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Making Waves: Solitons and
Their Optical Applications

Soliton technology has recently achieved close to pop science status as its proponents seek to put it to use for transporting
vast amounts of information—the stuff that gives our era its name—farther and faster. It could well become
one of the fundamental technologies in the current communications revolution.

It was during the Industrial Revolution, however, that this phenomenon was first noticed and studied.
A Scottish engineer by the name of John Scott Russell had set out to create a more efficient hull design

for canal boats (a 19th-century forerunner, perhaps, of current efforts to speed packets of
information along fiber-optic cables). One day in August of 1834, he stood beside Union

Canal near Edinburgh to observe the movement of a boat being pulled by two horses. As the rope
pulling the boat snapped and the boat’s movement halted, its prow dropped back down and Scott
Russell saw a large mass of water, a smooth, solitary wave, gather around the prow and continue
rapidly down the channel.

Surprised and intrigued, he followed on horseback and noticed that the wave held its shape and
only very gradually diminished in

height. He lost sight of it after a mile or two but was so taken
with this observation that he built a 30-foot wave tank in his
back yard to study the phenomenon further. Ten years later,
he reported his observations to the British Association for
the Advancement of Science, calling what he had observed
the “wave of translation.” Scott Russell considered that day
back in 1834 “the happiest day of my life” [4], but his
discovery was ignored by all but one or two people, who felt
compelled to prove him wrong in the scientific literature.
After all, it was common knowledge that waves could not
behave in this way.

A Flurry of Mathematical Activity

Vindication came from two independent camps, both of
which were attempting to explain the movement of shallow
water waves. Boussinesq’s equation in 1872 and the
Korteweg–de Vries (KdV) equation in 1895 proved that
solitary waves were, indeed, theoretically possible. Both
equations describe the evolution of the wave height η(x, t),
but the KdV equation,
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is the simpler of the two [1, 3] and has the solitary wave
solution

η= −( )2 42 2 2a a x a tsech , (2)

where 2a2 is the wave amplitude and 4a2 is its velocity.
It would be another 70 years before these findings were

taken any further. In 1965, Martin Kruskal and Norman
Zabusky studied the KdV equation numerically and deter-
mined that nonlinear solitary waves could occur naturally,
given the right conditions. They also obtained a surprising
result: Even though the equation is nonlinear and two solitary
waves propagating at different speeds should thus interact
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“It is often said that interest in science is stimulated by its many
practical applications. Nothing could be further from the truth.”

Writing in a recent issue of The New York Times Book Review, John
Durant, a professor of public understanding of science at Imperial
College, London, was making the point that books on “the big
questions”—cosmology, evolutionary biology, and consciousness—
sell far better than books on chemistry, ecology, and thermodynamics.
“It is not that we doubt the importance of catalysis, the carbon cycle and
combustion,” he wrote; “it is just that we find these things less gripping
than the Big Bang, the death of the dinosaurs and the search for a
coherent theory of mind.”

All undoubtedly true, but where does this leave the scientists and
mathematicians whose work is concerned with practical applications?
Mainly, it seems, with a task that is very difficult. Just ask the nine
authors who entered SIAM’s first writing contest.

Each author took the time to prepare and submit a well-thought-out
presentation of an interesting application of mathematics. They were
writing for their peers—the SIAM membership and other readers of
SIAM News—and their challenge was to present an interesting, novel
approach to an important application of mathematics.

The contest judges had mixed feelings; almost all found the appli-
cations themselves interesting and important. Most of the judges
commented that the authors (not surprisingly) were clearly expert at
writing research papers for peer-review journals but were venturing
into new territory as newspaper writers. (Authors who could write for
an audience more broad than the SIAM membership was a long-term
goal of the SIAM board in initiating the contest.)

In the end, the judges selected the paper “Solitons and Their Optical
Applications,” by Bonnie and Bill Kath, as the first-prize winner. The
article, complete with colorful history, rich and ongoing mathematical
developments, and an element of suspense, begins on page 1 of this
issue. The authors have received $1000. The judges also chose to
award an honorable mention, to Mark Frantz, whose submission is
titled “How to Look at Art”; Frantz, whose article will appear in an
upcoming issue of SIAM News, receives $500.

SIAM News is pleased to publish both of these articles and hopes that
they will inspire many others to write about their work for a more
general audience, possibly for the next SIAM writing contest.
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strongly with one another, the interaction is only
temporary and the waves quickly recover their
original shapes and velocities. These elastic col-
lisions were similar enough to those of colliding
elementary particles that Kruskal and Zabusky
coined the term “soliton” for such waves.

Within the applied mathematics community,
work then advanced rapidly. In 1967, the team
of Gardner, Greene, Kruskal, and Miura devised
the method for the exact solution of the KdV
equation now known as the inverse scattering
transform. In work considered by many to be a
mathematical tour-de-force, they showed that if
the solution of the KdV equation is treated as the
potential function in the scattering problem
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then even though η changes with time, the
spectrum (defined by λ) is time independent. In
addition, the associated spectral data evolve in
time in a linear and very simple manner. The final step is to recover the potential η (and thus the solution of the KdV
equation) from the scattering data, a result that had been worked out in the early 1950s by Gelfand and Levitan. The resulting
inverse scattering transform made it possible to find a number of exact analytic solutions in closed form and demonstrated
explicitly the elastic collisions observed by Zabusky and Kruskal (see Figure 1).

This amazing discovery was shown not to be a fluke when Zakharov and Shabat, using an elegant formulation developed
by Peter Lax, were able to solve the nonlinear Schrödinger equation, which describes the evolution of a general wave
packet’s slowly varying envelope. Still more complicated nonlinear equations were subsequently dispatched when
Ablowitz, Kaup, Newell, and Segur showed how to make the method more systematic with a procedure now known as the
AKNS method.

This flurry of mathematical activity caused the scientific community at large to sit up and take notice. (Or, perhaps, the
term “soliton” captured researchers’ imaginations better than Scott Russell’s “wave of translation” had.) During the past
30 years, soliton research has been conducted in fields as diverse as particle physics, molecular biology, quantum
mechanics, geology, meteorology, oceanography, astrophysics, and cosmology.* But the area of soliton research at the
forefront right now is the study of optical solitons, where the highly sought-after goal is to use these nonlinear pulses as the
information-carrying “bits” in optical fibers.

Compensating for Dispersion

Any information-carrying signal, by necessity, contains components from a range of frequencies. Because the
propagation speed of a wave is frequency-dependent, the transmitted pulses tend to spread (an effect called dispersive
spreading) and the signal, in turn, tends to break up. Since the inception of optical fibers, researchers have been looking
for ways to combat dispersive spreading because of the severe limits it imposes on the capacity of optical communication
systems.

An exploration of the details of dispersive spreading can help us understand this limitation. The dispersion produced by
an optical fiber can be measured in units of picoseconds squared per kilometer (ps2/km). “Standard” single-mode optical
fiber (Corning SMF-28**), for example, has a dispersion parameter of about 20 ps2/km at a wavelength of 1.55 microns
(one of the two main communication wavelengths). The amount of dispersive spreading can be estimated as the square root
of the product of the dispersion parameter and the propagation distance. For standard fiber, the dispersive spreading after
500 km is then roughly  200 500 1001 2×( ) =  ps. If the transmitted pulses are approximately 100 ps wide (corresponding to
a “bit-rate” of 1 Gbit/s if the pulses are spaced 10 widths, or 1 ns, apart), they will have spread by an amount equal to their
own widths after only 500 km. Since this effect increases with the propagation distance, after 10,000 km (the distance across
the Pacific from the U.S. to Japan) the pulses will have spread to 4.5 times their original widths. Pulses that have spread
this extensively will overlap, making it increasingly difficult to separate them from one another; the result is degradation
of the signal.

Seeking a way around this difficulty, Akira Hasegawa and Fred Tappert proposed in 1973 that a nonlinear dependence

Figure 1. Soliton collision: A larger and faster pulse overtakes a smaller and
slower one. The two solitons emerge from the collision with their identities
intact. The wave height profile η is shown at several times.

Space

T
im

e

H
ei

gh
t

*Some of these applications were explored at a 1995 conference celebrating 100 years of the KdV equation. A particular highlight was
the re-creation of Scott Russell’s observations, which can be viewed on the Web at http://www.ma.hw.ac.uk/solitons/press.html.

**See http://www.corningfiber.com/fiber.htm.
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of the index of refraction on the light intensity could be used to compensate for dispersion. Essentially, light is guided by
total internal reflection in a region where the index is higher than that of its surroundings; optical fibers use an index
difference to keep propagating light trapped in the higher-index core region, for example. When a light pulse is intense
enough to increase the index of refraction on its own (which became possible with the invention of the laser), the pulse
becomes self-trapping and no longer disperses.

Hasegawa and Tappert showed that the nonlinear Schrödinger equation studied by Zakharov and Shabat (but with space
and time interchanged, as appropriate for optical fibers) [2], namely
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is the appropriate equation for describing the nonlinear propagation of light in optical fibers. They performed a number of
computer simulations demonstrating that nonlinear pulse transmission in optical fibers would be stable. These theoretical
findings were intriguing, but such pulses were impossible to observe experimentally, because light transmitted through
optical fibers was still experiencing too much loss.

By the early 1980s, however, fiber-optic technology had caught up somewhat, and Linn Mollenauer, Roger Stolen, and
Jim Gordon were able to observe soliton propagation in the lab. As mathematical results continued to appear, this group
at Bell Labs was experimenting intensively with optical solitons, looking for ways to use them in long-distance
telecommunication systems. Ironically, while their work was enthusiastically received in scientific circles, it seemed that
the practical application could not be quickly realized, and they were told by the head of research, Arno Penzias, to desist.
Doggedly, they persisted until their results were so compelling that Penzias apologized and publicly praised the work [5].
Mollenauer’s group has since achieved several long-distance and speed records for optical soliton transmission.

Erbium-doped Fiber Amplifiers

One of the key technological developments that made such soliton experiments possible was the invention of the erbium-
doped fiber amplifier (EDFA) in 1987. Researchers at Southampton University, NTT, and Bell Laboratories discovered that
when a short length (e.g., a few meters) of optical fiber is doped with the rare-earth element erbium and pumped with light
energy from a diode laser, it becomes an optical amplifier. Up to this point, optical transmission systems had used electronic
repeaters, which convert light to electrical energy, clean it up, amplify it, and finally, using a semiconductor laser, launch
it on its way again. The cost of such electronics becomes prohibitively expensive at high bit rates, though, which imposes
a practical limit on the information capacity of repeater-based systems. Because of the simplicity and large bandwidth of
EDFAs, they quickly became the amplifier of choice in transmission systems.

The development of EDFAs also breathed new life into other, more traditional, transmission schemes and greatly
accelerated the growth of the global optical fiber network, including the long-distance segments deployed under the world’s
oceans.*** Since the installation cost for undersea cables can exceed $1 billion and the systems technology must work
correctly the first and every time, it is important to employ the fastest and most robust scheme available in designing such
telecommunication links. A race therefore began between solitons and the other schemes for the long-distance speed record.

NRZ Versus Solitons

The main competition in this race has come from a data-encoding scheme known as non-return-to-zero, or NRZ, that was
developed for more traditional, linear transmission systems. As shown in Figure 2, the main difference between encoding
digital signals with solitons and with NRZ is that in the latter case if two 1s are close together the signal intensity doesn’t
drop back to 0 between the individual bits as it does with solitons. For NRZ, however, the nonlinearity inherent in optical
fibers is a problem that can distort signals at high speeds.

Relatively quickly, a team led by Neal Bergano at AT&T learned how to increase the bit rate of NRZ-encoded signals

Figure 2. Soliton (top) and NRZ (bottom) encoding of the binary data sequence
110100111. The vertical lines mark the extent of each bit’s timing window.

1 1 0 1 0 0 1 1 1

***See International Submarine Cables of the World, located on the Web at http://elaine.teleport.com/~ptc/iscw/iscw.shtml.
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to 5 gigabits of data per second over a distance of 9000 kilometers. (Roughly speaking, 5 gigabits is about the amount of
information stored on one CD-ROM disk or contained in the text and figures of a set of encyclopedias.) They dealt with
the problem of dispersion by employing newer fiber (known as dispersion-shifted fiber) that is constructed to move the zero-
dispersion wavelength (the wavelength at which the dispersion vanishes) close to 1.55 microns, where erbium-doped
amplifiers operate. Their results prompted AT&T to retain NRZ as the data-encoding scheme for undersea transmission
systems.

At this point, solitons were able to operate at 2.5 Gbit/s over 9000 km, but at 5 Gbit/s were able to survive a distance of
only 6000 km. Jim Gordon of Bell Labs and Hermann Haus of MIT had already given an explanation for the difficulty,
showing that it is a fundamental result of the ways in which EDFAs work with solitons.

When a doped optical fiber is pumped with light from a diode laser, the erbium atoms absorb energy and are put in an
excited state. A photon of signal light entering the EDFA can then stimulate an excited erbium atom to coherently emit an
additional photon, thus amplifying the signal. As Einstein had shown, however, stimulated emission must always be
accompanied by a certain amount of spontaneous emission. Such randomly released photons act as noise and are added to
the propagating signal. In the case of solitons, the added noise produces fluctuations in the pulses’ positions (now known
as Gordon–Haus timing jitter) and leads to transmission errors at high bit rates or large enough distances. At 5 Gbit/s, the
theoretical distance limit turns out to be roughly 6000 km, precisely what was observed by Mollenauer.

Another piece of soliton mathematics then entered the picture. Working independently, Kodama and Hasegawa, and
Antonio Mecozzi, John Moores, Hermann Haus, and Yinchieh Lai at MIT, predicted that the maximum propagation
distance of optical solitons could be increased with the addition of optical filters to the transmission system. Such filters
remove some of the noise added by the amplifiers, extending the distance over which solitons can propagate. As predicted,
after adding filters to the experiment, Mollenauer was able to propagate a 5-Gbit/s signal for a distance well beyond the
required 10,000 km. He also improved on the idea by varying the filters’ central frequencies linearly with distance along
the fiber, something he called “sliding-frequency guiding filters.” With this modification, he was able to send a 10-Gbit/s
signal more than 20,000 km.

Dispersion Management

Neal Bergano and his NRZ team were not idle during this time, of course. Although they were not able to increase the
rate of an NRZ-encoded bit stream beyond 5 Gbit/s, they were able to increase the overall bit rate by employing a technique
known as wavelength-division multiplexing (WDM). Much as in cable TV, they chose several wavelengths as different
channels and simultaneously transmitted a separate 5-Gbit/s data stream in each one. In 1996, Bergano and his team were
able to send 32 separate 5-Gbit/s channels, for a total of 160 Gbit/s, over 9000 km.

Systems employing solitons have also been able to exploit WDM to increase the total bit rate, but not yet to the extent
obtained with NRZ. Linn Mollenauer’s team has transmitted eight separate 10-Gbit/s channels using solitons, for a total of
80 Gbit/s, and Masataka Nakazawa of NTT Laboratories has achieved five separate 20-Gbit/s channels, for a total capacity
of 100 Gbit/s.

The race is not over yet. Neal Bergano’s NRZ experiments worked so well in part because of a technique known as
dispersion management. Essentially, the idea is to concatenate two or more fibers with different dispersion parameters to
form a system with periodically varying dispersion. In this way it is possible to have both high local and low average
dispersion in the system. The high local dispersion tends to reduce an effect known as four-wave mixing (which tends to
distort signals and produce intersymbol interference)—the high dispersion disrupts the phase-matching of the different
optical frequencies making up a signal, thus reducing the interactions between them. Moreover, the low average dispersion
reduces its net cumulative effects over long spans of optical fiber.

Although dispersion management was invented for use with NRZ signals, a number of researchers have been
investigating its use in soliton systems, requiring that the mathematics of solitons be extended even further. The first results
were obtained by Akira Hasegawa and Yuji Kodama in 1991, when they applied asymptotic averaging methods using Lie
transforms to the nonlinear Schrödinger equation with rapidly varying coefficients,
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Here σ(z/ε) is the periodic dispersion, g(z/ε) results from oscillations due to loss and periodic amplification, and ε is a
small parameter used to indicate that these variations are rapid.

Kodama and Hasegawa’s results showed that an averaged soliton, which they call the “guiding-center soliton,”
propagates in such a system. Since the effective dispersion parameter in this case is just the average over one period, it can
be reduced by proper dispersion management. This decreases the total amount of Gordon–Haus timing jitter. More recently,
a group at Aston University in Manchester, England, composed of Nick Smith, Finlay Knox, Nick Doran, Keith Blow, and
Ian Bennion, showed that strong dispersion management enhances the power of optical solitons, further reducing the effects
of the Gordon–Haus timing jitter.

The mathematical theory of nonlinear wave equations with rapidly varying coefficients like equation (5) is still not fully
resolved, and is a subject of ongoing research around the world. A primary goal is to understand the pulse behavior when
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the variations are strong; this would provide a foundation for explaining a number of dispersion-management experiments
that have been performed. But an even bigger objective, and a wide-open problem, would be to formulate a theory that would
be capable of predicting the behavior of WDM systems with many channels.

Even if optical solitons don’t eventually win this long-distance race, a number of spin-offs are now firmly entrenched
technologically or are being heavily investigated. For example, lasers constructed almost entirely of optical fiber (with
erbium-doped fiber as the gain medium) produce an endless stream of solitons as their output. A number of such “soliton
lasers” can be purchased commercially. In addition, since today’s high-speed computer networks deal with information
packets (i.e., digital data organized into sequential groups), they tend to work better with single-channel transmission
systems than with WDM-based systems. Because solitons have been able to surpass the 5-Gbit/s limit, they are currently
the best candidate for ultra-high-speed packet-switched optical networks.****

Whatever the outcome of these investigations, there is no doubt that the study of solitons, both optical and otherwise, has
inspired tremendous amounts of research in many disciplines, and has been a shining example of the potential benefits to
be gained by a close interaction between science and mathematics.
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