= % [(H—\/H)j-k (t+\/if2——l)_j] for t > 1.

Or, %(t) =1, Zi(t) = t, and Fj(t) = 2Fj_1(t) — Fj_»(t) for j > 2.

Numerous optimal properties among polynomials
= deg(p) <J. Ip(t)] < 1for t € [~1,1] = |p(£)] < |Fj(t)| for t & [~1,1].
le., |Z;(t)] <1 for |t| <1 and |J(t)| grows fastest. (Sample plots next slide.)

229

1—t

Wi+l
VE—1]

Frequently show up in numerical analysis and computations: Chebyshev acceleration in
iterative methods, convergence of CG and Lanczos methods.

(LN 1y A
Z(:)‘_2[At+At] for 1# ¢ >0,

where A : for t > 0.



Chebyshev Polynomial (sample plots)
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Chebyshev Polynomial: typical use

Problem Given [a, 8] and v ¢ [a, 8], seek a polynomial p with deg(p) < m such that
p(v) =1 and nEaxB] [p(x)]| is minimized.
x€|a,

Define 1-1 mapping x € [, ] — t = t(x) = BL (X - LerB) €[-1,1],

—Q

1+ 5= 14 2=6
t(y) = — 2:3 for v < a, and - ::g for B < .
R =
: Tm(t(x
Optimal p(x) = %:
m
! - 2 (Al 4 a7
PN =1 max PO = 5y = 2[4+ 4]
Ay = 1TV =277 y—B
n

= S fory<a,and n=-—— for <.
1-ym B = T



Convergence Rate

Theorem on Convergence Rate (Golub & Ye, 2002)
Suppose A; is simple, i.e., A1 < A2, and A1 < py < Ap. Let

wr <wp <o <Swn
be the eigenvalues of A — pyB and v; be an eigenvector corresponding to wi. Then
Bl \ /2
o1 — A1 < (pe — M)en + 2(pe — M) ?em (%) + 0,
where

0<3dp:=pr — A1 +wr

H
v 2

= 0(lps — M|?),
By (lpe = M1l?)
max |f(wj)|.

€m 1= min Y
fEP,_1,f(w1)=1 j>1



Discussion

€m 1= min max;s1 |f(wj)| usually unknown, except,
FEPp_1f(w1)=1 !

m = 2 for which the optimal fopt is

(w2 +w,,)/2

fopt(t) = (w2 +wn)/2 €Pm_1, fopt(wl) =1, r}‘g{(lﬁ)pt(wjn = |f‘-3pt(""'2)| <1,
1—n wr — w1
€ = , = .
2 1479 K wp — w1
wy =+ -+ = wp for which fopt(t) = (t — wp)/(w1 — w2) and €m = 0 for all m > 2.

In general €y can be bounded by using the Chebyshev polynomial

F(t) = T (2'-‘“’7#‘*’2))/% 1(1-1-77)’ Flwy) = 1,

-1 _
em < max |f(t)| = [ym 1(1 +71)] =2 [A,';'_l +A;(m_1)] 1.
n




Discussion (ontq)

B 1/2
Pes1 — M < (pe — M)ed + 2(pe — M1)* 2em (%) + 0(lpe — MI?).

Per1— M1

Ignoring high order terms,
pe— A1

S e,

If em = O (unlikely, however), then py 1 — A1 = O(|py — A1]?), quadratic convergence.
Locally, py = A1, eig(A — peB) ~eig(A—MB)={0=v1 <72 < <7} So
—1
n i fy)l <2 [Am—t 4 A, (mD
mR e M rjnggl (W < [ n  t4y } ,
1+vm 2—m
An - \/_7 7] - .

1-ym Yn — 71

Observation. em depends on eig(A — pyB), not on eig(A, B). This is the Key for

preconditioning later: transforming A — AB to preserve eig(A, B) but make
eig(A — p¢B) more preferable.




Key Lemma

Lemma (Golub & Ye, 2002)

Let (w1, v1) be the smallest eigenvalue of A — pyB, i.e.. Then

H H
ZRY% uy' uy
— <pr—A < — . 4
“1 v{"Bvl = 1= u{'Bul )
Asymptotically, if A\; is a simple eigenvalue of A — AB, then as py — A1,
viv,
w1t = (M = pe) + O(1A1 — pel?). 5)
vi'Bvy

Importance. Relate \; — py to wy. Special case: B =1, w1 = A\1 — py.




Proof of Key Lemma

1) pe > A1 always. If p; = A1, then w; = 0. No proof needed.
2) Suppose py > A\1. A — pgB is indefinite and hence w; < 0. We have

(A —pr)Vl = w1Vi,

(A—wll—pr)Vlzo, A—wll—prto.

Therefore (pg, v1) is the smallest eigenpair of (A — wi1l) — AB.
3) Note also (A1, u) is the smallest eigenpair of A — AB.

Pe

A1

Together yielding —w;

_ le(A—wll)vl _ leAvl —wlv{"vl
le [21%1 le Bwvy v{" [21%1
. xHAx —wlv{" vy —wlv{" vy
> min — v =M+ —5 ,
x  xHBx v Bvi vi'Bvi
_ u'l"Aul _ u{'(A—pr)ul . u'l"ul n
T ouHBu H HB pe
1 Bui ur'uy uy' Buy
H H H
. X"(A—peB)x  uju Uy uy
> min H " +pr=w1— + P
x xMx uy Buy uy Buy
H H
vi'v; uu
;1 sz—)qS—mHll-
vi'Bv uj' Buy



Proof of Key Lemma

4) w1(t) = Amin(A — tB), for t near A1. Then wi(A1) =0 and wi(pr) = wi.
5) wi(A1) = 0 is a simple eigenvalue of A — X\;B. So wi(t) is differentiable in a
neighborhood of A;.

H
6) Expand w;(t) at py, sufficiently close to A;. Can prove wi(p;) = — V;H‘i:l . Hence
1
wi(t) = wi(pe) + o1 (pe)(t — pe) + O(It — pef?)
vi By
= w1 — = (t = pe) + O(|t = pel*).
vitvg
Setting t = A1,
v By
0=wi(\) =wi — = (M = pe) + 01 M — pel),
vi'vi
, vitvi )
from which = (A1 —pe) + O(JA1 — pel?). O

w1
le Bvy



Convergence Rate

Theorem on Convergence Rate (Golub & Ye, 2002)
Suppose A; is simple, i.e., A1 < A2, and A1 < py < Ap. Let

wr <wp <o <Swn
be the eigenvalues of A — pyB and v; be an eigenvector corresponding to wi. Then
Bl \ /2
o1 — A1 < (pe — M)en + 2(pe — M) ?em (%) + 0,
where

0<3dp:=pr — A1 +wr

H
v 2

= 0(lps — M|?),
By (lpe = M1l?)
max |f(wj)|.

€m 1= min Y
fEP,_1,f(w1)=1 j>1



1) C =A—p;B = VQRVH (eigen-decomposition), V = [vi, v, - - , vs] (orthogonal),

2 = diag(w1, w2, ,wn).
2) Km = Km(C,x¢) = {f(C)x¢, f € Ppi_1}, and

xHAx N xH(A - pyB)x
= min = min ————
Per1 = x€Xm xHBx =P x€Km xHBx
Hf(C)Cf(C)Xg ()

TR B XTF(C)BF(C)xe

3) Let fopt € Py—1 be the minimizing polynomial that defines €. Then fopt(w1) = 1

by the definition, and also em = ma{<|ﬁ)pt(wj-)| < 1 because
i>

_ t — (w2 +wn)/2 _ N
f(t) = m €Ppy, flw1) =1, TJT‘>5‘1><|f(WJ)‘ = |f(w2)] < 1.

4) xH(A — pB)xy = 0 = that v}'x, # 0 and hence fopt(C)x, # 0 (why?). Thus

oot < pot x5 fopt (C) Copt (C)xp , HVEZ (2)2VHx,
4 >~ pPe i 4
o X fopt (C) Bfopt (C)xe X Voot (£2) B fopt (£2) VFx,
Hf2 (2)02
o (2)$2y where By = VHBV, y = VHx,.

= + s
T At (2)Br fope(2)y



5) Write y = [£1,82,...,&]T = &e1 + 9, § =[0,&,...,&]". We have

Y fope (2) Bi fope (2)y = (1€t + 9) fope(2) B fope (2) (G161 + 9)
= E2fope(wi)? el Brer + 261 fop(wi)el! B fopt (2)9
+ 9 fopt (2) By fopt (£2)
= &167 + 26182 + 3,

where

2 H H
51 =€ Blel =V BV1,

B3 = 9" fopt(£2) By fope(£2) < max fopt(w;)?[| Bi 12117113 = €5 | Bll2 117113,

|Ba] = |ef' Bi fopt ()] < B13.
Note 3= w;e? = yHQy = xH(A — pB)x, = 0 = |w1]€2 = 3,0, wi€? > wa|7]13.
jwisi =y ey v pe 4 1181 j>1WjS; Z W2llYll3

Hence 12
1/2 w1
pr < callBly (221) Ve,



6) nyo2pt(‘Q)‘Qy = &fwr + M fope (£2)° 29, and
YREL(2)02y = wifd(w))€f <> wigl = y"y =o,
J J

U220 = wif2(w)€F < €3> wig? = €2 |wi|€3.
j>1 j>1
nyozpt(Q)Qy < 5%0-)1 +}A’Hf0pt(9)29}7
yRfopt(£2)Brfopt(2)y — €282 + 2|&1]B183 + B3
w1 wi 2|€1|B185 + B3 P fope (2)2 029

27 B2 22 12061 |Bifs + B2 €282 + 2/€1|BiBs + B2
wi  wr 2|6B1B3 P fopt (2)2 029

< = =
T8 B & &6;
wi Jwi |\ ¥/ <||B||2)1/2 lwi| 5
< =42 <—> € + —5 €,
B2 B2 "\ w B2



7) We have proved

H i (2)02y w1 lwil 2 (1Bl2\? | len| »
< > +2 > €m + — €m-
yHfopt(2)Bifopt (2)y — B3 B w2 Ith

v1 vi

Note ;2 = wiig, = = (A1 — pr) + O(]A1 — pe|?) by the lemma. Therefore

($2)%2y
_ )\ S _ )\ + Opt
P =P nyom(n)Bmm(my
|w1|)3/2 (||B||z)1/2 lwi|
<pr—M+ = m| —= —=
< pe 1+52+ (52 € 2 +ﬂ§ €m

e

3/2 [IBl|2 12 2
<0 42(pe — M)V em o + (pe — AM)em,

as expected. O



Preconditioning. Transforming a problem that is “easier” (e.g., taking less time) to
solve iteratively.

Preconditioning natural for linear systems: transform Ax = b to KAx = Kb which is
“easier” than before. Extreme case: KA =1, i.e., K = A~1, then x = Kb. But this is
impractical!

A comprise: make KA = | as much as practical. Here KA = [ is understood either
[|[KA — 1| is relatively small or KA — | is near a low rank matrix.

Preconditioning not so natural for eigenvalue problems: transform A — AB to
KA — AKB or LM AL — A\L"BL which is “easier’ than before.
No straightforward explanation as to what K makes KA — AKB ‘easier”
No straightforward explanation as to what L makes LHAL — ALHBL “easier”,

except L being the eigenvector matrix that is unknown. No easy way to
approximate the unknown eigenvector matrix either.

Will present two ways to understand eigen-problem preconditioning and construct
preconditioners.



Ideal search direction p: starting at x,, p points to the optimum, i.e., the optimum is
on the line {xy; + tp : t € C}. How can it be done with unknown optimum?

Expand x; as a linear combination of wuy
n n
Xp = E Qjui =t aiup +v, v= E ajuilgu.
j=1 j=2

Then ideal p = au; + Bv, B # 0 such that a1 8 — o # 0 (otherwise p = 8xy).

Ideal p has to be approximated to be practical. One such approximate p is
p=(A—0oB) 'ry=(A—0oB) '[A—p;Blx,
where py # o = A1, also reasonably we assume o # A; for all j > 1. Why so?

Aj —pe

n
p=D_majup, = Moo

j=1
Now if A1 < pp < A2 and if the gap Ap — A1 is reasonably modest, then

pi= 1 forj>1

to give a p &~ avy + v, resulting in fast convergence.



i = (N = pe)/ (N — o)

0.4

0.2

of (t-1.01)/(t-0.99)




Eigen-problem preconditioning, |

Preconditioner (A — oB)~!

Let x, = >°7 ; oju;, and suppose oy # 0. If o # p; such that

either py < pj for2 <j<norpy > pjfor2<j<n,

where p; = %, then
J
=il
tanfg(u1, Xm) <2 [AZ'_I + A;(m_l)] tan 0 (u1,xy¢),

0< “a<afam1 L AZmD]Pgng
S Pea 1= n T4y tan 0 (u1, xe),

where Km := Km([A — oB]~L[A — p¢B], x;), and

Ae—0 M=
NI 227 iy < pyfor2<j<n,

I D VG VR VD
T=91 X2—0 dn—X\

M—A Ap—o0

if up > pj for2 <j < n.

k]



Discussion

1 ~ 1 (fast convergence) if o =~ A1. In fact n =1 (implying Ay, = 00) if 0 = A1.
But shift o needs to make p; either smallest or biggest among all p;. Three
interesting cases:

m o <A1 <p< A, pp smallest

m AL <o <p< A, p1 biggest

m A < p<o <A, p smallest.

(A — oB)™! realized through linear system solving, but cost is high if solved
accurately, thus only approximately, such as

u incomplete decompositions LDL" of A — oB with/without an iterative method
= CG, MINRES

(more from Sherry Li's lectures.)



Use Golub and Ye's Theorem (2002) as starting point:

Bl \ /2
Pes1 — A1 < (pe — M)ed + 2(pe — M) 2em (%) + 0(lpe — M%),

€m = min max |f(w;
M Py 1, f(w1)=1 j>1 (il

where w; < wp < --- < wp are the eigenvalues of A — pyB.

Idea: Transform A —AB to L=1(A—AB)L~H so that L=1(A — p,B)L~H has "better”
eigenvalue distribution, i.e., much smaller €p,.

Ideal: wp = -+ = whp, then em = 0 for m > 2 and thus pyy1 — A1 = O(|pr — \1]?),

quadratic convergence.

A—pB=LDI" = L=YA—p,B)L~—H = D = diag(%1). Ideal but not practical:
A — p;B = LDILH may not exist at all. It exists if all leading principle
submatrices are nonsingular.

A—pB= LDL" may not be numerically stable to compute, especially when
Pr =~ )\1.

L significantly denser than A and B combined. Ensuing computations are too
expensive.



Compromise. A — pyB =~ LDLM with a good chance that

one smallest isolated eigenvalue wi, and the rest w; (2 < j < n)
a few tight clusters.

Here A — pyB =~ LDL" includes not only the usual “approximately equal”, but also
when (A — pyB) — LDLM approximately of a low rank.

L varies from one iterative step to another; Can be expensive; Possible to use constant
preconditioner, i.e., one L for all steps or change it every few steps.

Constant preconditioner: Use a shift o &~ A1, and perform an incomplete LDLH
decomposition of A— oB ~ LDLH. Then

Co=L Y A—oB)L "4 (c—p)L 'BL "~ D
would have a better spectral distribution so long as (¢ — p;)L~*BL~™H is small relative
to Cp.

Insisted so far about applying ESD straightforwardly to the transformed problem
L=1(A — AB)L~H. But there is alternative, perhaps better, way.



A—\Bto Ay — ABy := L;*(A— AB)L; M. Typical step of ESD for A, — ABy:

compute the smallest eigenvalue u and corresponding eigenvector v of
ZH(A[ ABZ)Z where Z € C"™ is a basis matrix of Krylov subspace

Km(A¢ — peBe, Xe).

Notice [2\13 - ﬁgél]%l = L5 [(Le L)1 (A = pyB)] (L, H5e) to see
Ly ™ Kin(Ag = poBe, %¢) = Kim( Ko(A = pgB),x¢), xo = Ly "%¢, Kp = (LoL}) ™!
SoZ=1L, HZ is a basis matrix of Krylov subspace Km( K(A — peB),xy). Also
ZM(A, - 2B)Z = (L; "Z)Y(A - XB)(L, "Z) = ZH(A - AB)Z,
Xe A[X[ X( AX[

Pe= == =Pe.
X?B@X@ X?BXg

The typical step can be reformulated equivalently to

compute the smallest eigenvalue ;1 and corresponding eigenvector v of
ZH(A — AB)Z, where Z € C"™™ is a basis matrix of Krylov subspace
Km( Ke(A = peB),x¢), where Ky = (LoLy) ™!




Extended Preconditioned SD

Extended Preconditioned Steepest Descent method

Given an initial approximation xq to uj, a relative tolerance rtol, and an integer
m > 2, the algorithm attempts to compute an approximate eigenpair to (A1, u1) with
the prescribed rtol.

1: xo = xo/|Ixo0|l8. po = x5 Axo, ro = Axq — poBxo;
2: for £=0,1,... do

3. if flrell2/(|Axell2 + [pel [ Bxell2) < rtol then

4: BREAK;

5: else

6: construct a preconditioner Ky;

7: compute a basis matrix Z € C"*™ of Krylov subspace
Km( Ke(A = peB), xe);

8: compute the smallest eigenvalue p and corresponding eigenvector v of
ZH(A - \B)Z;

9: y=2v, xer1 =y/llylls:

10: Po1 = o o1 = AXpr1 — Per1Bxetr;

11: end if

12: end for

13: return (py,x;) as an approximate eigenpair to (A1, u1).

It actually includes Eigen-problem preconditioning, | & II.



Convergence Rate

Theorem on Convergence Rate (Golub & Ye, 2002)
Suppose A1 is simple, i.e., A\1 < A2, and A1 < pp < A2, and preconditioner K, > 0. Let

wp <wp <o <wp

be the eigenvalues of Ky(A — pyB) and v; be an eigenvector corresponding to wj.
Then

LB\ V2
L, BL, |I2> s

pei1— A1 < (oo — M)em + 2(pe — 1) ?em ( o

where

vHK_lvl
0<3dp:=pr—NM1 +w11+ =0(lpe — M%),
vi'Bv

€m = min max | (wj)|.
FEPm_1,F(w1)=1 j>1



Discussion

€m 1= min max;s1 |f(wj)| usually unknown, except,
FEPp_1f(w1)=1 !

m = 2 for which the optimal fopt is

t — (w2 +wn)/2

F(t) = € P 1, Flw1) = 1, max |f(w)| = |F(ws)] < 1.,
(6= L0t e o) =1 mai )l = (o)
1—n wr — w1
€ = , = .
2 1479 K wp — w1
wy =+ -+ = wp for which fopt(t) = (t — wp)/(w1 — w2) and €m = 0 for all m > 2.

In general €y can be bounded by using the Chebyshev polynomial

F(t) = T (2'-‘“’7#‘*’2))/% 1(1-1-77)’ Flwy) = 1,

-1 _
em < max |f(t)| = [ym 1(1 +71)] =2 [A,';'_l +A;(m_1)] 1.
n




Discussion (ontq)

e M)
i1 — M < (pr — Ai)em + 2(pe — A1) e (%) +0(lpe — M)
-

Ignoring high order terms, Pev1— A1 =< €2,

pe—A1
If em = O (unlikely, however), then py1 — A1 = O(|py — A1]?), quadratically
convergence.
Locally, py = A1, eig(Ke(A — peB)) = eig(Ke(A—XMB))={0=71 <7 <--- <}
and

n i fy) <2]ap=t4 4,
em,, min  max|f(y)l <2[Ap 4 "

A - 1tVA po 2om
m= 1_f Yn — 71




Convergence Rate: Samokish Theorem

Theorem on Convergence Rate (Samokish, 1958)

m =2, eig(K¢g(A—X1B)) ={0 =71 <72 <--- <~vn}. Suppose A; is simple, i.e.,
A1 < A2, and A1 < pp < Ag,

2
§ =4/||BY/2K,B1/2 -\, T= .
VIBY2KB 2l lor = M), 7= ——
If 7 (‘/'y,, +6) § < 1, then
€+ T/Vné 2
—an< =TV -\, 7
Pry1— A1 < [1—7(\/%-1—6)6 lpe — ] @)
where 1
R =3 171 -n
=21 o=2[4,+4 =1
n PoR—— 2 [4y 17] Ty

Asymptotically pp1 — A1 < €3 (pe — A1), same as Golub & Ye (2002), but (7) is strict.



1) topt = argmin, p(xp + tKere), y = x¢ + topt Kere. Thus pry1 = p(y)-
2) Drop subscript £ to x, r, and K: ry = r(x), ps = p(x).

3) z=x — 7Kr(x). Then A1 < p(y) < p(z), thus p(y) — A1 < p(z) — A1.
4) Suffices to show p(z) — A1 < RHS of (7).

5) A — A1B is symmetric positive semidefinite. || - [[a—x,B is a semi-norm.

Iwlz-x,8 = [o(w) = M]llwl,

Il = TK(A = MB)lwlla—x,8 < e2]|w|la—x, 5

6) Write z = [I — 7TK(A — M1 B)]x + 7[p(x) — \1]KBx, and assume ||x||g = 1.

lzlla-x8 = Vp(2) = Aillzllss

lzlla-x8 < I/ = TK(A = MB)Ix[la-x;8 + T[p(x) — M]IIKBxla-x,8
< ellxlla—x;8 + 7lp(x) — Mlvnll Bx|lk
< e2V/p(x) = A+ 7lp(x) = Aaly/7n [|BY2KBY/2 |2
= (&2 + 770 0)V/ p(x) — A1.



P rOOf (cont'd)

7) z =x — 7Kr(x), and ||x||g = 1.

lzlls = lIxlls — TlIKr(x)lls = 1 = 7[|Kr(x)]|5,
[Kr()lle = IK(A = MB)x — [p(x) — M]KBx||
< IK(A = XB)x|ls + [p(x) — M]lIKBx||s

<V IIKY2BKY2 a7 |Ix[la-x, 8 + [p(x) = Ai][|BY2KBY2|5||x|| 5

= /7m0 + 82.
8) Finally use
p(z) A= ”Z”%—)\lB ”2”3\_)\13
lzllz = 1 —7lIKr(x)][8]

to complete the proof.



So far computing (A1, u1) by single-vector steepest descent type methods.
To compute any following eigenpairs, must incorporate deflation techniques.

Or use a multi-vector/block method (not discussed yet). Deflation is also a necessary
tool to make a block method more efficient.

Assume acceptable approximations to (\;, u;) for 1 < j < k known.
Diagonal D € R¥*k holds known approximations of \;,

U € R"*k holds known approximations of u;.

Assume UNBU = I,.

Deflation: avoid computing (A, u;) for 1 < j < k, and seek approximation to
(Ak+1, Uk+1)- Will discuss two deflation techniques.



Through orthogonalizing against U

When the basis matrix Z is computed, make sure that Z is B-orthogonal to U. E.g.,
build a basis matrix Z for Xm(K(A — pB), x) such that UH L 5Z = 0. Suppose

xL1g U =0 already.

Arnoldi-like process

L Z.1y = x/IIxlls, p = x"Ax/||x||%;
2: forr—2tomdo

3 q=K(AZ. ;1) - pBZ: ;1))
4 g=q-UU"(Bg));

5: forj=1toi—1do

6: t=27, 1,Bq. a=q—Z;;_yt;
T: end for

8 t=|qlls;

9: if t > 0 then

10: Z.h = q/t;

11: else

12: BREAK;

13: end if

14: end for

Note: Keep AZ for later use.



Through shifting \; away

Let Ur = U, 1:4) = [ur, ..., u]. (A+¢BU, U{" B) — AB and A — AB share same
eigenvectors u;, but the eigenvalues of (A + (BULUY'B) — AB are

A+ Cforl<i<kand\ fork+1<i<n.

Modify A — AB in form, but not explicitly, to (A 4+ (BUU"B) — AB, where ¢ should
be selected such that { + A1 > A¢2.

But A2 is unknown. What we can do in practice to pick ¢ a sufficiently large
number.



Block Steepest Descent Method

m Block Steepest Descent Method
n Block Extended Steepest Descent Method
m Block Preconditioned Extended Steepest Descent Method



Single-vector SD and variations:

compute (A1, u1), and, with deflations, other (A;, uj), one pair at a time. Most
computations are of matrix-vector type.

Slow convergence if (72 —71)/(7vn — 1) tiny; usually happens when X, very
close to A1. (; are eigenvalues of K(A — A\1B).)

Often in practice, there are needs to compute the first few eigenpairs, not just
the first one.

Block versions:
Can simultaneously compute the first k eigenpairs (\;, u;);

Run more efficiently on modern computer architecture: more computations in
matrix-matrix multiplication type;

Better rates of convergence; can save overall cost by using a block size that is
slightly bigger than the number of asked eigenpairs.

In summary, the benefits of using a block variation are similar to those of using the
simultaneous subspace iteration vs. the power method.



Start with Xp € C"*", rank(Xp) = np > k, instead of just one vector xo € C".
May assume jth column of X approximates u;j; otherwise R(Xp) approximates
span{uy, ..., un, }. In the latter, preprocessing Xp:

compute eigen-decomposition (X'AXo) W = (X} BXo) W2, where

2 = diag(po;1, po;2, - - -, PO, )i

Reset Xp := XoW.

Can always assume jth column of Xy approximates u;.

Typical ¢th iterative step: already have

X¢ = [xg1, %2, - - - Xezn,] € C™X™ jth column xg.; approximates uj,

2¢ = diag(pe;1, P02, - - -5 Pling ) pej = p(xe;) = Aj.

To compute new approximations as follows.
Compute a basis matrix Z of R([X¢, Re]) by, e.g., MGS in the B-inner product,
keeping in mind that X, is B-orthonormal already;
Find the first ny, eigenpairs of ZHAZ — AZHBZ to get
(ZHAZY)W = (ZHBZ)W 2py1, 2041 = diag(pesi1, Pes12s - - -5 Pesting )i
Set Xp41 = ZW.



Block SD (previous slide) is is the stronger version of Simultaneous Rayleigh
Quotient Minimization Method of Longsine and McCormick (1980).

Note that r(Xg;j) = (A — pg;jB)Xgu' and thus
np

R([Xe, Rel) = > R([xeyj (A = pejB)xe]) = D Ka(A — pejB, xzz)).
= =1

Naturally, as before, to expand search space, R([Xg, R¢]) through extending each
XK2(Axg.j — pe;jB, x¢:j) to a high order one. The new extended search subspace now is

np
me(A — p[;jB7 X[;j) = Span{Xg,,%)[(X[), . ,,%"/'Z"_I(XZ)} = J{m(,%g, XZ),
Jj=1

where the linear operator %, : X € CxM — Rp(X) = AX — BX 2, € C"™ .
Ry(+) = By N (Au(), e, HY(X) = Be(Re(X))-

Block Extended SD: make Z basis matrix of Km(%,, X¢).



In light of extensive discussions on preconditioning, natural to modify the search
subspace to

np
D Km(Kej(A = pejB), xe:5),
=

where Kj,; is the preconditioner intended to move (pg;j, xp;j) towards (A, u;) faster for
each j.

Two ways to construct Kp,;:
Kej =~ (A — pg;B)~! for some f,; # pe;j, ideally closer to A; than to any other
eigenvalue of A — AB.

Since the eigenvalues of A — AB are unknown, practically make fy;; closer but
not equal to py; than to any other py.

Perform incomplete LDLH factorization: A — pejB = Lg;ng;jL?_j, where “~
includes not only the usual “aproximately equal”, but also the case when
(A—pg;B) — Lg;ng;jL?j is approximately a low rank matrix, and
D[;j = dlag(:l:l)

i fpp— [H
Finally, K;,; = LZ;JLN-



Block Preconditioned Extended SD

Block Preconditioned Extended Steepest Descent method

Given an initial approximation Xo € C"*" with rank(Xo) = np, and an integer m > 2,
the algorithm attempts to compute approximate eigenpair to (\;, u;) for 1 < j < np.
1: compute the eigen-decomposition: (X{'AXo)W = (X{'BXo) W (2,
where WH(XOH BXo)W =1, £2o = diag(po;1, p02, - - - » PO;ny )
o X() = X() w;,
: for¢=0,1,... do
test convergence and lock up the converged (detail to come later);
construct preconditioners Kp,; for 1 < j < np;
np
compute a basis matrix Z € C"*™" of ZJC,,,(Kg;j(A — pe;jB), xej);
j=1
compute the np smallest eigenvalues and corresponding eigenvectors of
ZH(A - \B)Z to get (ZHAZ)W = (Z"BZ)W $2;, where WH(ZHBZ)W = I,
‘QZ+1 = diag(p2+1;17 Pe+1;25 - - - 7p€+1;nb);
8: Xop1 = ZW;
9: end for
10: return approximate eigenpairs to (A}, uj) for 1 < j < np.

2 HPWN

ol




Different preconditioner Kj,; for each different appr.oximate eigenpair (pg,j, x¢;j) good
for convergence rates, but may not reduce overall time:

expensive to construct all preconditioners

cannot compute Z mostly by matrix-matrix multiplications (more later)
Use Ki,j = Ky, one preconditioner for all speeding up the convergence of (pg.1,xp:1)-
At the same time other (pg;j, x¢;j) are making progress, too, but at a slower speed.

Usually (pg.1,xe;1) converges first and quickly.

Once (pg:1,xe:1) (or the first few in the case of a tight cluster) is determined to be
sufficiently accurate, the converged eigenpair is locked up and deflated.

A new preconditioner is computed to aim at the next non-converged eigenpair, and
the process continues.



Ny
Need to compute basis matrix Z € C"X™ of Zf}(m(Ke;j(A — pe;jB), xe;)-

j=1
Z can be gotten by packing the basis matrices of all Xm(Ky,j(A — pg;jB), xq;j) for
1 < j < np, together. Two drawbacks:

Such a Z could be ill-conditioned, i.e., columns of Z may not be sufficiently
numerically linearly independent; Possible cure: re-orthogonalize packed Z — too
costly.

Building basis for each Xm(Ky,j(A — pe;jB), x¢,j) uses mostly BLAS-2
operations. Have to be this way if Kj;; are different.

Different situation if Ky.; = K (drop iteration step index £). Then

np
D " Km(K(A = pejB), xej) = Km(KZ, X)
j=1

= span{X, KZ(X,), ..., [KZ]™1(X)},

where Z(X) = AX — BXQ2, [KZ]/(-) = [KZ](KZ(-)), e.g.,
[KZ)*(X) = KZ(KZ(X)).



Implementation Issue, Il (ona)

Z =[Z1,2,,...,Zmn] can be computed by the following block Arnoldi-like process in
the B-inner product.

Arnoldi-like process for Z

1: Z3 = X (recall XHBX = In, already);

2: for i =2 to mdo

30 Y =K(AZ_1— BRZ_4);

4 forj=1toi—1do

5: T=Z'BY; Y=Y -ZT,;

6 end for

7 Z;T =Y (MGS in the B-inner product);
8: end for

Note: At Line 7, Y may not be numerically of full column rank — not a problem.

Anytime if a column is deemed linearly dependent on previous columns, that column
should be deleted, along with corresponding p; from (2.

At completion of MGS, Zj+1 will have fewer columns than Y and the size of (2 is
shrunk accordingly.



llre;jll2

lAxe;jll2 + [pe;jl 11 Bxejll2 .
Usually A; are converged to in order, i.e., the smallest eigenvalues emerge first.

(pe;j, xe;j) is considered acceptable if < rtol.

Lock all acceptable approximate eigenpairs in keygq X Keygd diagonal matrix D for
eigenvalues and n X k.gq tall matrix U for eigenvectors.

Every time a converged eigenpair is detected, delete the converged py.; and xp,; from
£2y and Xy, respectively, and expand D and U to lock up the pair, accordingly.

At the same time, either reduce n, by 1 or append a (random) B-orthogonal column
to X to maintain n, unchanged.

Deflate to avoid recomputing converged eigenpairs:
At Line 7 in the Arnoldi-like process, each column of Z;; is B-orthogonalized
against U.
Modify A — AB in form, but not explicitly, to (A 4+ (BUU"B) — AB, where ¢
should be selected such that { + A\; > )‘kcvgd+ﬂb+1' Here we pre-assume the
kevgd converged eigenpairs are indeed those for (A;j, u;) for 1 < j < keygg. This is
usually so, but with no guarantee, of course.



Conjugate Gradient Methods

Digression: CG for Linear System Ax = b

Conjugate Gradient Method

Preconditioned Conjugate Gradient Method

Locally Optimal Conjugate Gradient Method

Locally Optimal Extended Conjugate Gradient Method

Locally Optimal Block Preconditioned Extended Conjugate
Gradient Method



CG for Linear System Ax = b

A'is n X n, symmetric, and positive definite. Let
1t T
P(x) = 5% Ax — x' b,
quadratic in x, convex, a unique local and global minimum at x = A-1p,
Vo(x) = r(x) = Ax — b.
CG Algorithm (Hestenes and Stiefel, 1950s):
Given xg, compute rg = Axp — b, and set pg = —rp;
For i=0,1,..., do
aj = argmin¢(x; + ap;), Xit1 = xi + aip;,
«@

riy1 = ri + aiAp;, pi+1 = —fit1+ Bipi.
B; chosen so that p,.THAp,- = 0; equivalent expressions:

T T

5 = plAr gy (i —n)

- = = = .
p; Ap; T e

1




Nonlinear CG

Verbatim translations of Hestenes' and Stiefel's CG to solve
min¢(x), ¢(x) not necessarily quadratic,
X
replacing all r(x;) by Vo(x;).
Nonlinear CG Algorithm (Fletcher and Reeves, 1964):

Given xp, compute Vo = V(xp), and set pg = —Vyo;
For i=10,1,..., do

a; = argmin ¢(x; + ap;), Xiy1 = X + aipj,
«

evaluate Vo1 = Vé(xir1), piv1 = —Voir1 + Bipi.

Several choices for f;:

8 = V¢;-"HV¢,-+1
VeIV

Vol (Vi1 — Vi)

b= VTV,



Locally Optimal CG

Linear CG: choices of 8; make
u search directions p; conjugate, i.e., p;.rApj =0 for i #j.

u CG method terminates in at most n steps.

Nonlinear CG: many nice properties no longer hold for any choice of ;.
Observe

Xiy2 = Xit1 + @iy1(=Voir1 + Bipi)
€ span{xiy1, Vi1, pi} = span{xi;1, Vis1, Xi}.

Since many nice properties in linear CG are lost anyway in the nonlinear case, why not
pick 8;, implicitly, such that (Takahashi, 1965)

Xiy2 = arg min ().
yEspan{x;11,Vii1,x}

This gives locally optimal CG. But search over y € span{xjt1, Vi1, x;} harder than
before.



CG for Ax = \Bx

Minimize p(x) to compute (A1, u1):

xHAx 2
=X px) =
xHBx P(x) xHBx

p(x)

r(x), r(x):= Ax — p(x) Bx.

Line-search p(y) = inf p(x + tp)
teC

1: compute the smaller eigenvalue 1 of XHAX — AXHBX, where X = [x, p], and
eigenvector v = [vg, llg]T;

v /v1, ifvr #0,
00, if vy =0;

5 {x + toptp if topt is finite,

2: arginf p(x + tp) =: topt = {
teC

otherwise.

CG for Ax = ABx: in nonlinear CG simply replace V¢(x) by r(x) := Ax — p(x) Bx.



CG for Ax = \Bx

CG for Ax = ABx

Given an initial approximation xq to u;, and a relative tolerance rtol, the algorithm
attempts to compute an approximate eigenpair to (A1, u1) with the prescribed rtol.

1: xo = xo/|[x0l|8, po = x5 Axq, ro = Axo — poBxo, po = —ro;
2: for £=0,1,... do
3. if lrell2/ (| Axell2 + [pe| [ Bxell2) < rtol then
4: BREAK;
5: else
6: compute ay = topt 1= ig%p(xe + tp¢), and then
t

) xe+ oupe if ap is finite,

" \pe otherwise.
7 Xe41 = }’/||yl|_'|3;
8: set poy1 = Xy AXpt1, Fop1 = AXpp1 — per1BXet1, Per1 = —rop1 + Bepe,

H H
_ rare rppi(resa—re)
where 8y = e or T

9: end if
10: end for

11: return (py,x,) as an approximate eigenpair to (A1, uy).




A Convergence Theorem

Convergence Theorem (Yang, 1993)

H ~
With 8, = %, pe¢ converges to some eigenvalue A of A — AB and there is a
[

convergent subsequence {x,} of {x;} such that
II(A = S\B)xeng —0 as i — o0,

i.e., Xy, converges in direction to a corresponding eigenvector.

If X = Aq, then [|(A — AB)xg|l2 — 0 as £ — oo, i.e., X, converges in direction to a
corresponding eigenvector. (seem new)

u First part due to (Yang, 1993); second part seems new.

H
r res1
= Only for B, = %, however.
ere

u Proof much more complicated than for SD.

= Rate of convergence: mostly heuristic, none rigorous proven.



Preconditioned CG for Ax = \A\Bx

As in SD, Preconditioned CG = vanilla CGon L= HAL=1 — XL~ HBL~1,

Let A—AB:=L—HAL=1 _xL—HBL—1. Adopt notation convention for A— AB:
same symbols but with tildes. E.g., x = Lx,

) = % =p(x), FX) =L MALTIX - px)L~"BL Ix = L7 Hr(x).
Key CG step:
ay = al’gamiﬂ p(Xe + apy), X1 = X + QePy,
Foor =L HAL %001 — pRen )L "BL *R41, Poy = —Fesn + Bebo-

Perform substitutions X, = [x, and F, = L~ Hr:

&y = argmin p(x¢ + & L~'p,), Xpp1 = xp + L py,
a N——
=y
resn = Axppr — p(xe1)Bxor1, L 'Ppin = — (LML) " rey + Be LT,
—— ——— ——

=Pri1 =K =Py



Preconditioned CG for Ax = \A\Bx

Preconditioned CG for Ax = ABx

Given an initial approximation xg to uj, a (positive definite) preconditioner K, and a
relative tolerance rtol, the algorithm attempts to compute an approximate pair to
(A1, u1) with the prescribed rtol.

1: xo = xo/||xoll5, po = x5 Axo, ro = Axo — poBxo, po = —Kro;
2: for£=0,1,...do
3 if flrell2/(|Axell2 + [pel [ Bxell2) < rtol then
4: BREAK;
5: else
6: compute ay = topt 1= tiggp(Xg + tp¢), and then
{Xg + aepe if ay is finite,
y = .
P otherwise.
e xer1=y/lly|s:
8: set ppy1 = x5, Axeq1, Fog1 = Axgp1 — per1Bxeqa,
H H
- _ _ e Kren rga K(rep1—re)
Pey1 = —Krgp1 + Bepe, where B = FiKr, © Miry
9: end if
10: end for

11: return (py,x,) as an approximate eigenpair to (A1, uy).




Convergence

Earlier discussions on selecting a good preconditioner for PSD should apply:
w A—oB = LD, D =diag(£1), K = (L"L)~%.

Various heuristics on the convergence rates of the preconditioned CG, but none is
rigorously proved. Even less can be said about the theoretical analysis of block (or
subspace) versions of the preconditioned CG method (to come soon).

But since preconditioned CG is CG for L~ HAL=! — A\L=HBL~1, previous convergence
theorem for CG remains valid.



In writing down CG for Ax = ABx, we did

gradient-to-residual replacement: replacing the gradient by the eigen-residual
r(x) = Ax — p(x)Bx which differs by a scalar factor 2/x" Bx from the gradient

Vp(x) = - [Ax — p(x) Bx];

also normalizing x,. No theory around as to why we should normalize x;, beside
that they are some eigenvector approximations.

We made a couple of “arbitrary choices”. Their effects on the rate of convergence are
not clear.

Locally optimal CG eliminates the “arbitrariness” altogether: compute x,; from the
subspace span{xy_1,xy,r¢} by

min p(X),
x€span{xp_1,X7,F¢}

which is solvable through the Rayleigh-Ritz procedure.



Locally Optimal CG

Locally Optimal CG for Ax = ABx

Given an initial approximation xq to u;, and a relative tolerance rtol, the algorithm
attempts to compute an approximate eigenpair to (A1, u1) with the prescribed rtol.

1: xo = xo/|[x0ll8, po = x5 Axo, ro = Axo — poBxo, x—1 = 0;

2: for £=0,1,... do

3 i Irell2/(|Axell2 + [pel [|Bxell2) < rtol then

4: BREAK;

5: else

6: compute a basis matrix Z € C"*k (k = 2 or 3) of the subspace
span{xg,x¢_1,r¢};

7: compute the smallest eigenvalue p and corresponding eigenvector v of
ZH(A - )\B)Z;

8: y=2v, xe11 =y/llylls:

9: Por1 = W o1 = AXpr1 — per1Bxesa;

10: end if

11: end for

12: return (py,x;) as an approximate eigenpair to (A1, u1).




xp moves closer and closer to uy; xp, Xy_1 increasingly move towards being linearly
dependent.

Line 6: Z contaminated more and more by rounding errors. How to mitigate that?

To replace xy_1 by some y, := &y 1xy — &g 2X¢_1 such that
span{x¢,Xg_1,r¢} = span{x¢,¥y¢, re}.

Then same (u, v) at Line 7. But need to generate y,.1, given x¢, y¢, ry.

Z = [z1, 20, z3] is B-orthonormal (by MGS), and z; = x4. Then
y =2v =121 + 1022 + 1323 = V1Xg + 1222 + 1323.

Set yoi1 =y —vixy = ||lylla Xeq1 — vixe =1 Epy11%e41 — Erg1,2Xe.

Modify Lines 1, 6, and 8 as follows while keeping others the same.

1: xo = xo/|Ix0l|8, po = x5 Axq, ro = Axo — poBxo, yo = 0;

6: compute a basis matrix Z € C"*k (k = 2 or 3) of the subspace
Span{xf’ylvrf};

8: y =2v, xe11 =y/llyllg, Yer1 = ZV, where ¥ is v with its 1st entry zeroed;




Convergence

Convergence Theorem for LOCG)

pe converges to some eigenvalue A of A— AB and ||(A — AB)xg|l — 0 as £ — oo, i.e.,
Xy converges in direction to a corresponding eigenvector.

m Same convergence theorem for SD;
= For CG, PCG, only [[(A— AB)xy,|l2 — 0;

w Inclusion of the residual r, makes the difference.



Improve LOCG

Three ideas for improving SD naturally apply here:

Incorporate a preconditioner K: simply modify ry to Kry;

Extend search space from currently
span{xy_1} + K2(A — p¢B,x¢) to span{xy_1} + Km(A — p¢B,xy);

Use block Xy € C"*<Mb,

The ideas can be applied in any combination (23 = 8 of them): E.g.,

Locally Optimal Preconditioned CG (LOPCG): m=2, n, =1, K # [;

Locally Optimal Block Preconditioned CG (LOBPCG): m=2, n, > 1, K # I;
Locally Optimal Extended CG (LOECG): m>2, n, =1, K =1,

Locally Optimal Preconditioned Extended CG (LOPECG): m > 2, n, =1,

K #I;

Locally Block Optimal Preconditioned Extended CG (LOBPECG): m > 2,
np>1 K#I.



Locally Optimal CG

Extended Locally Block Optimal Preconditioned CG

Given

an initial approximation Xp € C"*" with rank(Xp) = np, and an integer m > 2,

the algorithm attempts to compute approximate eigenpairs to (A, u;) for 1 < j < ny.

1: co

mpute the eigen-decomposition: (X{'AXo)W = (X'BXo) W 2, where

WH()Q;-| BXO)W = I, .Qo = diag(po;l,po;z, coo 7p0i"b);

2: Xo = XoW, and X_1 =0;

3: for £=0,1,... do

4: test convergence and lock up the converged (detail as in EBPSD);

5: construct preconditioners Kj.; for 1 < j < np;

6: compute a basis matrix Z € C"<(M+1)n of the subspace
np
D Kn(Kej(A = pejB), xej) + R(Xe—1);
j=1

7: compute the n, smallest eigenvalues and corresponding eigenvectors of
ZH(A = AB)Z to get (Z"AZ)W = (ZHBZ)W 2, where WH(ZHBZ)W = I,
‘QZ+1 = diag(p2+1;17 PL+1;25 - - 7p€+1;nb);

8: Xop1 = ZW;

9: end for

10: return approximate eigenpairs to (A, u;) for 1 < j < np.




Three important implementation issues earlier for XBPSD essentially apply here, but
more need to be said about Z at Line 6 here.

Xp—1 can be replaced by something else, using the idea earlier for LOCG. Specifically,
Lines 2, 6, and 8 should be modified to

2: Xo = XoW, and Yy =0;

6: compute a basis matrix Z € C"*(m+1)m of the subspace
b
D Km(Kej(A = pejB), xej) + R(Ye) such that R(Z(. 1.n,)) = R(Xe);
j=1

8: X1 =2ZW, Y1 = ZW, where W is W with its np rows zeroed;

For Ky.j = Kq, Z is basis matrix of (dropping the subscript £)
Km(KZ, X) + R(Y) = span{X, KZ(X), ..., [KZ]" 1 X)} +R(Y).

compute a basis matrix [Z1, Za,. .., Zm] for Km(KZ, X) by the Block
Arnoldi-like process in the B-inner product. In particular, Z; = X.

B-orthogonalize Y against [Z1,2Z>,...,Zm] to get Zy41 satisfying
ZN  BZpi = 1.

Z=[2,2,...,2Zm1]



eferences

Precise rates of convergence for various CG methods are scarce and not well
understood, especially so for methods of block version. The existing research on the
convergence of various SD and CG-type methods, although fragmental and
incomplete, should be helpful and provide heuristic insights. Some of the references are

L. Bergamaschi, G. Gambolati, and G. Pini. Asymptotic convergence of conjugate gradient methods for the
partial symmetric eigenproblem. Numer. Linear Algebra Appl., 4(2):69-84, 1997.

)

J. H. Bramble, J. E. Pasciak, and A. V. Knyazev. A subspace preconditioning algorithm for
eigenvector/eigenvalue computation. Adv. in Comput. Math., 6:159-189, 1996.

=)

Andrew V. Knyazev and Klaus Neymeyr. A geometric theory for preconditioned inverse iteration IlI: A short
and sharp convergence estimate for generalized eigenvalue problems. Linear Algebra Appl., 358(1-3):95-114,
2003.

D. E. Longsine and S. F. McCormick. Simultaneous Rayleigh-quotient minimization methods for

Ax = ABx. Linear Algebra Appl., 34:195-234, 1980.

=) =)

S. Oliveira. On the convergence rate of a preconditioned subspace eigensolver. Computing, 63:219-231,
1999.

=D

E. E. Ovtchinnikov. Jacobi correction equation, line search, and conjugate gradients in hermitian eigenvalue
computation |: Computing an extreme eigenvalue. SIAM J. Numer. Anal., 46(5):2567-2592, 2008.

=D

E. E. Ovtchinnikov. Jacobi correction equation, line search, and conjugate gradients in hermitian eigenvalue
computation Il: Computing several extreme eigenvalues. SIAM J. Numer. Anal., 46(5):2593-2619, 2008.

=)

H. Yang. Conjugate gradient methods for the Rayleigh quotient minimization of generalized eigenvalue
problems. Computing, 51:79-94, 1993.



Extending Min-Max Principles: Indefinite B

m Early Extensions

m Positive Semi-definite Pencil



Early Extensions

Min-max principles, Cauchy interlace inequalities are Foundations for optimization
approaches to solve few extreme eigenpairs of A — AB with B > 0.

How far can these theoretical results be extended?

Early extensions (before 1982) of Courant-Fischer min-max princples:
m Ax = Ax with A > 0 in an indefinite inner product

R. S. Phillips. A minimax characterization for the eigenvalues of a positive symmetric operator in a
space with an indefinite metric. J. Fac. Sci. Univ. Tokyo Sect. I, 17:51-59, 1970.

B. Textorius. Minimaxprinzipe zur Bestimmung der Eigenwerte J-nichtnegativer Operatoren. Math
Scand., 35:105-114, 1974

It turns out to be a special case of A — AB with indefinite and nonsingular B.
u Hyperbolic Q(\) = AX2 + BA + C:

R. Duffin. A minimax theory for overdamped networks. Indiana Univ. Math. J., 4:221-233, 1955
m More general nonlinear eigenvalue problems:

H. Voss and B. Werner. A minimax principle for nonlinear eigenvalue problems with applications to
nonoverdamped systems. Math. Meth. Appl. Sci., 4:415-424, 1982
and references therein.

Will focus on A — AB with indefinite B and hyperbolic Q(}) ...



Difficulties:

B is indefinite — Ax = ABx not equivalent to standard
Hermitian eigenvalue problem;

Ax = ABx may have complex eigenvalues — no min-max for
complex eigenvalues;

The case we consider will turn out to have only real
eigenvalues.

A — AB may be a singular pencil: det(A— AB) =0 for A € C.
Need a definition for eigenvalues.



Extending Courant-Fischer for regular Hermitian pencil:

Nonsingular B: Lancaster & Ye (1989), Ye's thesis (1989), Najman & Ye
(1991), Binding & Ye (1995)
Singular B: Najman & Ye (1993), Binding & Najman & Ye (1999)

Only certain real semi-simple eigenvalues admit a Courant-Fischer type
characterization.

Extending trace min for positive semi-definite Hermitian pencil (i.e.,
A — XoB = 0 for some )y € R):

Nonsingular B: Kova&-Striko & Veseli¢ (1995)
(Possibly) singular pencil A — AB: Liang & Li & Bai (2012)

Extending Wielandt's min-max for positive semi-definite Hermitian pencil:

Nonsingular B: Naki¢ and Veseli¢ (2003) (actually for regular Hermitian A — AB,

but beware of inaccurate/incorrect statements/equations there)

(Possibly) singular pencil A— AB: Liang & Li (2012)

Extending trace min for linear response eigenvalue problem: Bai & Li (2011).



Positive Semi-definite Pencil

A=A" B =B"H¢eCmnxn

Positive semi-definite pencil: A — X\gB > 0 for some A\g € R;
A — AB will be assumed so hereafter.
Finite eigenvalue p(# 00): rank(A — uB) < max rank(A — AB); This allows
singular pencil A — AB.
Eigenvector x: Ax = uBx and x € N(A) N N(B) and .

[~ -]

B'’s Inertia (n4, ng, n—): ny positive, ny zero, and n_ negative eigenvalues,
respectively.

Can prove: positive semi-definite pencil A — AB has only
r:=rank(B) = ny + n—
finite eigenvalues all of which are real:
A < <SAT S Ao <A < <AL

n

[@ In more detail ...



onical Form of Positive Semi-definite Pencil

There exists a nonsingular W € C"*" such that

ny r—ny n—r ny r—ny n—r
" m A1 H m 2
W7 AW = r—ny Ag , W'BW = r—n 20 s
n—r Aso n—r 0
W A; =diag(siaq, ..., spayg), $21 = diag(sy, ..., s¢), s; = £1, and A; — Xg821 > 0;
B Ag = diag(Ao,1; - - -, Ao,mtmy). L0 = diag(£20,1, - - -, 20, m4-mg).
Ag,i = tiXo, Qo =t;==%1, for1<i<m,

oi=[0 Y @i= ) g ermir<i<mim.

There are no such pair (Ag, £29) if A— XgB > 0.
B Ao =diag(y1, - -, ap) = 0with a; € {1,0} forr +1 < i < n.

A — AB has ny + n_ finite eigenvalues all of which are real. Denote these finite eigenvalues by )\?: and
arrange them
A, <o <A <AT <<t
- - - - +

n_ =

{vER[A-—~B =0} =[x, , )\'1*'] Moreover, if A — AB is regular, then A — AB is a positive
definite pencil if and only if A" < A[, in which case {y € R|A — vB > 0} = (A, , A{).

(Proof in Liang, Li, & Bai, Linear Algebra and its Applications, 438 (2013), 3085-3106)



Courant-Fischer Type

Courant-Fischer type min-max principle

H H
. xHAx . x"Ax .
)\,?L = sup inf ey Afr = inf sup T for 1 <i < ny,
codim X=i—1 x€X xHBx dimX=i xex X Bx
HBx>0 HBx>0
H H
_ . x"Ax _ . xTAx i
Al = inf sup ———, A; = sup inf ——— for1<i<n_.
codimX=i—1 xex xHBx dim x=i x€X xHBx
sHBx<o HBx<o
. 4 . xHAx _ xHAx
In particular, Al = inf —— Al = sup — .
*Hex>0 xHBx WHpeoo X1 Bx

= Lancaster & Ye (1989), Ye's thesis (1989) for diagonalizable A — AB and B
nonsingular. (Actually studied A — AB not necessarily positive semi-definite, but then only some of
the eigenvalues can be characterized.)

= Najman & Ye (1993), Binding & Najman & Ye (1999) for regular A — \B.

(Actually studied A — AB not necessarily positive semi-definite, but then only some of the real eigenvalues
can be characterized.)

» Liang & Li (2012) for allowing singular pencil A — \B.



Trace Min Type

ki <ny, k- <n_, ki=ki +k->1, Jk:[lk+ —1I ]

Trace minimization principle

Xp=lrg e, ]
X_=lypoeeoyi ]
X=[Xp X_],
subject to (8)

Ky k_
inf trace(X"AX) = Z AP — Z Al -
i=1 i=1

either X"BX = Jy, or XEBX+ = Iy, and XHBX_ = —I . (8)

A converse: infyngy_ ), trace(XHAX) > —co = A — AB positive semi-definite.

u Kovat-Striko & Veseli¢ (1995) for B nonsingular, subject to XHBX = Jj.
= Liang & Li & Bai (2012) for allowing singular pencil A — AB.

Unfortunately no Trace Max in general.



Cauchy Type

Eigenvalues of A — AB: A, <.+~ <A <Af <. <Af .

X € Ck*k XHBX = Jy, or the inertia of XHBX is (kt,0, k_);
Eigenvalues of X"(A — AB)X: M <o <pp < ph << ,u',:_.

Cauchy-type interlacing inequality

+ + + ;
>\,' SN,’ < Ai+n—k’ for 1 <i < ky,
Nipx SHp ST, for1<j<k,
where undefined )\,?L = oo for i > ny and undefined Aj_ = —oo forj > n_.

n Kovad-Striko & Veseli¢ (1995) for B nonsingular.
= Liang & Li & Bai (2012) for allowing singular pencil A — AB.

These results potentially lead to optimization approaches to compute 1st few )\,.i
(these are interior eigenvalues!). See Bai & Li (2011, 2012, 2013 for linear response
eigenvalue problem), Kressner, Pandur, & Shao (2013).



Linear Response Eigenvalue Problem

m Background

m Basic Theory

= Minimization Principles

m 4D SD and 4D CG type Methods



TD-DFT

DFT, strictly a ground-state theory, cannot be applied to study the excitations
of systems that are involved in Optical Absorption Spectra (OAS) calculations.

Runge and Gross (1984) generalized DFT to Time-Dependent Density
Functional Theory (TD-DFT):

(r t)— ——V +/ n(r t) dr +5A2c((’:(rt)t)) +Vext(r; t)i|¢i(r’ t),

viks(r,t)

Now KS operator depends on time t:

Ny
electronic density:n(r, t) = Z ¢i(r, t)i (r,t).

i=1

G. Onida, L. Reining and A. Rubio, Electronic excitations: density-functional versus many-body Green'’s
function approaches, Rev. Mod. Phys. 74, 2002, (59 pages).



Weak External Perturbation

DFT:  H&ei(r) = [—%vz + VKs(r)] ¢i(r) = Nigi(r),
vks(r) = v (r) + vie(r) + vexe(r).

Perturb vex(r) slightly to vext(r, t) = Vext(r) + Vext(r, t), which in turn induce
perturbations to ik (r) = wu(r) + we(r):

Vch(ra t) = Vch(r) + ‘.,/ch(r, t)~
TD-DFT: L%gﬁi(r, t) = Hxs(t)oi(r, t) = —%V2 + wes(r, t)| di(r, t),

1
His(t) = —EV2 +vi(r, t) + vie(r, t) 4 vexe(r, t)

= HE + Wine(r, t) + Vet (1, ).



Linear Response Theory

Seek information on first order change in n(r,t) = n(r) + a(r, t):
¢i(r, t) = ¢i(r) + qzi(rv t),
n(r,t) = n(r) + a(r, t)
Ny
= n(r)+ > [61(r )oi(r) + 67 (Di(r. )]
i=1

Better to explain using the single-particle density matrix which reads

plr,t) = 3 161, 0)) (61(r, )] = o) + 41, 1),

i=1

o) = S 161(r)) (i(r)]

i=1

o, t)=i(

i=1

di(r. 1)) (61(n)| + [01() (di(r. )] )

(For Dirac Bra-ket notation, google bra-ket.)



Linear Response Theory

Differentiate p(r, t) with respect to t to get

e, 8) = D [Hes(8) 610, ) 610, O] = 50, 0) (650, )] e (1)

= [Hks(t), p(r, t)] -

Substitute Hxs(t) = HE + e (r, t) + Vexe(r, t) and p(r, t) = p(r) + p(r, t) to
get

ad, . . o
v B t) = [HEE, 41, 8)] + [, £), p(P)] + [iea(r, ), ()]
= Lﬁ(ra t) + [‘7e>¢(ra t)a p(r)] )
where £ is the Liouvillian super-operator:

Cp(r, €)= [, 5(r, )] + [nc(r, £), ()]



Linear Response Theory

L%ﬁ(n t) = [Hﬁg  B(r, t)] + [Whxe(r, £), p(P)] + [Vexe(r, 2), p(r)]

= Lp(r, t) + [Vex(r, t), p(r)],
Apply the Fourier transformation to get
wilr, ) = [HE, plr, )] + itne(r, ), ()] + [l ), ()]
= Lp(r,w) + [Vexe(r, w), p(r)]
where Lp(r,w) = [HZ, p(r,w)] + [Bic(r,w), p(r)]. Therefore
(w— L)p(r,w) = [Vexe(r,w), p(r)] .

Set Vext(r,w) = 0 = an eigenvalue problem; the smallest positive eigenvalues
and associated eigenvectors give excitation states.



Matrix representation of £

Can show:
R(p1(r)) s R(¢p,, () N(p(r))
R($1(r) 0 0 <431(r, ) oL (r)
M= : g : o
R(ép, (1) 0 - 0 (dn,(r 0)] o™ ()
New)  \pt@ s ) o e |dn,(r D) 0

Hence basis functions of the “vector space” of all possible j(r, t)

xi(rt) = p (0]i(r0) . wilr, ) = (3. 8)] o (1).

In the frequency space:

R(é1() o R(ey, () N(p(r)
R(b1(r) 0o 0 y(r,w)
Blriw)= ; : : :
R(ep, (1) 0o - 0 Yy (r, w)

N(p(r)) x(rw) -0 xy, (r,w) 0



Matrix representation of £

xi(r,w) xi(r,w)
xNv(-r, w) | _ (D+X X XN, (r, w)
“lnre) | T ( —K - _g<) yi(r,w)
Y, (r,w) Y, (r, )

D = diag (p" (NHEP" (1) = 1, p" (NHEp™ (r) = ent ),
zl(r)

X : =
2w, (r)

S0 0) [ sl Yo 5 e (610

S0t 0) [ sle o) ') i o (1)



Linear Response Eigenvalue Problem

First several smallest positive eigenvalues and corresponding eigenvectors of

ul _| A Bl |u| | |u
#[=ls Al =L
T _ T _ nxn A B
AT = A, B" =B eR™", [B A]>o.

Equivalently, Hz = \z:

g 1 [I,, In:|’ S I=P =,

B 0 A-B] [0 K
A]J_[A+B 0 }_'[M o]“”'
K=A-B»0, M=A+Bx>D0.

H non-symmetric, but rich structure to take advantage of.



eferences

For Linear Response Eigenvalue Problem in general

G. Onida, L. Reining, and A. Rubio. Electronic excitations: density-functional versus many-body Green's
function approaches. Rev. Mod. Phys, 74(2):601-659, 2002.

Dario Rocca. Time-Dependent Density Functional Perturbation Theory: New algorithms with Applications
to Molecular Spectra. PhD thesis, The International School for Advanced Studies, Trieste,ltaly, 2007.

D. J. Thouless. Vibrational states of nuclei in the random phase approximation. Nuclear Physics,
22(1):78-95, 1961.
Material in what follows on Linear Response Eigenvalue Problem largely taken from

Zhaojun Bai and Ren-Cang Li. Minimization principle for linear response eigenvalue problem, |: Theory.
SIAM J. Matrix Anal. Appl., 33(4):1075-1100, 2012.

Zhaojun Bai and Ren-Cang Li. Minimization principle for linear response eigenvalue problem, II:
Computation. SIAM J. Matrix Anal. Appl., 34(2):392-416, 2013.

D. Rocca, Z. Bai, R.-C. Li, and G. Galli. A block variational procedure for the iterative diagonalization of
non-Hermitian random-phase approximation matrices. J. Chem. Phys., 136:034111, 2012.



First several smallest positive eigenvalues, eigenvectors of

[=ls =L

AT = A BT =B e R™", [B f\] positive definite.
1 /n In T 2
J=— 5 J'J=J= /2n7
V2 |:/n _In:|

[ A [ o A-B 0 K|
I e e e R L

K=A—-—B, M= A+ B € R™" definite because

A T S B



Equivalent Forms

Eigenvalue problem for .7# — original LR:
ul _ | A Bl||ul ||u
7=l Al L]
Eigenvalue problem for H — transformed LR:

S P [§ R

Eigenvalue Problems for 2 and H equivalent:
m Same eigenvalues, and

m Eigenvectors related by



Basics

0 K

Problem. H = [M 0

] 0<KT=K,0<MI =MecR™".

KM and MK have positive eigenvalues:
0<AT <A< <A,
where 0 < A1 < X\ < --- < )\, because
eig(KM) = eig(KY2KY2M) = eig(K/2MK*/?).

. [KM 0

0 MK] = H has eigenvalues

A< S SA < HAL S S H A



Eigendecomposition

I X =Y~ T € R"™" such that
K=YAYT, M=XXT, A=diag(A;,\2,...,\n).

Critically important later.

Proof.

1) Cholesky decomposition: M~1 = RTR.

2) Eigendecomposition: R~ TKR™! = QA%QT, QTQ = I,.

3) Finally Y =RTQ, X =Y~ T. O

H is diagonalizable with Eigendecomposition:

il =1 S )



Eigenvalue problem for J#: special case of Hamiltonian eigenvalue
problem.

Eigenvalues appear in £\ pairs:
“Ap <SS <AL S S A
Thouless’ Minimization Principle (1961):

BRG]

luTu—vTv|

A1 =mino(u,v), o(u,v)=
u,v

Many of today's minimization approaches for computing A; are
results of this principle.



Thouless’ Minimization Principle
Use [y] =J7 [u}, [u} :J[y} to get
X v v X
Thouless’ Minimization Principle (in different form)

T T
. def X' Kx +y My
A= T,'ynP(X,Y), plx,y) = W

Will call both o(u, v) and p(x,y) Thouless’ Functional.

Recall K = YA2YT, M= XX", and X = Y~ T. We have

- X"Kx+y"My XYY T x+yTYy- Ty 1ty
min ———————— = min
xy 2|xTy| xy 2IxTYY-ly|
ST g2% | ST~
= min XA):#
xy  2[xTy|
25" Nilxihvi
%y 2|2 XYl

Careful analysis = equality signs realizable, and optimal argument pair
produces eigenvector. O



Four decades’ researches by computational (quantum) physicists and chemists and

numerical analysts.

Following three eigenvalue problems are equivalent:

s G0 -

KMy = X2y,

) ~ MKx = Xx..
By computational (quantum) physicists and chemists:

(Eig-H)
(Eig-KM)
(Eig-MK)

Chi (1970): solve (Eig-KM) through Symmetric Eigenvalue Problem (SEP)

RKRT, where M = RTR (Cholesky decomposition).

Davidson-type algorithms (1980s & 1990s), Lanczos-like algorithms (1990s &

2000s)

CG-like algorithms (more recently, based on Thouless’ principle)

By numerical analysts:

Wilkinson (1960s) discussed (Eig-KM) and (Eig-MK). Implemented as LAPACK

xSYGVD

GR algorithm for product eigenvalue problems, generalizing well-known QR

algorithm (Watkins, Kressner)

Krylov-Schur, Jacobi-Davidson, Hamiltonian Krylov-Schur-type, symplectic

Lanczos, ...



Trend. Huge size — n in the order 10° or larger; pose tremendous
challenge.

Despite four decades’ researches, it is still challenging to robustly
and efficiently compute first several positive eigenvalues and
eigenvectors.

To come:

New theory for H that parallels Symmetric Eigenvalue
Problem (SEP)

New algorithms capable of computing first several positive
eigenvalues and eigenvectors simultaneously.



Deflating Subspaces

U,V C R", subspaces. Call {U,V} a pair of deflating subspaces of {K, M} if
KUCV and MV CU.

Let U € R"™*k V € R"*k basis matrices for U and V, resp.
3 Kg, Mg € RKXK such that

KU = VKr, MV = UMR.
In fact, for left generalized inverses U7, viofu, v, resp.,

Kr = VKU, Mgr=U"MV.
For example, U7U = [ for

U = (UTU)"IUT,  but we prefer
U= (VTU)~IvT if (VTU) T exists.



Basics: Deflating Subspaces

B _ 0 K||V - v 0 Kr
KU = VKgr, MV = UMRr = [M 0:| [ U:| - [ U:| [MR 0:|

Hgr = 0 K is a restriction of H onto V @ U.
Mg O

Hr same block structure as H; but lose symmetry in K, M.

Suppose W def U™V nonsingular. Factorize W = W' Ws, where W,
nonsingular. Define

Hew — 0 wy TUTkuw !
R Wy, TVTmMvwg 0 ’
another restriction of H onto V @& U, too:
vt [vw,t
L ] [ ]

Hsr same block structure as H and retain symmetry in K, M. Major role to
come.



Trace Minimization Principle

Trace Minimization Principle

k
1
> A= 5 min trace(UTKU + VTMVY).
i=1

If Ak < Ak+1, optimal {span(U),span(V)} gives deflating
subspaces of {K, M} corresponding to +);, 1 < i < k.

Quite similar to the Trace Minimization Principle for Symmetric
Eigenvalue Problem (SEP) discussed earlier.

A lengthy proof can be found in

Zhaojun Bai and Ren-Cang Li. Minimization principle for linear
response eigenvalue problem, |: Theory. SIAM J. Matrix Anal.
Appl., 33(4):1075-1100, 2012.



Cauchy-like Interlacing Inequalities

Cauchy-like Interlacing Inequalities

U,V e R™*; W = U™V nonsingular; W = W{' Wa, W; € R*** nonsingular;
U = span(U), V = span(V); Eigenvalues of

—T T =il
o — [ 0 W TUTKUW, }

W, TVTMVW, ! 0
are £u; (1 <i< k), where 0 < p3 <+ < k. Then for 1 < i<k

min{~(K), (M)} , }
cos Z(U,V) B

Ai < i < min {>V+2(n—k)a
where \; = oo for j > n. If either U = MV or V = KU, then
Ai < wi < Aitn—k-

Quite similar to the Cauchy Interlacing Inequalities for Symmetric Eigenvalue
Problem (SEP) discussed earlier.

A lengthy proof can be found in Bai and Li (2012) mentioned in the previous
slide.



Seeking “best possible’ approximations from the suitably built subspaces.
Given {U,V}, a pair of subspaces, dim(U) = dim(V) = np.
Minimization principles motivate us to seek

the best approximation to A; in the sense of

emin_, p(x,y)

and its associated approximate eigenvector;

the best approximations to A; (1 < j < k) in the sense of
1 . Tkl L UT U
= min trace(U'KU + V' MV)

2 span(D)C U span(V)C v

uTv=i,

and their associated approximate eigenvectors. Necessarily k < np.



Best Approximation: \;

U, V € R™" basis matrices of U and V. Assume W = UTV nonsingular.
Factorize W = W{" W5, W; € R™*™ nonsingular.

xelWl, yeVe x=U, y=V0iforn, i € R™.

(x.y) = x"Kx+y"™My _0"UKUZ +0"VTMV©

PROY) =0Ty 20T WY

STWETUTKUW )+ 9T Wy TVITMVYWG Ly
21XT9| ’

where X = WAL and § = WaLv.

ST/ —T (T 1o oTy - Ty T ~1g
1% KUW, W, VI MVW,
min _ p(x,y) = min =1 U kuw, Xj_}: 2 2 Y
xeW,yeV 2,9 2|XTY|

which is the smallest positive eigenvalue of

0 W TUTKUwW!

Hse = e v vt 0



Best Approximation: \; (1 < j < k)

span(U)Cu span(V) C V, - U= uw; X, V= VW, ly,
UVv=1 XYeR"bX“ XTY—Ik

UTKU+ VMV = XTW TUTKUW, X + YT Wy TV My Ly

min trace(UTKU + VT MV)
span(U)Cu span(V)CV
UT V=1,

= min trace(X"W TUTKUW X + YTW, TV MV, 1Y),
XTY=I

which is the sum of 1st k smallest positive eigenvalue of

0 w TUTKuw, !

Hse =y v vt 0



Best Approximation: Eigenvectors

Positive eigenvalues of Hsg: 0 < p; < --- < p,,. Associated eigenvectors 2;.
Hsr2j = pj2;, 2 = [}:’] .

Then p(UW, '%, VW, '9;) = pj for j=1,...,np.

Naturally, take A\; = p;, and corresponding approximate eigenvectors of H:

il _ [Wsly _
[};] = [UWl_lfg forj=1,...,np.

Zj

What if UTV is singular? Still can do, just more complicated

Zhaojun Bai and Ren-Cang Li. Minimization principle for linear response
eigenvalue problem, II: Computation. SIAM J. Matrix Anal. Appl.,
34(2):392-416, 2013.



Perturb x, y to R =x+p, =y +q, p and g tiny . Assume x'y # 0.
Up to the first order in p and q,

_ (x+p)K(x+p)+(y+ )" My +q)
; 2(x+p)"(y +q)l
xTKx +2p"Kx + y"My + 2q" My
2xTy +pTy +q"x|
x"Kx +2p"Kx + y My + 2q" My [1 Py + qTx]
2[xTy| xTy

1 1 o
=p(x,y)+Wp [Kx—p(x,y)y]+Wq [My = p(x,y) x].

Partial gradients: pr— [Kx p(x,¥)y1, Vyp— [My p(x,y)x].

Closely related to residual:

e stz = [y 5] 2] s [ = 2]



T T
. . . . x ' Kx M
Interested in solving min p(x, y) = min x Ax+y My to compute ;.
X,y

x,y 2|xTy|

Standard line search: Given current position {i] search direction Lﬂ seek to

([ ees

Doable via Calculus. But not flexible enough to have subspace extensions.

minimize p along line

We will do differently.
Minimize p within the 4-dimensional subspace
{{gii;ﬂ for all scalars «, 8, s, and t}
to get
a':gi,g,tp(ax +sp, By + tq) = uESpan(UTiUESpan(V) p(u, v),

where U =[x, p] and V = [y, q]. Returned to Best Approximation.



Naturally take
Bt
P Vxp|’
as in the standard steepest descent (SD) algorithm.
n Lead to plain 4-D SD algorithm for H

m Can design block versions for computing several eigenpairs

m Can incorporate pre-conditioners

All can be viewed as variants of locally optimal 4-D CG algorithms which we
will discuss.



Locally Optimal 4-D CG

Notation: £ iteration index; j eigenpair index.
Standard: search next approximations within

() y_(z—1)
span ‘ol e | [
%j %j

=2 [
pj Vyp Gon)=(9 59) ’

and & is a preconditioner to be discussed later.

9]
, =1:k;,,
Pj:| J

where

We do differently: search next approximations within

(£) (e=1) . 0 0 0
Y; Y; qj P
o[ Do | L8] Lol L] o] =2}

Breaking vectors into two this way is a common technique today in developing structure-preserving alg.:

Kevin J. Kerns and Andrew T. Yang. Preservation of passivity during RLC network reduction via split
congruence transformations. |EEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
17(7):582-591, July 1998

R. W. Freund. SPRIM: Structure-preserving reduced-order interconnect macromodeling. In Proc. Int. Conf.
Computer Aided Design, pages 80-87, Nov. 2004.

Ren-Cang Li and Zhaojun Bai. Structure-preserving model reductions using a Krylov subspace projection
formulation. Commun. Math. Sciences, 3(2):179-199, 2005.



Locally Optimal Block Preconditioned 4-D CG

Given an initial approximation Zy = [Xq, Yo ]" € C*™*" with
rank(Xo) = rank(Yp) = np, the algorithm attempts to compute approximate
eigenpair to (Aj,z) for 1 < j < np,.

1: If jth column of Zj isn't an approximation to z; already, compute initial
approximation with {U, V} := {R(Xo), R(Yo)} to give a new Z;

2: for{=0,1,... do
3:  test convergence and lock up the converged (to discuss later)
4: construct a preconditioner &y;
5: [gﬂ «— &y |:AI;€/<; _ )Zgj)}, where 2, = diag(pz;j);
6: U= (X[,Xz_l, Pz), V = (Yg, Yz_l, Qz) (drop Xz_1 and Yz_l for ¢ = 0),
7:  orthogonalize the columns of U and V and decompose
W=U"V =W W
8: construct Hsg (assume W is nonsingular);

9: compute np smallest positive eigenvalues po11.; of Hsg, and associated
eigenvectors Z;;
Yei VW, o, 9] :
10:  Zpy1 = = 3 909 normalize each column).
G |:X[+1 UWI 1[X17 coo ,Xk] ( )
11: end for

12: return approximate eigenpairs to (\j, z) for 1 < j < np.




For convenience, drop iteration index /.

To compute eigenvalues close to p: & = (H — ph,) ™, and

[Q] = IR, R:HZ—ZQ:[

KX -Y
P )

MY — X 2

one step of the inverse power iteration on the residual.

Interested in the smallest positive eigenvalues, naturally p = 0:

wr = [2 M) = [y X dosol)]

Both P and Q computable (column-by-column) by (linear) CG.

In general for p # 0, multiplying by @ involves solving linear system:
(H — phn)z = b. Next slides consider this for 0 < p1 < A1.



Can verify

L\I/I 5/] (H=nl) = L\I/I 5/] {_/\l/l” —};/] - {_5” I\/IKT;EI}

to get
1
o [ K 10

Write b = {Zl] and z = K] (H — phn)z = b can be solved as
2

solve (MK — pi?I)x = Mby — bz for x, and then y = = (b1 — Kx).

Remain to solve (MK — 1*1)x = c efficiently. Write A= MK — 42/, and
symbolically

A= M2 (MI/ZKM1/2 _ le) M~Y2 — MY2ANM Y2

=A

Ax = c is equivalent to MYPPAM Y2x = ¢ & AM Y2 = MY2c.
—  N——

=X =:

A is SPD because 0 < 1 < A1. Can apply linear CG to Ax =¢ symbolically
first and then translate to Ax = c.




Transform to A% = &, A = M~Y2AMY2, 5 = M~Y/2x, ¢ = M~1/2x.

Linear CGto Ax =¢: fo = AX — &, po = —F, and for i > 0
Xit1 = X + «ipi, Fiv1 = B + «iApi, piv1 = —Fit1 + Bipi

AT A AT A~ AT An AT &
piri_ nih o _ P Afin _ Fipfin

AT A AT as ' AT AR sT5.
Bl ABi B Api B/ Api Fi ki

where aj = —

To convert them back to x-space (so-to-speak): Note
Pi= A% — &= M Y?(Ax — ¢) = M~Y?r. So M*?pg = —ro, and for i > 0,

xit1 = xi+ M2y, ri1 = i+ AMY2pi MM2pi = —ripa 4+ BiMY 2.
Two possible choices for p-vectors (drop subscripts):

p=M"%p (natural),

p=M"1?p (not-so-natural).

Difference in new formulas for «; and f;.



CG(l) for Ax = (MK — p?)x = ¢

Take p = M'/?p (natural). Already # = M~/2r, A= M~Y2AM"?. So
pTr=p M tr, pTAP=p M lAp, #Tr=r"M"tr, pTAF=p M lAr.
Therefore

_ pl M~ r; . "Mt
piM~tAp; — pM-1Ap;’

Trg—1 T pp-1
o _pi M A M i
P =

Bi = p M—1Ap; - rT M~1r;

CG(l) for Ax = (MK — pi?I)x = ¢

Given an initial approximation xp, a relative tolerance rtol, the algorithm
solves Ax = (MK — 1i®I)x = c.
1: n=Axo—c, po = —rh;
: fori=0,1,... do
qi = M~!p; by (linear) CG;
i = —(q,-Tr,-)/(q,-TAp;), Xi41 = Xi + Qipi, fiv1 = i + ;i Api;
if ||I’,'+1||1/||C||1 < rtol, BREAK,
Bi = (] Ari1)/(a Api), piv1 = —ris1 + Bipi;
end for
return last x; as an approximate solution.

PFNPPLOWN




CG(Il) for Ax = (MK — pi?l)x = ¢

Qi = — plTrl _ riTM_lri IB _ p,'TAri+1 _ r’_:—lelri+1 (9)
l piTAMpi p’-TAMp," ' P,'TAMPI r,-TM—lr; ’

CG(I) for Ax = (MK — 1i®)x = ¢

Given an initial approximation xp, a relative tolerance rtol, the algorithm
solves Ax = (MK — 1i®)x = c.

1 n=Ax—c qg=MT1n (by linear CG), po = —qo;
: fori=0,1,... do
compute «; by (9), Xi+1 = Xi + «ipi, fix1 = i + aiAMpi;
if [[riy1ll1/]|c]lr < rtol, BREAK;
gi+1 = M~ 'ri41 by (linear) CG;
compute i by (9), pit1 = —qit1 + Bipi;
end for
return last x; as an approximate solution.

PFNPPLDW




Discussion

Both CG require solving Mg = p in the inner iteration.
Another alternative is to rewrite symbolically

A= K2 (K1/2MK1/2 _ u2l) K2 — k—123K1/2

=A
Ax = c is equivalent to K1PAKY2x = ¢ &  AKY?2x = KY%c.
=X =:¢
A is SPD because 0 < 1 < A1. Can apply linear CG to Ax=¢ symbolically

first and then translate to Ax = c.

Detail is omitted.



1Hze,j — pe;jze;jll2

1Hzejll2 + lpejl l1zejll2 .
Usually A; are converged to in order, i.e., the smallest eigenvalues emerge first.

< rtol.

(pe;j, 2e;j) is considered acceptable if

Lock all acceptable approximate eigenpairs in keygq X Kcygd diagonal matrix D for
eigenvalues and 2n X k,gq tall matrix Z for eigenvectors.

Every time a converged eigenpair is detected, delete the converged py.; and z; from
£2y and Z;, respectively, and expand D and Z to lock up the pair, accordingly.

At the same time, either reduce ny, by 1 or append a new column to Z to maintain np
unchanged. The latter can be done by computing more than nj, eigenpairs at Line 9.

Deflate to avoid recomputing converged eigenpairs: Write Z = [)Y(} and suppose
Ty —
X'Y = Ikcvgd'

Modify K and M in form, but not explicitly, to K +CYYT and M+ ¢XXT,
where ¢ should be selected such that { + A\; > Akcvgd+"b+1' Here we pre-assume
the ke,gq converged eigenpairs are indeed those for (A, zj) for 1 < j < keygq-
This is usually so, but with no guarantee, of course.



Hyperbolic Quadratic Eigenvalue Problem

= Basics

= Rayleight Quotients

m Min-Max Principles

m SD and CG type Method



Hyperbolic @(\) = A\° + B) + C: Basics

0<A=A"cC"™" and B=B", C = cH cCcxn.
Q(X) is hyperbolic if

(x"Bx)? —a(xHAx)(xHCx) >0 for0#x eC.

This type Q arises, e.g., from dynamical systems that are overly damped.

Quadratic Eigenvalue Problem (QEP):
find A € C, 0 # x € C" such that Q(\)x = 0.

A quadratic eigenvalue; x: quadratic eigenvector.

All quadratic eigenvalues of hyperbolic Q()) are real:

Ap S SAD <A S S

n



BaSi (o (cont'd)

For more basic properties of Hyperbolic QEP, see

C.-H. Guo and P. Lancaster. Algorithms for hyperbolic quadratic eigenvalue
problems. Math. Comp., 74:1777-1791, 2005.

Nicholas J. Higham, Francoise Tisseur, and Paul M. Van Dooren. Detecting a
definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem,
and associated nearness problems. Linear Algebra Appl., 351-352:455—-474, 2002.

A.S. Markus. Introduction to the spectral theory of polynomial operator pencils.
Translations of mathematical monographs, vol. 71. AMS, Providence, RI, 1988.



Rayleigh Quotients

Given x # 0, consider
f(\, x) == xHQ(\)x = A2(xHAx) + A(x"Bx) + (xHCx) = 0.
Always has two distinct real roots (as functions of x)

—(x"Bx) & [(x"Bx)? — 4(x" Ax)(x" Cx)] 1/2
p=(x) = 2(xHAx) )

Can show
pr(x) € NLAT] p-(x) € AL AT T

Reasonable to define pi(x) as the Rayleigh quotients for the
problem.



Courant-Fischer Type

Courant-Fischer type min-max principle (Duffin, 1955)

AP = max min X AF = min max X
" codim X=i—1x€X p+(x), A dimx:;xexp+( )
D= min max p_ (x A = max minp_(x).
b codim i1 xex ¥ 0 A daim i e ? )
In particular,
A =minpi(x), AT = maxpy(x),

A, =minp_(x), A] = maxp_(x).
X X

w Duffin (1955) (though stated for hyperbolic Q with B = 0, C > 0, Duffin's proof works for the

general hyperbolic case.)

u Also Markus (1988) (mostly about hyperbolic matrix polynomial of any degree),
Voss (1982) (about certain nonlinear Q).



Trace Min/Max Type (Liang & Li, 2013)

Q(\) = AX2 + BX + C hyperbolic. Its quadratic eigenvalues:

k < 'n, X € C"™*K, rank(X) = k. XHQ(M\)X also hyperbolic.
Quadratic eigenvalues of XHQ(\)X:

< <AT

+
1,x5>‘

+
1,x§"'§>‘k,x

>‘k,X

Trace Min/Max type principle

k

k k
. + 4 N
rankl(lﬁ')f):k £ Aj*x - ZIAJ' ’ S Z X _E :An—k+j7
j=1 j=

rank(X)=
k

k
TR STED SIS D D S

rank(X)= kj )

Corollary of a more general Wielandt type max/max principle (Liang & Li, 2013).



Cauchy Type

Q(N\) = AXN?2 + BX + C hyperbolic. Its quadratic eigenvalues:

Ay < <AT <AT <<

n =

k < n; X € CK¥K, rank(X) = k;
Quadratic eigenvalues of X" Q(\)X:

Cauchy-type interlacing inequality

MN<ut <M =Lk

Mk SH S, =1,k

= Veseli¢ (2010).

= Also derivable from Wielandt type min-max principles (not presented here)
(Liang & Li, 2013).



Rayleigh-Ritz Procedure for Hyperbolic @

Recall two most important aspects in solving large scale eigenvalue problems: building
good subspaces and seeking “best possible’ approximations.

Given Y € C" and dimY = m, find the “best possible’ approximations to some of
Q(-)’s quadratic eigenpairs “using Y".

Can be done by a new “Rayleigh-Ritz" procedure. Let Y be Y's basis matrix.

Rayleigh-Ritz Procedure

Solve the QEP for YHQ(\)Y: YHQ(u) Yy =0, where

i S oo Spp <pf <-e- <

+

Approximate quadratic eigenvalues: ,u,?t ~ \;-, approximate quadratic

eigenvectors: Yy,.i .

But in what sense and why are those ;L,.i and Yy,.i “best possible’?



Rayleigh-Ritz procedure for Hyperbolic @ (contd)

k k

Trace Min/Max principle: inf AT, = A} suggests that best possible
/ princip! k)4 2 i x ,=Zl [/ sugg p
approximations to )\,?L (1 <i < k) should be gotten so that

jl‘(=1 )\IX is minimized, subject to span(X) C Y, rank(X) = k.

The optimal value is ZJ"(:1 ,ujr.

Consequently, first few }L?— ~ )\?' are “best possible’. Surprise: “interior” eigenvalues

are usually hard to compute but this is not the case here.

Similarly to argue for last few uJ?L = A;:Fn—k are “best possible’ .

Similarly to argue for first few u;” = X\, are "best possible’. Surprise: “interior”
eigenvalues are usually hard to compute but this is not the case here.

Similarly to argue for last few By RAL

\n_k are “best possible’ .



Use p(x) for either p4(x) or p—(x), and perturb x to x + p, ||p]| tiny.
p(x) is changed to p(x + p) = p(x) + 1+ O(||p||*). Then

[o(x) +n1? (x + p)MA(x + p) + [p(x) + 7] (x + p)" B(x + p) + (x + p)" C(x + p) = 0
which gives, upon noticing xH Q(p(x))x = 0, that

[20(x) xH Ax + x" Bx]n + pH[p(x)2Ax + p(x)Bx + Cx]
+ [p(x)2Ax + p(x)Bx + CxJp + O(lIpl2) = 0
and thus

o)A £ p()Bx + O] + [p(x)Ax + plx)Bx + Cxlp
2p(x) xHAx + xHBx '

n=

Therefore the gradient of p(x) at x is

B 2[p(x)?A + p(x)B + C]x.

v —
P() 2p(x) xHAx + xHBx

Important to notice that Vp(x) is parallel to the residual vector

r (%) 1= [p£(x)PA + p1(x)B + Clx = Qo (x))x.



Steepest descent/ascent method for computing one of )\f can be readily given.

Fix two parameters “typ” and £ with varying ranges as

typ € {+’ _}’ te {17 n}

to mean that we are to compute the quadratic eigenpair ()\Zy", uzyp).

A key step of the method is the following line-search problem

arg mina for (typ7 Z) € {(_a n)a (+7 1)}’
topt = argopt pyp(x + tp), argopt =
o = 2rEopt Pl £ ) argmax, for (typ. £) € {(—.1). (+.n)}.
where x is the current approximation to uzyp, p is the search direction.

Not easy to do: Rayleigh quotient ptyp too complicated, unlike for (linear) eigenvalue
problems.

Better way to solve by using min-max principle.



Line Search is equivalent to find the best possible approximation within the subspace
span([x, p]).
Suppose x and p are linearly independent and let Y = [x, p].

Solve the 2-by-2 hyperbolic QEP for YHQ(\)Y to get its quadratic eigenvalues
ty <py <py <y

and corresponding quadratic eigenvector yji.

Table for selecting the next approximate quadratic eigenpair:

| (typ, £) || current approx. | next approx. |
(+,1) (p+(x),x) (ni, i)
(+n) (p+(x),x) (n3, Yys)
(-1) (p—(x),x) (1, Yyy)
(=n) (p—(x),x) (1y, Yyy)




Steepest Descent/Ascent method

Basically it is Line Search along gradient direction.

Steepest Descent/Ascent method

Given an initial approximation xq to u?'p, and a relative tolerance rtol, the algorithm

attempts to compute an approximate pair to ()\Zyp’ uzyp) with the prescribed rtol.

1: xo = xo/[Ix0ll. Po = pryp(x0). ro = riyp(xo0);

2: for i =0,1,... do

3 if (Il /(IeiIAxi |+ il [1Bxill + [[Cxill) < rtol then

4: BREAK;

5: else

6: solve QEP for YHQ(N)Y;, where Y; = [x;, r/];

7 select the next approximate quadratic eigenpair (u,y) = (,u;yp, Y,-yjty")
according to the table;

8: xiv1 = y/llyll, pi+1 = p Fig1 = ryp(Xisa);

9: end if

10: end for

11: return (pj,x;) as an approximate eigenpair to ()\Zyp’ uzyp).




In Steepest Descent/Ascent method, the search space is spanned by
xj, ri = Q(pi)x;

It is the second order Krylov subspace K2(Q(p;),x;) of Q(pi) on x;.

One way to improve the method is to use a higher order Krylov subspace
Km(Q(pi), xi) = span{xi, Q(pi)xi, -, [Q(p)] " xi}.

Let Y; be a basis matrix of Xm(Q(pi), x;). Solve m-by-m hyperbolic QEP for
Y,-H Q(N)Y; to get its quadratic eigenvalues

P <o S <pf S-S

and corresponding quadratic eigenvectors yji.

Table for selecting the next approximate quadratic eigenpair:

| (typ, £) || current approx. | next approx. |

(+1) (p+(x), x) (1w, Yin)
(+.n) (p+(x), x) (1> Yivm)
(-1 (p—(x),x) (kg > iy )
(=n) (p—(x),x) (m s Yiym )




Extended Steepest Descent/Ascent method ()

Extended Steepest Descent/Ascent method

Given an initial approximation xg to uP, and a relative tolerance rtol, and the search
space dimension m, the algorithm attempts to compute an approximate pair to
(AP, u®) with the prescribed rtol.

1: xo = xo/[x0ll, Po = pryp(X0), ro = ryp(xa);
2: for i=0,1,... do

30 if [Irill/(lpi Pl Al + [pil | Bxill + | Cxill) < rtol then

4: BREAK;

5: else

6: compute a basis matrix Y; for KXm(Q(pi), xi);

7 solve QEP for YHQ(A)Y; to get its quadratic eigenvalues uji and
eigenvectors yji;

8: select the next approximate quadratic eigenpair (i, y) = (;L;yp, ijtyp)
according to the table;

9: xiv1 = y/llyll pivr =t riv1 = ryp(xit1);

10: end if

11: end for

12: return (p;,x;) as an approximate eigenpair to ()\Zy", u?’"),




Rate of Convergence

lpis1 = 2% < eZloi = AZ| + O(emlpi — AF°1*/% + |oi — AP P2),
where
lg(@)
£€Pm_1,(01)A0 i#1 |g(o1)]’

Em =
and g; for 1 < j < n are eigenvalues of Q(p;) arranged as in

o1>0> 02 Z e 2 on if (typ,f) € {(+7 1)7 (_7 1)}’ or,
01<0<o02< - <oy if (typaf) € {(+7 n)v (_’ n)}

= While the result is similar to the one for A— AB (B > 0), it is much much more
complicated to prove.

= Important: rate depends on eigenvalue distribution of Q(p;). Shed light to
preconditioning:
Q(pi) ~ LiD;LY,  D; = diag(+1),

and use Extended Steepest Descent/Ascent method on L~*Q(A)L~H.

Should reformulate for implementation sake. Detail omitted.



CG methods, Block Variations

Straightforward applications of ideas presented for A — AB earlier.
Left as exercises ...
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