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Abstract Model order reduction methods for linear time invariant systems
are reviewed in this lecture. The basic ideas of the methods, such as the Padé
approximation method, the rational interpolation method, the modal trun-
cation method, the standard balanced truncation method, and the balancing
related methods, are presented. The numerical algorithms of implementing
the methods are discussed. For the balanced truncation method and the bal-
ancing related methods, Lyapunov equations or Riccati equations need to be
solved. Algorithms for solving these matrix equations are introduced.

1 Intruduction

Model order reduction (MOR) is a technique of reducing the complexity of
large-scale complex systems, so that the input-output relations can be repro-
duced in acceptable time and with ignorable error. In today's real-life applica-
tions, large-scale complex systems can be time-varying, nonlinear, paramet-
ric, or stochastic, which propose big challenges for model order reduction.
Although model order reduction techniques have been developed for these
systems, and proved to be promising in various applications, due to time lim-
itation, the lecture focuses on model order reduction methods for linear time
invariant (LTI) systems in the following form (if without pointed out),

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(1)
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with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. Here, x(t) ∈ Rn is
the state of the system, u(t) ∈ Rm is the input, and y(t) ∈ Rp is the output.
When m = p = 1, the system is called single-input and single-output (SISO)
system; otherwise ifm, p > 1, it is called a multiple-input and multiple-output
(MIMO) system.

The basic idea of model order reduction is based on projection. Assuming
that the trajectory of x in (1) is contained in a low-dimensional subspace V,
andW⊥ is a complementary subspace of V, i.e. V⊕W⊥ = Rn, V∩W⊥ = {0}.
Let W be the orthogonal complementary subspace of W⊥. Let the columns
of the matrix V ∈ Rn×q form the basis of V, and the columns of W ∈ Rn×q
be the basis of the subspace W, and they satisfy WTV = I, then VWT is a
projector, which projects x onto V, along W⊥. The reduced-order model is
obtained by approximating the state x by its projection x ≈ VWTx,

˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + D̂u(t),
(2)

where x̂(t) = WTx(t) ∈ Rq, Â = WTAV ∈ Rq×q, B̂ = WTB ∈ Rq×m, Ĉ =
CV ∈ Rp×m, and D̂ = D ∈ Rp×m. The above process of getting the reduced
model is in fact a Petrov-Galerkin projection. That is, replacing x with the
approximation x ≈ V x̂ =: x̃ and then forcing the residual r = ˙̃x− Ax̃− Bu
to be zero in a test subspace W, i.e. WT r = 0, so that the �rst equation
in (2) is derived. The second equation follows directly by replacing x with its
approximation x̃ = V x̂. When W = V , it reduces to a Galerkin projection.

The goals of model order reduction method include

• The output of the large-scale system should be approximated by a reduced
model that can be evaluated signi�cantly faster.

• The reduced model should be automatically generated.
• There should be a computable error bound/estimate for the reduced

model.
• Physical properties of the original system, such as stability, minimum

phase, and/or passivity should be preserved during the MOR process.

The model order reduction methods discussed in this lecture are based
on concepts from (numerical) linear algebra and systems and control the-
ory, where matrix decompositions, Krylov subspaces, iterative solvers, ma-
trix equations play important roles. The outline of this summary is as follows.
In the next section, the mathematical basics are summarized. In Section 3-
6 basic model reduction methods for LTI systems are presented. Numerical
algorithms for solving matrix equations are discussed in Section 7. Model
reduction related software is introduced in Section 8. Conclusions are given
in the end.
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2 Mathematical Basics

The singular value decomposition

One essential tool from (numerical) linear algebra for data compression and
dimension reduction is the singular value decomposition (SVD) of a matrix.
The SVD exists for any matrix as the following theorem shows.

Theorem 1. Let A ∈ Rm×n, then there exist orthogonal U ∈ Rm×m and
V ∈ Rn×n, such that

A = UΣV T , Σ =


[
Σ1

0

]
,[

Σ1 0
]
,

m ≥ n
m ≤ n and Σ1 =

σ1 . . .

σmin(m,n)


with σ1 ≥ . . . ≥ σs > σs+1 = . . . = σmin(m,n) = 0 for s = rank(A).

The singular value decomposition of matrices is the core of the balanced
truncation MOR method. It is also used in many other model reduction
methods to assist the derivation of the reduced model.

The Laplace transform

De�nition 1. The Laplace transform of a time domain function f ∈ L1,loc

(f is locally integrable, i.e.
∫
K
|f(t)|dt <∞, ∀ compact subset K of dom(f).)

with dom(f) = R+
0 is

L : f(t) 7→ F (s) := L{f(t)}(s) :=

∫ ∞
0

e−stf(t) dt, s ∈ C.

F is a function in the (Laplace or) frequency domain.

For frequency domain evaluations (�frequency response analysis�), one
takes Re (s) = 0 and Im (s) ≥ 0. Then ω := Im (s) takes the role of a
frequency (in [rad/s], i.e., ω = 2πv with v measured in [Hz]).

Lemma 1. Applying Laplace transform to the derivative of f(t) results in
sF (s),

L{ḟ(t)}(s) = sF (s).

For ease of notation, in the following we will use lower-case letters for both
a function and its Laplace transform.
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Linear systems in frequency domain

Applying Laplace transform (x(t) 7→ x(s), ẋ(t) 7→ sx(s)) to the linear system
in (1) with x(0) = 0 yields,

sx(s) = Ax(s) +Bu(s), y(s) = Cx(s) +Du(s).

We get the input-output relation in frequency domain,

y(s) =
(
C(sI −A)−1B +D︸ ︷︷ ︸

=:G(s)

)
u(s),

where G(s) is de�ned as the transfer function of (1).
In systems and control theory, the error bound of the reduced model is

established through the transfer function, i.e.

||y − ŷ||2 ≤ ||G(s)− Ĝ(s)||∞||u||2,

where the 2-norm stands for the L2 (H2) norm in the frequency domain,
or the L2 norm in the time domain. || · ||∞ is the H∞ norm of a matrix-
valued function (see the analysis in the subsection �system norms�). Ĝ(s) =
Ĉ(sI − Â)−1B + D̂ is the transfer function of the reduced-order model. The
details of deriving the error bound are discussed at the end of this section.

Properties of linear systems

De�nition 2. A linear system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

is stable if its transfer function G(s) has all its poles in the left half plane and
it is asymptotically (or Lyapunov, or exponentially) stable if all poles are in
the open left half plane C− := {z ∈ C | Re (z) < 0}.

Lemma 2. The su�cient condition for asymptotic stability is that A is
asymptotically stable (or Hurwitz), i.e., the spectrum of A, denoted by Λ(A),
satis�es Λ(A) ⊂ C−.

Note that by abuse of notation, often �stable system� is used for asymp-
totically stable systems. For what follows, we need to de�ne the concepts of
controllability and observability, see [1].

De�nition 3. Given a linear system (A,B,C,D). A state x∗ ∈ Rn, is con-
trollable to the zero state if there exist an input function u∗(t) and a time
t∗ < ∞, such that the solution of the linear dynamical system vanishes at
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time t∗, i.e., Φ(u∗;x∗; t∗) = 0. The controllable subspace Xcontr of the system
is the set of all controllable states. The system is (completely) controllable if
Xcontr = Rn.

De�nition 4. ([1]) Given a linear system (A,B,C,D). A state x∗ ∈ Rn is
unobservable if y(t) = 0 for all t ≥ 0, i.e., if x∗ is indistinguishable from the
zero state for all t ≥ 0. The unobservable subspace Xunobs is the set of all
unobservable states of the system. The system is (completely) observable if
Xunobs = {0}.

Controllability and observability, characterized by the controllability ma-
trix K(A,B) = [B,AB,A2B, . . . , An−1B] ∈ Rn×nm, and the observability

matrix O(A,C) =


C
CA
CA2

...
CAn−1

 ∈ Rnp×n, are two important properties of the

system, based on which the standard balanced truncation method and the
balancing related MOR methods are developed.

Lemma 3. The LTI system is controllable if and only if K(A,B) has full
rank n. Analogously, the LTI system is observable if and only if O(A,C) has
full rank n.

The controllability and observability of the system can also be examined
through the in�nite Gramians P and Q of the system. The controllability
Gramian matrix P and the observability Gramian matrix Q are de�ned as [1],

P =
∫∞
0
eAtBBT eA

T tdt,

Q =
∫∞
0
eA

T tCTCeAtdt.
(3)

Lemma 4. The LTI system is controllable if and only if P is positive de�nite.
The LTI system is observable if and only if Q is positive de�nite.

Please refer to [1] for more discussions on controllability and observability,
and other properties of linear systems, such as stabilizability, detectability
etc..

Realizations of linear systems

De�nition 5. For a linear time-invariant system

Σ :

{
ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),
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with transfer functionG(s) = C(sI−A)−1B+D, the quadruple (A,B,C,D) ∈
Rn×n × Rn×m × Rp×n × Rp×m is called a realization of Σ.

It can be easily veri�ed that the transfer function is invariant under state-
space transformations,

T :

{
x → Tx,

(A,B,C,D) → (TAT−1, TB,CT−1, D).

The transfer function is also invariant under addition of uncontrollable or
unobservable states as below,

d
dt

[
x
x1

]
=

[
A 0
0 A1

] [
x
x1

]
+

[
B
B1

]
u(t), y(t) =

[
C 0

] [ x
x1

]
+Du(t),

d
dt

[
x
x2

]
=

[
A 0
0 A2

] [
x
x2

]
+

[
B
0

]
u(t), y(t) =

[
C C2

] [ x
x2

]
+Du(t),

for arbitrary Aj ∈ Rnj×nj , j = 1, 2, B1 ∈ Rn1×m, C2 ∈ Rp×n2 and any
n1, n2 ∈ N. Hence, the following four quadruples

(A,B,C,D),

((
A 0
0 A1

)
,

(
B
B1

)
,
(
C 0

)
, D

)
,

(TAT−1, TB,CT−1, D),

((
A 0
0 A2

)
,

(
B
0

)
,
(
C C2

)
, D

)
,

are all realizations of Σ. Therefore, the realizations are not unique.

De�nition 6. The McMillan degree of Σ is the unique minimal number n̂ ≥
0 of states necessary to describe the input-output behavior completely. A
minimal realization is a realization (Â, B̂, Ĉ, D̂) of Σ with order n̂.

Theorem 2. A realization (A,B,C,D) of a linear system is minimal if and
only if it is controllable and observable.

Balanced realizations

De�nition 7. A realization (A,B,C,D) of a stable linear system Σ is bal-
anced if its controllability/observability Gramians P , Q satisfy

P = Q = diag {σ1, . . . , σn} (w.l.o.g. σj ≥ σj+1, j = 1, . . . , n− 1).

Notice that σ1, . . . , σn ≥ 0 as P,Q ≥ 0 by de�nition, and σ1, . . . , σn > 0
in case of minimality. In general, even for unbalanced systems, the so-called
Hankel singular values σHSV

i can be computed by means of the Gramians P
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andQ.We have σHSV
i = Λi(PQ)

1
2 , i.e., the Hankel singular values are given as

the positive square roots of the eigenvalues of the product of the Gramians P
and Q. For more information on the precise de�nition of the Hankel singular
values and their relation to the Hankel operator of the system, we refer to,
e.g., [1]. The following theorem shows how to obtain a balanced realization.
Assume A is Hurwitz, i.e. Λ(A) ⊂ C−. Then:

Theorem 3. Given a stable minimal linear system Σ : (A,B,C,D), a bal-
anced realization is obtained by the state-space transformation with

Tb := Σ−
1
2V TR,

where P = STS, Q = RTR (e.g., Cholesky decompositions) and SRT =
UΣV T is the SVD of SRT .

Theorem 4. The controllability/observability Gramians P/Q satisfy the Lya-
punov equations

AP + PAT +BBT = 0, ATQ+QA+ CTC = 0. (4)

In the following, only the case for the controllability Gramian is proved;
that for the observability Gramian is analogous.

Proof. From the de�nition of P in (3),

AP + PAT +BBT = A

∫ ∞
0

eAtBBT eA
Ttdt+

∫ ∞
0

eAtBBT eA
TtdtAT +BBT

=

∫ ∞
0

AeAtBBT eA
Tt + eAtBBT eA

TtAT︸ ︷︷ ︸
= d

dt e
AtBBT eATt

dt+BBT

= lim
t→∞

eAtBBT eA
Tt︸ ︷︷ ︸

=0

− eA·0︸︷︷︸
= In

BBT eA
T ·0︸ ︷︷ ︸

= In

+BBT

= 0. �

Theorem 5. The Hankel singular values (HSVs) of a stable minimal linear
system are system invariants, i.e. they are unaltered by state-space transfor-
mations.

Proof. In balanced coordinates, the HSVs are Λ(PQ)
1
2 . Now let

(Â, B̂, Ĉ,D) = (TAT−1, TB,CT−1, D)

be any transformed realization with associated controllability Lyapunov equa-
tion

0 = ÂP̂ + P̂ ÂT + B̂B̂T = TAT−1P̂ + P̂ T−TATTT + TBBTTT .

This is equivalent to
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0 = A(T−1P̂ T−T ) + (T−1P̂ T−T )AT +BBT .

The uniqueness of the solution of the Lyapunov equation implies that P̂ =
TPTT and, analogously, Q̂ = T−TQT−1. Therefore,

P̂ Q̂ = TPQT−1,

showing that Λ(P̂ Q̂) = Λ(PQ) = {σ2
1 , . . . , σ

2
n}. �

For non-minimal systems, the Gramians can also be transformed into di-
agonal matrices with leading n̂ × n̂ submatrices equal to diag(σ1, . . . , σn̂),
and

P̂ Q̂ = diag(σ2
1 , . . . , σ

2
n̂, 0, . . . , 0),

see [22, 29].

System norms

De�nition 8. The Ln2 (−∞,+∞) space is the vector-valued function space
f : R 7→ Rn, with the norm

‖f‖Ln
2

=

(∫ ∞
−∞
||f(t)||2dt

)1/2

.

Here and below, || · || denotes the Euclidean vector or spectral matrix norm.

De�nition 9. The frequency domain L2(R) space is the matrix-valued func-
tion space F : C 7→ Cp×m, with the norm

||F ||L2 =

(
1

2π

∫ ∞
−∞
||F (ω)||2dω

)1/2

,

where  =
√
−1 is the imaginary unit. The maximum modulus theorem [23]

will be used in this subsection.

Theorem 6. Let f(z) : Cn 7→ C be a regular analytic, or holomorphic, func-
tion of n complex variables z = (z1, . . . , zn), n ≥ 1, de�ned on an (open)
domain D of the complex space Cn, which is not a constant, f(z) 6= const.
Let

maxf = sup{|f(z)| : z ∈ D}.

If f(z) is continuous in a �nite closed domain D, then maxf can only be
attained on the boundary of D.

Consider the transfer function

G(s) = C(sI −A)−1B +D
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and input functions u ∈ L2(R), with the L2-norm

||u||2L2
:=

1

2π

∫ ∞
−∞

u(ω)Hu(ω) dω.

Assume A is (asymptotically) stable: Λ(A) ⊂ C− := {z ∈ C : Re (z) < 0}.
Then for all s ∈ C+ ∪ R, following the maximal modulus theorem, G(s) is
bounded: ||G(s)|| ≤M <∞, so we have∫∞

−∞ y(ω)Hy(ω) dω =
∫∞
−∞ u(ω)HG(ω)HG(ω)u(ω) dω

=
∫∞
−∞ ||G(ω)u(ω)||2 dω ≤

∫∞
−∞M2||u(ω)||2dω

= M2
∫∞
−∞ u(ω)Hu(ω) dω < ∞,

So that y = Gu ∈ L2(R).
Consequently, the L2-induced operator norm

||G||∞ := sup
||u||2 6=0

||Gu||L2

||u||L2

(5)

is well de�ned. It can be further proved that

||G||∞ = sup
ω∈R
||G(ω)|| = sup

ω∈R
σmax (G(ω)) .

De�nition 10. The Hardy spaceH∞ is the function space of matrix-, scalar-
valued functions that are analytic and bounded in C+ := {z ∈ C : Re (z) >
0}.

The H∞-norm is de�ned as

||F ||∞ := sup
Re (s)>0

σmax(F (s)) = sup
ω∈R

σmax (F (ω)) .

The second equality follows from the maximum modulus theorem.

De�nition 11. The Hardy space H2(C+) is the function space of matrix-,
scalar-valued functions that are analytic in C+ and bounded w.r.t. the H2-
norm de�ned as

||F ||2 := 1
2π

(
sup

reσ>0

∫∞
−∞ ||F (σ + ω)||2F dω

) 1
2

= 1
2π

(∫∞
−∞ ||F (ω)||2F dω

) 1
2

.
(6)

The last equality in (6) follows Theorem 6.
Following [2], for inputs u(t) with

∫∞
0
‖u(t)‖22dt ≤ 1, theH2 approximation

error gives the following bound

max
t>0
‖y(t)− ŷ(t)‖∞ ≤ ‖G− Ĝ‖H2

, (7)
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where G and Ĝ are original and reduced transfer functions.

Theorem 7. Practical Computation of the H2-norm follows

||F ||22 = tr(BTQB) = tr(CPCT ),

where P,Q are the controllability and observability Gramians of the corre-
sponding LTI system.

it the statement for the Paley-Wiener Theorem ok?

Theorem 8. Paley-Wiener Theorem (Parseval's equation/Plancherel Theo-
rem) The Fourier transform of f ∈ Ln2 (−∞,∞):

F (ξ) =

∫ ∞
−∞

f(t)e−ξtdt

is a Hilbert space isomorphism between Ln2 (−∞,∞) and L2(R). Further-
more, the Fourier transform maps Ln2 (0,∞) onto H2(C+). In addition it is
an isometry, that is, it preserves distances:

Ln2 (−∞,∞) ∼= L2(R), Ln2 (0,∞) ∼= H2(C+).

Consequently, Ln2 -norm in time domain and L2-norm, H2-norm in frequency
domain coincide.

Therefore the output error bound (obtained from (5)),

||y − ŷ||2 = ||Gu− Ĝu||2 ≤ ||G− Ĝ||∞||u||2, (8)

holds in time and frequency domain due to Paley-Wiener theorem, i.e. the
|| · ||2 in (8) can be the Ln2 -norm in time domain, or the L2-norm, H2-norm
in frequency domain. Model order reduction aims to compute reduced-order
model such that either ||G − Ĝ||∞ < tol (8) or ||G − Ĝ||H2

< tol (7), where
tol is the acceptable error.

3 Methods based on Padé approximation and rational

interpolation

The MOR methods based on Padé approximation [4, 10, 12] and rational
interpolation [16, 18] are motivated by observing the series expansion of the
transfer function. The LTI system considered is more general,

Eẋ(t) = Ax(t) +Bu(t),
y(t) = Cu(t) +Du(t),

(9)
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where E ∈ Rn×n can be singular, and only λE − A(∀λ ∈ C) is required to
be regular. An LTI system with singular E is called descriptor system, and
is more complex than the standard state space system in (1).

Methods based on Padé approximation

To consider the transfer function G(s), for simplicity and without loss of
generality, we leave D = 0. Let s = s0 + σ, then within the convergence
radius of the series,

G(s0 + σ) = C[(s0 + σ)E −A]−1B
= C[σE + (s0E −A)]−1B
= C[I + σ(s0E −A)−1E]−1[(s0E −A)]−1B
= C[I − σ(s0E −A)−1E + σ2[(s0E −A)−1E]2 − . . .]×

(s0E −A)−1B

=
∞∑
i=0

C[−(s0E −A)−1E]i(s0E −A)−1B︸ ︷︷ ︸
:=mi(s0)

σi,

where mi(s0), i = 0, 1, 2, . . . are called the moments of the transfer function.
Note that the series expansion follows from the Neumann Lemma. If the
expansion point is chosen as s0 = 0, then the moments are simply mi(0) =
−C(A−1E)iA−1B. For s0 = ∞ and E = I, the moments are also called
Markov parameters, mi(∞) = CAiB. In fact, for s0 < ∞, the moments
mi(s0) are nothing but the ith derivative of G(s) at s0, multiplied with an
appropriate scalar 1

i! .
The projection matrices V ∈ Rn×r and W ∈ Rn×r are computed from the

moments mi(s0),

range{V } = span{B̃(s0), Ã(s0)B̃(s0), . . . , Ãq−1(s0)B̃(s0)},
range{W} = span{CT , ÃT (s0)CT , . . . , (ÃT (s0))q−1CT }, (10)

where Ã(s0) = (s0E − A)−1E, B̃(s0) = (s0E − A)−1B and q � n. The
following theorem shows that the transfer function of the reduced model
computed by the above V and W interpolates the transfer function of the
original system up to the 2q-1th derivative of G(s) at s0 [10].

Theorem 9. For a SISO system, if the columns of W and V are bases of
the subspace in (10), then the transfer function Ĝ(s) of the reduced model
matches the �rst 2q moments of the transfer function of the original system,
i.e.

mi(s0) = m̂i(s0), i = 0, 1, . . . , 2q − 1,

where m̂i(s0) = Ĉ[−(s0Ê − Â)−1Ê]i(s0Ê − Â)−1B̂, i = 0, 1, . . . , 2q − 1 are
the ith order moments of Ĝ and Ê = WTEV .
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It is shown in [10], that the transfer function Ĝ(s) is a Padé approximant [3]
of G(s) for the SISO system.

For a MIMO system, it is hard to calculate the exact number of moments
matched, especially for descriptor systems (when E is singular). In [13], it is
shown that Ĝ(s) matches at least the �rst br/mc+ br/pc moments of G(s),
and it is a matrix Padé approximant of G(s). Here r is the order of the
reduced model, or equivalently, the number of the columns in V or W .

Methods based on rational interpolation

Instead of using a single expansion point, multiple expansion points can be
used to have multiple series expansions of G(s) around expansion points si,
i = 1, . . . k. The matrices V , W can be computed by the combined Krylov
subspaces for each si, e.g.

range(V ) =
k⋃
i=1

Kqi(ÃB(si), B̃(si)),

range(W ) =
k⋃
i=1

Kqi(ÃC(si), C̃
T (si)),

(11)

where ÃB(si) = (siE − A)−1E, ÃC(si) = (siE − A)−TET , C̃T (si) =
(siE − A)−TCT , and Kqi(M,R) is the block Krylov subspace Kqi(M,R) =
{R,MR, . . . ,Mqi−1R} generated by a square matrix M ∈ Rn×n, and a rect-
angular matrix R ∈ Rn×nR .

The resulting reduced model matches the �rst 2qi momentsm0(si), . . . ,m2qi−1(si)
at each si, i = 1, . . . , k for both SISO and MIMO systems [16]. In other words,
the transfer function Ĝ(s) interpolates G(s) at sj , j = 1, . . . , k, till the 2qi-
1th order derivative. Notice that the starting matrix (vector) for W in (11)
is C̃(si) = (siE−A)−TCT , rather than CT in (10) used by the Padé approx-
imation method. And ÃC(si) is not the transpose of ÃB(si), which is also
di�erent from the use of Ã(s0) and ÃT (s0) in (10).

When the system is single-input and single-output, B and C are vectors
and the matrices V ,W in (10) can be simultaneously computed by the Lanc-
zos algorithm [10], such that WTV = I, i.e. the columns of W are biorthog-
onal with the columns of V . For a system with multiple inputs and multiple
outputs, B and C are matrices, then the block Lanczos algorithm in [11] can
be used to compute V and W in (10).

If only the matrix V is used to compute the reduced model, i.e. W = V ,
then the Arnoldi process can be applied to compute V in (10) for a SISO
system, and the Band Arnoldi process in [12] can be applied to compute V
for a MIMO system. For more discussions on the algorithms of computing V ,
W in (10), see [4, 12]. In [16], algorithms of computing V and W in (11) are
discussed in detail.
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Nowadays, more and more concerns are on automatic generation of the
reduced model. For the methods based on rational interpolation, the question
is how to adaptively select the interpolation points sj , j = 0, . . . , k. Many
techniques have been proposed so far, though most of them are more or
less heuristic. The algorithm IRKA proposed in [18] iteratively selects the
interpolation points sj , so that a necessary condition for a locally optimal
reduced model is satis�ed, and it is applicable to SISO systems. The algorithm
is then extended to MIMO systems [18].

In the following sections, we only consider the standard state space system
in (1).

4 Modal truncation method

The modal truncation method [9] is based on the eigendecomposition of the
system matrix A in (1). Assume that A is diagonalizable, i.e. T−1AT = DA

(T can be a complex matrix), then the matrices V , W for the reduced model
are constructed as

V = T (:, 1 : r) = [t1, . . . , tr],

W̃ ∗ = T−1(1 : r, :),W = W̃ (V ∗W̃ )−1.

Here, the columns in T = [t1, . . . , tn] are eigenvectors ofA,DA = diag(λ1, . . . , λn)
includes the eigenvalues of A. The matrix V is composed of the �rst r dom-
inant eigenvectors of A, which corresponds to the eigenvalues closest to the
imaginary axis. The eigendecomposition of A can be computed by, e.g. Krylov
subspace methods, Jacobi-Davidson method.

The reduced model is given by Â = W ∗AV = diag(λ1, . . . , λr), B̂ = W ∗B,
Ĉ = CV . This is equivalent to doing truncation for the following matrices,

T−1AT =

[
Â

Â2

]
, T−1B =

[
B̂

B̂2

]
, CT = [Ĉ, Ĉ2].

The error bound for the transfer function of the reduced model is

||G− Ĝ||∞ ≤ ||C2||||B2||
1

minλ∈Λ(Â2)
|Re(λ)|

.

The error bound is not computable for very large-scale systems, since the
whole spectrum of A needs to be computed in principle.

The modal truncation method only uses information from A, the infor-
mation from B and C is not taken use of, which might cause big errors.
The performance of the method can be improved by the dominant pole algo-
rithm [28], where A,B and C are used to measure the dominant poles. The
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left and right eigenvectors corresponding to the dominant poles are used to
construct the reduced model.

5 Balanced truncation method

The balanced truncation method was proposed in [25]. The basic principle
of balanced truncation method is as follows. Firstly, the Gramian matrices
P and Q are computed by solving the Lyapunov equations in (4). Secondly,
a balancing matrix T = Tb (see Theorem 3) is used to obtain a balanced
system by state space transformation, Ã = TAT−1, B̃ = TB, C̃ = CT−1.
It can be readily veri�ed that the Gramians of the transformed system are
diagonal matrices, i.e. TPTT = Σ, T−TQT−1 = Σ.

If σr+1 � σr, Σ = diag(σ1, . . . , σn) can be divided into two parts Σ1 =
diag(σ1, . . . , σr), Σ2 = diag(σr+1, . . . , σn). According to this separation, Ã ,
B̃ ad C̃ can be divided as

Ã =

[
A11 A12

A21 A22

]
, B̃ =

[
B1

B2

]
, C̃ = [C1, C2],

where A11 ∈ Rr×r, B1 ∈ Rr×m, C1 ∈ Rp×r correspond to Σ1. The reduced
model is constructed as Â = A11, B̂ = B1, Ĉ = C1, D̂ = D.

The motivation of balanced truncation is that the HSVs are the invariants
of the system, which means HSVs do not change under state space transfor-
mation. Once a system is balanced, the smallest HSVs can be easily distin-
guished from the diagonalized Gramian Σ, and the system can be truncated
according to the separation of Σ. With the deletion of the smallest HSVs,
the unimportant states which are di�cult to observe and di�cult to control
are truncated from the system [1], so that only important information of the
original system is retained in the reduced model.

In practice, the reduced model is obtained not by explicitly forming the
balanced system, instead, the square root (SR) method is used to compute
the balanced reduced model. The basic idea is to use the SVD decomposition
of SRT ,

SRT = [U1, U2]

[
Σ1

Σ2

] [
V T1
V T2

]
.

The two matrices V and W are computed as W = RTV1Σ
− 1

2
1 , V =

STU1Σ
− 1

2
1 . The reduced system matrices are Â = WTAV , B̂ = WTB,

Ĉ = CV . It is easily veri�ed that WTV = I, so that VWT is an oblique
projector, hence balanced truncation method is a Petrov-Galerkin projection
method.

An important property of balanced truncation method is the computable
error bound,
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||G− Ĝ||∞ ≤ 2

n∑
j=r+1

σj , (12)

then from (8), we get

||y − ŷ||2 ≤

2

n∑
j=r+1

σj

 ||u||2.
From the error bound, the reduced model can be automatically obtained by
adaptively choosing r according to the desired accuracy. The properties of
the reduced model computed by balanced truncation are summarized in the
following theorem.

Theorem 10. Let the reduced-order system Σ̂ : (Â, B̂, Ĉ, D̂) with r ≤ n be
computed by balanced truncation. Then the reduced-order model Σ̂ is balanced,
stable, minimal, and its HSVs are σ1, . . . , σr.

6 Balancing related methods

The balancing related methods were developed for di�erent purposes of model
reduction. The linear-quadratic Gaussian balanced truncation (LQGBT)
method in [20] can be used as a model reduction method for unstable sys-
tems, and it also provides a closed-loop balancing technique. Compared with
the standard balanced truncation method in Section 5, the only di�erence is
that the controllability and the observability Gramians are replaced by the
solutions P , Q of the dual algebraic Riccati equations (AREs)

AP + PAT − PCTCP +BBT = 0,
ATQ+QA−QBBTQ+ CTC = 0.

The stochastic balancing method (BST) �rstly appeared in [8] for balanc-
ing stochastic systems, and was generalized in [14], where a relative error
bound for the reduced model is proposed. Instead of solving two Lyapunov
equations required by the standard balanced truncation method, one Lay-
punov equation and one ARE must be solved to get the Gramians P and
Q,

AP + PAT +BBT = 0,
ĀTQ+QĀ+QBW (DDT )−1BTWQ+ CT (DDT )−1C = 0,

where Ā := A−BW (DDT )−1C,BW := BDT + PCT .
The positive real balanced truncation method [8, 15] is applicable for

positive real systems, also called passive systems. The method is based on
positive-real equations, related to positive real (Kalman-Yakubovich-Popov-
Anderson) lemma. The following two AREs need to be solved,
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ĀP + PĀT + PCT R̄−1CP +BR̄−1BT = 0,
ĀTQ+QĀ+QBR̄−1BTQ+ CT R̄−1C = 0,

where Ā := A−BR̄−1C, R̄ := D +DT .
In contrast to the error bound for the standard balanced truncation

method in (12), the computable error bounds for the LQGBT method and
the BST method are

LQGBT : ||G− Ĝ||∞ ≤ 2

n∑
j=r+1

σLQGj√
1 + (σLQGj )2

,

BST : ||G− Ĝ||∞ ≤

 n∏
j=r+1

1 + σBSTj

1− (σBSTj )
− 1

 ||G||∞,
Actually, the error bound for the BST method is an error bound for the
relative error.

Other balancing-based methods include bounded-real balanced truncation
method [26], H∞ balanced truncation method [24], as well as frequency-
weighted versions of the above approaches. A good textbook for learning the
balanced truncation methods is [1], where the mathematical basics required
for model reduction are also provided. For a restudy of modal truncation
method and details of dominant pole method, please refer to the thesis [28].
In the thesis [16], methods based on Padé approximation are reviewed, and
method based on rational interpolation are proposed.

7 Solving matrix equations

The major computational part of the balanced truncation methods or the
balancing related methods is solving the large-scale matrix equations. The
e�ciency of these model order reduction methods depends on fast numerical
algorithms of solving the matrix equations.

Solvability and complexity issues

Consider the Sylvester equation AX +XB+W = 0, A ∈ Rn×n, B ∈ Rm×m,
X ∈ Rn×m, W ∈ Rn×m, using the Kronecker (tensor) product, AX +XB +
W = 0 is equivalent to(

(Im ⊗A) +
(
BT ⊗ In

))
vec(X) = vec(−W ). (13)

Observing that
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M := (Im ⊗A) +
(
BT ⊗ In

)
is invertible⇐⇒

0 6∈ Λ(M) = Λ
(
(Im ⊗A) + (BT ⊗ In)

)
= {λj + µk, | λj ∈ Λ(A), µk ∈ Λ(B)}

⇐⇒ Λ(A) ∩ Λ(−B) = ∅,

we have the following corollary,

Corollary 1. If A,B are Hurwitz matrices, then the Sylvester equation AX+
XB +W = 0 has unique solution.

Note that when B = AT , we get the Lyapunov equation

AX +XAT +W = 0. (14)

A straightforward way of solving the Sylvester equation is via the equivalent
linear system of equations in (13). This requires LU factorization of a nm×nm
matrix; for n ≈ m, the computational complexity is 2

3n
6. The storage memory

is also unacceptable, since we need n4 data for X.
Traditional methods of solving the matrix equations include the Bartels-

Stewart method for Sylvester and Lyapunov equations, the Hessenberg-Schur
method for Sylvester equations, and Hammarling's method for Lyapunov
equations with A Hurwitz.

All methods are based on the fact that if A,BT are in Schur form, then

M = (Im ⊗A) +
(
BT ⊗ In

)
is block-upper triangular. Hence,Mx = b can be solved by back-substitution.

However, clever implementation of the back-substitution process still re-
quires nm(n+m) �ops. All methods require Schur decomposition of A and/or
Schur or Hessenberg decomposition of B, which requires 25n3 �ops for Schur
decomposition. Therefore, these methods are not feasible for large-scale prob-
lems with n > 10, 000.

The sign function method

The sign function method is used to solve the Lyapunov equation in (14).

De�nition 12. For Z ∈ Rn×n with Λ(Z) ∩ ıR = ∅ and Jordan canonical
form

Z = S

[
J+ 0
0 J−

]
S−1

the matrix sign function is

sign(Z) := S

[
Ik 0
0 −In−k

]
S−1.

Lemma 5. Let T ∈ Rn×n be nonsingular and Z as above, then
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sign(TZT−1) = T sign(Z)T−1.

Since sign(Z) is the square root of In, i.e. (sign(Z))
2 − In = 0, one can use

Newton's method to get sign(Z) by solving f(Z̃) := Z̃2 − In = 0:

Z̃0 ← Z, Z̃j+1 ←
1

2

(
cjZ̃j +

1

cj
Z̃−1j

)
, j = 1, 2, . . . , (15)

�nally, sign(Z) = limj→∞ Z̃j [19]. The variable cj > 0 is a scaling parameter
for convergence acceleration and rounding error minimization, e.g.

cj =

√√√√ ||Z̃−1j ||F
||Z̃j ||F

,

based on �equilibrating� the norms of the two summands.
Solving the Lyapunov equation in (14) with the matrix sign function

method is based on the following observation. If X ∈ Rn×n is a solution
of (14), then [

In −X
0 In

]
︸ ︷︷ ︸

=T−1

[
A W
0 −AT

]
︸ ︷︷ ︸

=:H

[
In X
0 In

]
︸ ︷︷ ︸

=:T

=

[
A 0
0 −AT

]
.

Hence, if A is Hurwitz (i.e., asymptotically stable), then

sign(H) = sign

(
T

[
A 0
0 −AT

]
T−1

)
= T sign

([
A 0
0 −AT

])
T−1

=

[
−In 2X

0 In

]
.

Apply the sign function iteration in (15): Z̃ ← 1
2 (Z̃ + Z̃−1) (cj = 1) using

Z̃0 = H =

[
A W
0 −AT

]
, and observe that

H +H−1 =

[
A W
0 −AT

]
+

[
A−1 A−1WA−T

0 −A−T
]
,

we get the sign function iteration for the Lyapunov equation:

A0←A, Aj+1← 1
2

(
Aj +A−1j

)
,

W0←W, Wj+1← 1
2

(
Wj +A−1j WjA

−T
j

)
,

j = 0, 1, 2, . . . . (16)

De�ne A∞ := limj→∞Aj , W∞ := limj→∞Wj , we immediately get the fol-
lowing theorem.
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Theorem 11. If A is Hurwitz, then

A∞ = −In and X =
1

2
W∞.

Now consider the second iteration in (16) for Wj = BjB
T
j , starting with

W0 = BBT =: B0B
T
0 , one can see that

1
2

(
Wj +A−1j WjA

−T
j

)
= 1

2

(
BjB

T
j +A−1j BjB

T
j A
−T
j

)
= 1

2

[
Bj A

−1
j Bj

] [
Bj A

−1
j Bj

]T
.

Hence, the factored iteration for the sign function method is [7],

Bj+1 ←
1√
2

[
Bj A

−1
j Bj

]
(17)

with S := 1√
2

limj→∞Bj and X = SST . From Theorem 11, a simple stopping

criterion is taken as ||Aj + In||F ≤ tol. It is clear that the iteration in (17)
can be used to solve the Lyapunov equations in (4) to get the controllability
and observability Gramians P and Q.

The alternating direction implicit (ADI) method

The Peaceman Rachford ADI method was originally used to solve the linear
system Au = b where A ∈ Rn×n is symmetric positive de�nite and b ∈ Rn.
The idea is to decompose A = H + V with H,V ∈ Rn×n such that

(H + pI)v = r
(V + pI)w = t

can be solved easily or e�ciently. The standard ADI iteration for solving
Au = b is as follows. If H,V are symmetric positive de�nite matrices, then
∃pk, k = 1, 2, . . . such that

u0 = 0
(H + pkI)uk− 1

2
= (pkI − V )uk−1 + b

(V + pkI)uk = (pkI −H)uk− 1
2

+ b

converges to u ∈ Rn solving Au = b.
Notice that the Lyapunov operator L : P 7→ AX + XAT can be decom-

posed into the linear operators,

LH : X 7→ AX, LV : X 7→ XAT .
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In analogy to the standard ADI method, we �nd the ADI iteration for the
Lyapunov equation AX +XAT +W = 0 [30],

X0 = 0
(A+ pkI)Xk− 1

2
= −W −Xk−1(AT − pkI)

(A+ pkI)XT
k = −W −XT

k− 1
2

(AT − pkI).

Consider applying the above ADI iteration to the Lyapunov equation AX+
XAT +BBT = 0 for a stable matrix A ∈ Rn×n, with B ∈ Rn×m,m� n. The
two step ADI iteration can be rewritten into one step by removing Xk− 1

2
,

Z0Z
T
0 = 0,

ZkZ
T
k = −2pk(A+ pkI)−1BBT (A+ pkI)−T

+(A+ pkI)−1(A− pkI)Zk−1Z
T
k−1(A− pkI)T (A+ pkI)−T ,

with the low-rank factorization of Xk, Xk = ZkZ
T
k , k = 0, . . . , kmax, Zk ∈

Rn×rk , rk � n. This is the scheme of low-rank (vector) ADI method [5,
21, 17, 27]. From the above iteration for ZkZ

T
k , it is easily known that the

low-rank factor Zk of Xk can be iteratively computed as

Zk = [
√
−2pk(A+ pkI)−1B, (A+ pkI)−1(A− pkI)Zk−1],

so that in practical implementations only Zk is iterated.
It is noticed that at each iteration step k, the number of vectors needing

to be updated in Zk increases by m. A more e�cient algorithm of computing
Zk is proposed in [21], which keeps the number of updated vectors constant
at each iteration step.

Assuming kmax is the maximal number of iterations, and observing that
(A− piI), (A+ pkI)−1 commute, then at the last step kmax, Zkmax−1 can be
rewritten as [21],

Zkmax−1 = [zkmax
, Pkmax−1zkmax

, Pkmax−2(Pkmax−1zkmax
), . . . , P1(P2 · · ·Pkmax−1zkmax

)] .
(18)

zkmax =
√
−2pkmax

(A+ pkmax
I)−1B

and

Pi :=

√
−2pi√
−2pi+1

[
I − (pi + pi+1)(A+ piI)−1

]
.

From (18), we derive the iteration for Zk, k = 0, 1, . . . , kmax − 1,

Z0 = zkmax ,
Zk = [zkmax , Pkmax−1zkmax , . . . , Pkmax−k . . . (Pkmax−1zkmax)] ,

(19)

where the number of updated vectors at each step is always m.
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Factored Galerkin-ADI iteration method

Factored Galerkin-ADI iteration method is a projection-based method for
solving Lyapunov equations with A+AT < 0. The basic steps are

1. Compute orthonormal basis Z = [z1, . . . , zr] ∈ Rn×r of subspace Z ⊂ Rn
(dimZ = r), i.e. range(Z) = Z.

2. Set Ar := ZTAZ, Br := ZTB.
3. Solve small-size Lyapunov equation ArX̂ + X̂ATr +BrB

T
r = 0.

4. Use X ≈ ZX̂ZT .

The subspace Z can be taken as, e.g.

Z = Kr(A,B) = span{B,AB,A2B, . . . , Ar−1B},

which corresponds to the Krylov subspace methods.
The K-PIK method uses the combined subspace

Z = Kr(A,B) ∪ Kr(A−1, A−1B).

The rational Krylov subspace method uses

Z = colspan{(A− s1)−1B, . . . , (A− sr)−1B}.

Z can also be taken as the ADI subspace

Z = colspan{zkmax , Pkmax−1zkmax , . . . , Pkmax−r+1 . . . (Pkmax−1zkmax)}.

The ADI subspace is proved to be a rational Krylov subspace in [21]. In the
following subsections, we discuss the numerical methods for solving large-
scale algebraic Riccati equation (ARE)

ATX +XA−XBBTX + CTC = 0.

Newton's method for AREs

Consider the ARE,

0 = R(X) := ATX +XA−XBBTX + CTC, (20)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. The Frechét derivative of R(X) at
X is R′X : Z 7→ (A−BBTX)TZ + Z(A−BBTX).

Newton-Kantorovich method follows the iterationXj+1 = Xj−
(
R′Xj

)−1
R(Xj),

j = 0, 1, 2, . . ., and can be described by Algorithm 1.
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Algorithm 1 Newton's method (with line search) for AREs

1: FOR j = 0, 1, . . .
2: Aj ← A−BBTXj =: A−BKj .
3: Solve the Lyapunov equation AT

j Nj +NjAj = −R(Xj).
4: Xj+1 ← Xj + tjNj .
5: ENDFOR j

If Aj = A−BKj = A−BBTXj is stable ∀ j ≥ 0, then R(Xj) converges
to zero, limj→∞ ||R(Xj)||F = 0, so Xj converges to the solution of ARE,
limj→∞Xj = X∗ ≥ 0 . It is seen that during the algorithm, large-scale Lya-
punov equations need to be e�ciently solved, where the algorithms discussed
in the above two subsections can be applied.

Low-Rank Newton-ADI for AREs

If we re-write Newton's method for AREs, in particular Step 3 in Algorithm 1,
we get

ATj (Xj +Nj)︸ ︷︷ ︸
=Xj+1

+ (Xj +Nj)︸ ︷︷ ︸
=Xj+1

Aj = −CTC −XjBB
TXj︸ ︷︷ ︸

=:−WjWT
j

Set Xj = ZjZ
T
j for rank(Zj)� n, we have

ATj
(
Zj+1Z

T
j+1

)
+
(
Zj+1Z

T
j+1

)
Aj +WjW

T
j = 0 (21)

Then Zj+1, j = 0, 1, . . . can be obtained by solving Lyapunov equations
in (21) with the factored ADI iteration in (19), so that Algorithm1 is com-
bined with the low-rank ADI methods.

Software

In the toolbox LYAPACK, there are MATLAB routines for solving large,
sparse Lyapunov equations, and AREs equations. The main methods used are
low-rank ADI and Newton-ADI iterations. It can be downloaded from [32].

The Matrix Equations and Sparse Solvers library(MESS) [33], is the ex-
tended and revised version of the LYAPACK Toolbox. It includes solvers
for large-scale di�erential Riccati equations.There are many algorithmic im-
provements, for example, new ADI parameter selection, column compression
based on RRQR algorithm, a more e�cient use of direct solvers, treatment of
generalized systems without factorization of the mass matrix, new ADI ver-
sions avoiding complex arithmetic etc. It is available as a MATLAB toolbox,
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as well as a C-library. The C version provides a large set of axillary subrou-
tines for sparse matrix computations and e�cient usage of modern multicore
workstations.

8 Conclusion

In this lecture, popular model order reduction methods applicable for non-
parametric LTI systems are discussed. The numerical algorithms for solving
large-scale matrix equations are explored.

Most of the above discussed methods can be either directly applied, or
extended to treating descriptor systems Eẋ = Ax + Bu, E singular. Some
methods are generalized for bilinear and stochastic systems. Methods based
on Padé approximation/rational interpolation are also extended for nonlinear
systems. The well-known proper orthogonal decomposition (POD) method
for nonlinear systems is not covered in the lecture. Parametric model order
reduction (PMOR) for parametric systems, such as

ẋ = A(p)x+B(p)u, y = C(p)x,

where p ∈ Rd is a free parameter vector, is a huge topic, and cannot be
included in the lecture either. For a survey of PMOR methods, see e.g. [6].
For a wide view about various MOR methods for di�erent complex systems,
please visit the MORwiki [34], where one is also free to share the benchmarks
for testing and verifying MOR algorithms.
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