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An Agent-based Architecture for
Solving Partial Differential Equations
By John R. Rice

Composite or multi-physics partial differential equations arise in models involving multiple physical phenomena. A
model of a pan of water coming to a boil, for example, involves heat conduction in a solid, plus
both heat conduction and heat convection in water and in air. Figure 1 shows a device similar
to a pan of boiling water, with these same physical phenomena. While the individual physical
phenomena are modeled by PDEs in the usual way, their solutions must satisfy interface
conditions between the domains of the phenomena. These interface conditions also model the
physical behavior at the interfaces. In our simple example, the interface conditions correspond
to the continuity of temperature and heat flux. If the water starts to boil, then the air–water
interface becomes much more complicated as mass (steam) transfers from the water into the air,
carrying heat with it. One of the challenges at the frontier of simulation technology is to solve

the composite PDEs that arise in modeling more complicated devices (e.g., a complete internal combustion, or gas turbine,
engine).

This article describes the interface relaxation method for solving composite PDEs and then presents a (virtual)
architecture and software system, SciAgents [3], that uses this method and architecture. It is assumed that we can solve
exactly any single PDE on any simple domain or, more realistically, that given such a PDE problem, we can select an exact
solver for it from our library. The interface relaxation method uses a library of “single, simple-domain, exact” PDE solvers
to solve composite PDE problems. It is an iterative method of the classical type, based on relaxation, as follows:

1. Guess solution values (and derivatives if needed) on all interfaces.

2. Solve all single PDEs exactly and independently with these values as boundary conditions.

3. Compare and improve the values on all interfaces using a relaxer (discussed below).

4. Return to Step 2 until satisfactory accuracy has been achieved.

Interface relaxation is thus in the spirit of Southwell’s idea, as applied to the linear algebraic equations used in the 1930s.
The simplest relaxers just take some sort of “average” of values on the interfaces. Averaging is a good mental model for
a relaxation formula.

The attraction of the SciAgents architecture is threefold. First, it allows the accurate coupling of independent models and
the reuse of PDE software that handles single-phenomenon models. Second, it uncouples the parallelism of the computation
somewhat from that of the machines used. Finally, it is intuitively consistent with a person’s view of the geometry and
physical models of a composite PDE problem.

The Interface Relaxation Method

Interface relaxation is an iteration defined at the continuum (math-
ematical) level; its convergence properties are a question of math-
ematical analysis, not of numerical analysis. Let UN and VN be the PDE
solution values at iteration N on opposite sides of an interface. Assume
for simplicity that the interface conditions to be satisfied are continuity
of value (UN = VN) and normal derivative (∂UN / ∂n = – ∂VN / ∂n).
Then two simple relaxation formulas for U and V are:

V U U V f U n V nN N N N N N+ += = +( ) − ∂ ∂ +( ∂ ∂ )1 1 2

V U U U V U n V nN N N N N N N+ += = + −( ) −( ) +[ ∂ ∂ + ∂ ∂( ) ]1 1

2 2
1ω ω α β ,

where f, ω, α, and β are relaxation parameters.
Early relaxation formulas were proposed in the context of domain

decomposition [5, 6]. Approximately 10 relaxation formulas are
catalogued in [9]. One of the important open questions concerns the
comparative performance of these methods and procedures for com-
puting good relaxation parameters. Of course, actual implementations
of interface relaxation use numerical methods since, generally, the
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Figure 1. A simple composite PDE problem with three
phenomena, four simple domains, and five interfaces.
Heat is transmitted across the interfaces according to
standard models of heat flux and temperature conti-
nuity.
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exact analytic PDE solvers do not exist. The level of accuracy produced by the numerical solvers should be visualized as
substantially higher than that of the relaxation iteration. There is negligible correlation between the accuracy of interface
relaxation and that of the numerical solvers. This is similar to assuming that computer arithmetic is exact even though it
is not (and this can sometimes cause problems). Interface relaxation looks like domain decomposition. It is different in that
domain decomposition has a single underlying PDE for all the domains and the interface conditions are mathematical
smoothness (continuous value and derivative) or some numerical equivalent.

The convergence analysis of interface relaxation presents formidable mathematical challenges; almost any question
asked will be both hard and open. Even for the single-PDE case—one global PDE or domain decomposition—work on
convergence analysis has appeared rarely, starting about 10 years ago [6, 8] and then more recently in 1992 [2, 7]. The
analysis in the latter case is greatly simplified by the existence of a rich convergence theory for solving the single PDE that
can be applied.

The difference between the two convergence problems can be illustrated as follows: Let UNh and UhN be the solutions
produced at iteration N by discretization h for interface relaxation and domain decomposition, respectively (for interface
relaxation, h is merely a placeholder as there is no concept of a global discretization variable). The two methods and their
convergence questions are then:

Domain Interface
Decomposition Relaxation

1. Discretize PDE using h to define Uh 1. Decompose problem into subdomains
2. Decompose problem into subdomains 2. Use interface conditions and iteration method to define UN

3. Use interface conditions and iteration method to define UhN 3. Discretize each PDE using h to define UNh

4. Iterate 3 on N until convergence 4. Let h → 0 in 3 until convergence
5. Let h → 0 in 1–4 until convergence 5. Iterate 2–4 on N until convergence
limh → 0 (limN → ∞ UhN) = ?? limN → ∞ (limh → 0 UNh) = ??

For domain decomposition, if limN → ∞ can be handled, then the other limit can be handled by existing theory. This is not
the case for interface relaxation as there is no convergence theory for multiple (or even one) discretization method applied
to composite PDEs.

Given that theoretical analysis is intractable for the moment, we should use experiments to provide guidance and insight
for interface relaxation. Numerous experiments done in recent years indicate that interface relaxation converges for a wide
variety of problems and relaxers. The convergence is sometimes very fast, other times not. There is reason to be hopeful
that, as we better understand interface relaxation, it can become a very useful method for solving composite PDEs. (A crude
form of interface relaxation already in fairly widespread use simply involves “trading” current values across interfaces
without any relaxation. This method makes the most sense in time-varying problems, but we are not aware of any attempts
to analyze the effects of the errors involved.)

Implementation in High Performance Environments

Interface relaxation is naturally suited for distributed high performance computing. The method defines a mathematical
network with a single PDE solver at each node (representing a domain) and relaxers connecting the nodes. The single (and
usually different) PDE solvers are distributed to high performance machines (since many PDE problems have to be solved),
and the relaxers “control” the computation.

We can extend the concept by making each node a solver agent capable of solving its PDE, with a goal of doing so
whenever new boundary (interface) conditions are given to it. We can make each relaxer connection into a mediator agent
capable of accepting values from solvers, applying relaxation formulas, and returning improved values to its two solvers.
The goal of the mediator agent is to apply these formulas and to decide whether convergence has taken place (i.e., whether
the values it receives satisfy the interface conditions sufficiently well). The entire method is placed in an agent-based
framework through the introduction of a control agent that sets policies for the other agents—e.g., What are the tolerances
for local convergence? Should a solver agent resolve its PDE when it gets each new interface value or wait until it gets all
new interface values?

This agent-based framework creates a virtual architecture for each particular composite PDE problem. The virtual
architecture must be mapped onto a real architecture, which brings other issues, e.g., load balancing, communication
latency, into play. If one of the nodes has a dominating PDE solution time, then traditional domain decomposition methods
can be used to partition this local PDE problem. An attraction of the agent-based approach, however, is that it cleanly
separates the algorithmic and software issues from the hardware being used.

SciAgents is an agent-based implementation of interface relaxation built on the PDE-solving infrastructure of Parallel
ELLPACK (PELLPACK) [5]. SciAgents integrates about a dozen PDE- solving packages (e.g., CADSOL, ELLPACK,
FIDSOL, NSC2KE, PDECOL, VECFEM) into a uniform problem-solving environment; some of these packages, in turn,
contain many individual solvers, so that the overall system contains over 1.5 million lines of code. For any particular PDE,
of course, only one solver is used. While PELLPACK has one-, two-, and three-dimensional solvers, SciAgents is currently
restricted to two-dimensional problems. A wrapper has been put around PELLPACK to make it into an agent for SciAgents.
This wrapper involves adding or changing about 1000 lines of code in PELLPACK, an almost negligible amount given the
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size of the entire code.
SciAgents has a facility for creating the network of

solver and mediator agents for a composite PDE problem.
With the templates for mediator agents, the user can opt for
a default relaxer, select a relaxer from a menu, or (for
experts) program a new relaxation formula. Thus, the
creation facility relies heavily on the user interfaces (GUI)
of the solver and mediator agents. The PELLPACK solver
GUI is elaborate and provides many options for defining
PDE problems, selecting among the solvers, and visualiz-
ing the solution. The SciAgents mediator GUI is much
simpler, allowing the user to select one of eight built-in
relaxation formulas or to program a new one.

To create a SciAgents network, the user makes a sketch
of the composite PDE problem in order to identify (and
number) the domains and interfaces, and then uses the
agent GUI to define the network, to provide equations and
parameters, and so forth. An example from the end of the
process is shown in Figure 2, where the domain is dis-
played at the lower left. The window shows the (somewhat
cryptic) text of SciAgents, in which the network data are
consolidated. At the bottom of this text, machine names
are given for each agent; as yet, SciAgents does not
provide any automatic load-balancing or automatic ma-
chine-assignment facilities.

The KQML system [4] for information exchange, which has been used
for a number of agent-based applications in the AI community, is used for
the implementation of SciAgents. The SciAgents application stresses
KQML in two respects, both of which would be expected to be common
in scientific agent-based systems. First, the size of the information packets
quickly exceeds the KQML limits, and a “work-around” must be imple-
mented. Second, the KQML system degrades and then crashes as the
number of inter-agent messages grows. Thus, the KQML-based imple-
mentation of SciAgents becomes unreliable at about 8 to 10 domains. We
plan to use a more robust KQML implementation or a substitute system in
the future. The SciAgents architecture for the composite PDE problem of
Figure 1 is shown in Figure 3. The system components are shown, along
with the problem-solving agents created for this application.

Results

To date, we have solved approximately 200 two-dimensional composite
PDEs using interface relaxation. Perhaps 150 of these problems are of the
domain decomposition type, i.e., the same elliptic PDE is used on all
domains. In these experiments we have varied the PDE, the number of
domains (up to 500 have been used), the shapes of the domains, the
relaxation formulas, and so forth. The other 50 have been truly composite
PDE problems, usually linear elliptic PDEs. Again, the objective has been
to explore the range of applicability of the interface relaxation method.

A handful of the test problems are nonlinear, including the following,
which was solved on the geometry shown in the lower left of Figure 2 (and
in which there are singularities at the reentrant corners):

UUxx + (1 + U)Uyy + aU(1 + U) = b(x2 + y2 – 2) Domain 1
Uxx/(1 + (x – y)2) + Uyy/(1 + (4x – 5y)2 ) + cU/(101 +U) = 0 Domains 2 & 4
Uxx + Uyy – d(Ux + Uy) + cU = 0 Domain 3

Uxx + Uyy + aex + y + U/500 = b(x2 + y2 – 2) Domain 1
UUxx + UUyy + (Ux + 20)Uy + 2(Ux – 20)Ux = 0 Domains 2 & 4
Uxx + Uyy – b(Ux + Uy) + aU = 0 Domain 3

The total human time required to solve a composite system on the domain shown in Figure 2 is about three hours. This

Figure 2. The SciAgents control window.

Figure 3. The SciAgents architecture as seen by
the user (top) and by the SciAgents software
(bottom). The solver agents are in boxes with
heavy borders, and the mediator agents are in
ovals with numbers.
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includes the time to create the SciAgents solver, i.e., to make the sketch,
to define completely four PDE problems with PELLPACK, to define the
initial guess, which must be continuous along all the interfaces and equal
to external boundary conditions, to create five mediators, to select
relaxation formulas along with their parameters, and to assign all the
agents to workstations on the local network. The solver agents are
assigned to separate workstations, and everything else is assigned to
another workstation. Sun SPARCstations 5, 10, and 20 have been used.
This creation effort accounts for about half the time.

Once the composite PDE solution is started, there are significant waits
(30 seconds to 2 minutes), depending on the time needed by a particular
workstation to solve a particular PDE (four of them, of course, could be
working simultaneously). For engineering accuracy, the solutions of the
problems discussed here require a maximum of 53 iterations; because of
the loosely coupled, agent-oriented control mechanism of SciAgents,
not all the solvers are executed the same number of times. The singularities
at the reentrant corners account in part for the slow convergence.

During this time the user can adjust the relaxation parameters. Once the global solution is obtained, some time is required
to collect, save, patch together, and view its four pieces. The number of “iterations” needed for engineering accuracy usually
ranges from 15 to 100; the number is not easily predicted and is strongly influenced by relaxation parameter values. We
have also solved several hundred one-dimensional composite PDEs using interface relaxation.

Real-world applications in progress include a model for a window Josephson junction in superconducting films [1]. In
this problem Ωin is an action window region (see Figure 4) of a Josephson junction embedded in a global domain Ω;
Ωout = Ω \ Ωin is the region without superconductivity. The phase difference U(x,y) of the order parameter in the
superconducting films satisfies the nonlinear sine-Gordon equation inside Ωin and is harmonic outside:
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where the surface inductances Lin and Lout are, in general, different. The domain Ωin can consist of several disjoint junction
windows. The shape of these windows plays an important role in the stability of the junction; oval or “bowtie” shapes are
usually the best.

Conclusions

These experiments lead us to believe that interface relaxation has high potential as a general method for composite PDE
problems. At this time there is considerable uncertainty about the scope of applicability of the method, about procedures
for choosing good parameters for relaxers (the method is analogous in this respect to iterative methods for linear systems),
and about its implementation for time-dependent problems.

The focus of this article, and of our work, has not been on algorithm or code performance, because the principal
uncertainty is not how fast interface relaxation works, but whether it works. For the composite nonlinear PDEs discussed
earlier, there are no “established” alternative solution methods. Parallelism is an inherent property of interface relaxation,
and the SciAgents system is slowed down significantly if all the agents are placed on a single computer.

Interface relaxation is very relevant to traditional domain decomposition. In early analyses and implementations, a single
PDE was solved. The method could be viewed as a “continuous Schur complement iteration” method. In any case, it is likely
to lead to new insight and ideas for domain decomposition. Our experiments have not exhibited marked differences in
performance for single- and composite-PDE problems. The analysis of a simple model problem in [7] shows that the
convergence rate is good and independent of the number of domains; this has been confirmed experimentally with up to
500 domains. We conjecture that convergence will eventually be shown to be independent of both the number of domains
and the numerical method used for broad classes of composite PDEs.

Figure 4. Typical configuration of a two-window
Josephson junction. The solution is specified on
the external boundary, and two interface condi-
tions are specified on the internal boundaries.
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