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Parallel Pseudore_indom
Number Generation

By Michael Mascagni

Monte Carlo applications are widely perceived as embarrassingly parallel. (Monte Carlo enthusiasts prefer the term “naturally
parallel” to the somewhat derogatory “embarrassingly parallel” coined by computer scientists.) The truth of this notion depends
to alarge extent, on the quality of the parallel random number generators used. Itis widely assumedlfhategitsors executing
N copies of a Monte Carlo calculatiadhe pooled result will achievevarianceN times smaller than a
APPLICATIONS ON single instance of the_calcul_ation inthe same amount oftime. This will be true only ifthe results in each

processor are statistically independent, which will be true, in turn, only if the streams of random

ADVANCED numbers generated in each processor are independent.

ARCHITECTURE In this article, we outline some methodsgarallel pseudorandom number generation. We consider
parameterized versions of three random number generators. The exact meaning of parameterization

COMPUTERS depends on the type of parallel pseudorandom number generator (PPRNG) under discussion. (We

Greg Astfalk, Editor distinguish parameterization from splitting methods. Splitting is the production of parallel streams of
! pseudorandom numbers by taking substreams from a single, long-period PRNG.) In general, we seek
to determine a parameter in the underlying recursion of the PRNG that can be varied. Each valid value
of this parameter will lead to a recursion that produces a unique, full-period stream of pseudorandom
numbers. We then discuss efficient means for specifying valid parameter values and consider these choices in termsyof the quali
of the pseudorandom numbers produced.

Linear Congruential Generators

The most commonly used generator of pseudorandom numbers is the linear congruential generator (LCG). The LCG was firs
proposed for use by Lehmer (circa 1949) and is referred to as the Lehmer generator in the early literature. The lin@ar recursio
underlying LCGs is:

X, =ax,_, +b (modm) )

When the multipliera, additive constanh, and modulusn, are chosen appropriately, we obtain a purely periodic sequence with
period as long aBer(x,) = 2 whenmis a power of two an®er(x,) = m —1 whenmis prime. It is well known thattuples made
up from LCGs lie on lattices composed of a family of parallel hyperplanes [8k,Bha (1) are integer residues moduin A
uniform pseudorandom number in [ 0,1 ] is producedzyiax,/m, and the initial value of the LC@,, is often called the seed.

The most important parameter of an LCG is the moduluss size constrains the period, and for implementation reasons it is
always chosen to be either prime or a power of two. The parameterization method used is based on the type of modulus that h
been chosen. Whan is prime, a method based on use of the multiglias the parameter has been proposed. This choice, the
rationale for which is outlined in [12], leads to several interesting computational problems.

To parameterizawhenmis prime, we must first determine the family of permissdtdeWhenmis prime and we want to obtain
the maximal period (of lengtim — 1 in this case), a condition aris that it be a primitive element modutof4]. An integera is
primitive modulom if the set of integersa{ (modm) | 1< i < m — 1} equals the set{& i < m — 1}. Given primitivity, we can
make use of the following fact:dfanda are primitive elements modutg, thena = a' (modm) for some relatively prime tap(m).

Whenmis prime@(m) =m — 1. Thus, a single reference primitive elenmaeand an explicit enumeration of the integers relatively
prime tom — 1 furnish an explicit parameterization for jtteprimitive elementg, asa, = a’l (modm), wherel; is thejth integer
relatively prime tan — 1. Given an explicit factorization of — 1, efficient algorithms for computing can be found [12].

Two important questions remain open: (1) Overall, is it more efficient to cinotmsiee amenable to fast modular multiplication
or to fast calculation of thi¢h integer relatively prime tam— 1? (2) Does the good inter-stream correlation mentioned in [12] also
ensure good intra-stream independence via the spectral test? The first question is of practical interest with respe@ogperfor
For the second, however, a negative answer would mean that such techniques are less attractive for parallel pseudorandom num
generation.

An alternative way to use LCGs to make a PPRNG is to parameterize the additive constant in (1) when the modulus is a powe
of two, i.e., wherm = 2* for some integek > 1. This technique was first proposed in [17] as a way to provide a PPRNG for the
NYU Ultra-computer. The technique has some interesting advantages over parameterization of the multiplier. Use of power-of-
two modulus LCGs also has considerable disadvantages, however.

The parameterization chooses a set of additive constaghtbdt are paiwise relatively prime, i.e., gcd(b) = 1 wheni #j. A
prudent choice is to ldt be thejth prime. This ensures the pairwise relative primality and also provides the largest set of such



residues. With this choice, certain favorable inter-stream properties can be theoretically derived from the spectral test [17].
However, the difficult problem of computing tfib prime arises. This aspect of the generator is not discussed in detail in [17], in
part because the authors expect to provide only a small number of PRNGs. When the number of PRNGs to be provided with thi
method is large, fast algorithms can be used for the computatigr) pthe number of primes less thafB8].This is the inverse

of the desired function, so we designatj) as theth prime. The details of such an implementation need to be specified, but a
related method for computing tfth integer relatively prime to a given set of integers is given in [12]. It is believed that the issues
for computingrt®(j) are similar.

One important advantage of this parameterization is an inter-stream correlation measure based on the spectral test suggesti
that there will be good inter-stream independence. Given that the spectral test for LCGs measures the quality of themultiplier
sort of result is to be expected. A disadvantage of this parameterization is the need to ndipifitelarge number of streams
are to be provided. Regardless of the efficiency of the implementation, this is known to be a difficult computation wittorespec
computational complexity.

Finally, one of the biggest disadvantages of a power-of-two modulus is that the least significant bits of the integerdproduced
these LCGs have extremely short periodsx|f {are the residues of the LCG modulp ®ith properly chosen parameters,{
will have period & However, {x, (mod 2)} will have period 2 for all integers 0 < <k [4]. In particular, the least significant
bit of the LCG will alternate between 0 and 1. This is such a major shortcoming that it motivated us to consider paraomsterizat
of prime modulus LCGs, as discussed earlier.

Shift-register Generators
Shift-register generators (SRGSs) are linear recursions modulo 2 [5] of the form:

k_
Xy = zlaixmi (mod 2) (2
1=0

where theg's are either 0 or 1. An alternative way to describe this recursion is to speckhttiegree binary characteristic
polynomial [6]:

f(x):x"+kz_laixi (mod 2)  (3)

1=0

If we want to obtain the maximal period ¢£21, a sufficient condition is th) be a primitivekth degree polynomial modulo
2. If only a few of thea’s are 1, then (2) is very cheap to evaluate. For this reason, known primitive trinomials are often used to
specify SRG recursions. This leads to very efficient, two-term recursions.

There are two ways to make pseudorandom integers from the bits produced by (2). The first, called the digital multi-step method
takes successive bits from (2) to form an integer of the desired length. With the digital multistep migdations of (2) are
required to produce a nawbit pseudorandom integer. The second method, called the generalized feedback SRG, creates a new
n-bit pseudorandom integer for every iteration of (2). This is done by constructimipitheord fromx,,, andn— 1 other bits from
thekbits of the SRG state. Although these two methods seem different, they are closely related and theoretical resultsifa one alw
hold for the other.

One technique for parameterizing SRGs is analogous to the LCG parameterization discussed in the preceding section. There v
took the object that made the LCG full-period, the primitive root multiplier, and found a representation for all the raultiplier
Analogously, we identify the primitive polynomial in the SRG as the object to parameterize. We begin with a known primitive
polynomial of degreé, p(x). It is known that only certain decimations of the output of a maximal-period SRG are themselves
maximal and unique with respect to cyclic reordering [6]. We seek to identify those decimations.

The number of decimations that are both maximal-period and uniquep{f)eis primitive modulo 2 andt is a Mersenne
exponent is'2- Zk. If ais a primitive root modulo the primé 2 1, then the residues (mod 2— 1) fori = 1 to 2 — 2k form a
set of all the unique, maximal-period decimations. Thus, we have a parameterization of the maximal-period sequences of lengt
2*— 1 arising from primitive degreebinary polynomials through decimations.

The entire parameterization proceeds as follows: Assume thighteream isequired, computd, = a* (mod 2 — 1), and take
thed,th decimation of the reference sequence produced by the reference primitive polygmidlis can be done quickly with
polynomial algebra. Given a decimation of length®2 1, this can be used as input to the Berlekamp—Massey algorithm to recover
the primitive polynomial corresponding to this decimation. The Berlekamp—Massey algorithm finds the minimal polynomial that
generates a given sequence [15] in time line&r in

This parameterization is relatively efficient when the binary polynomial algebra is implemented correctly. Use of such a
parameterization has one major drawback: Although the reference primitive polypoéiahy be sparse, the new polynomials
are not necessarily sparse. (A polynomial is considered sparse if mosadd th€2) are zero.) The cost of stepping (2) once is
proportional to the number of non-zeegs in (2). We can thus significantly increase the bit-operational complexity of an SRG
in this manner.

The similarity of the parameterization methods for prime modulus LCGs and SRGs is no accident. Both are based on maximal
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period linear recursions over a finite field. Thus, the discrepancy and exponential sum results for the two types of gemerators
similar [16].

Lagged-Fibonacci Generators

The generators discussed in the preceding sections can be parallelized by variation of a parameter in the underlying recursio
The additive lagged-Fibonacci generator (ALFG) can be parameterized through its initial values. The ALFG can be written as:

Xo = X_j+ X (Mod 2), j<k (4)

In recent years the ALFG has become a popular generator for serial and scalable parallel machines. In fact, the pAEFG with
5,k=17, andn= 32 was the standard PPRNG in the Thinking Machines Connection Machine Scientific Subroutine Library. This
generator has become popular for a variety of reasons: It is easy to implement, computation of (4) is cheap, and itroes well o
standard statistical tests [9].

An important property of the ALFG is that the maximal periodis (3 2" - L This occurs in very specific circumstances [1,

10], from which we can infer that this generator Hash2 -1 different full-period cycles [13]. This means that the state space
of the ALFG is toroidal, with (4) providing the algorithm for movement in one of the torus dimensions. It is clear thatliieding
algorithm for movement in the other dimension is the basis of a very interesting parameterization. Since (4) tells usleow to cy
over the full period of the ALFG, we must find a seed thatis notin a given full-period cycle in order to move in theisenwiord

The key is to find an algorithm for computing seeds in any given full-period cycle.

A very elegant algorithm for movement in this second dimension is based on a simple enumeration, as follows: We can prove
that the initial seed,{, x, , . . .%._.}, can be bit-wise initialized with the following template (m.s.b. is the most significant bit and
l.s.b. the least significant bit):

m.s.b. Ls.b.

bm—l bm_2 . bl b[)
[ | [ | .. 0 0 |zp_y
0 " ... = 0 | zp_o
| | 0 | | 0 I
] [ | [ | 1 g

(®)

Each square is a bit location to be assigned. Each unique assignment gives a seed in a provably distinct full-period cycle [13
The least significant bit®,, are specified to be a fixed, non-zero pattern. If we allo@(&f) precomputation to find a particular
least-significant-bit pattern, the template is particularly simple:

m.s.b. Ls.b.

bm—l bm—Z e bl bo
) B ... B|byp_ |z
[ ] [ ] .. 1 bOk—Z Tp_n
n n m| by |
0 0 0 bOO To

(6)

The elegance of this explicit parameterization leads us to ask about the exponential sum correlations between thesegarameteriz
sequences. Itis known that certain sequences are more correlated than others as a function of the similarity in tHiedadst sign
bits in the template for parameterization[14]. However, it is easy to avoid all but the most uncorrelated pairs in a aorrputatio
this case, there is extensive empirical evidence that the full-period exponential sum correlation between &ti@éns 132"
~9%3) the squareoot of the full period. This is essentially opimUnfortunately, there is no analytic proof of this ikieand improvement
of the best known analytic result [14] is an imfpat open problem in the theory of ALFGs.

Another advantage of the ALFG is that it can be implemented directly with floating-point numbers, thereby avoiding the constant
conversion from integer to floating-point that accompanies the use of other generators. When only floating-point numbers are
required in the Monte Carlo computation, a distinct improvement in speed is achieved. To ensure that the parallel streams remai
unique, however, care must be taken to maintain the identity of the corresponding integer recursion when the floatinggpoint ALF
is used in parallel.



The multiplicative lagged-Fibonacci generator (MLFG) is an interesting cousin of the ALFG. It is defined by:
Xn:Xn—j X Xn—k (mOd 2)! j< k (7)

Whereas the MLFG has a maximal period 6f{24) 2"-3, a quarter of the length of the corresponding ALFG period [10], the
MLFG has empirical properties considered superior to those of the ALFG [9]. Of interest for parallel computing is the existence
of a parameterization analogous to that of the ALFG for the MLFG [11].

SPRNG

TheSPRNdibrary (http://www.ncsa.uiuc.edu/Apps/SPRNG) is designed to use parameterized pseudorandom number genera-
tors to provide random number streams to parallel proceSs&aNGis currently in its first full release (version 1.0).

The National Center for Supercomputing Applications at the University of Illinois (funded by the National Science Foundation
under PACI) now supports and mainta@PRNGs part of its high-performance software activities. Most of the high-performance
computing vendors have expressed considerable interest irapsingzas a common, parallel pseudorandom number generation
library on their machines. Thug?RNGtself could become alasting contribution to mathematical software for parallel Monte Carlo
computations.

The SPRNdibrary includes the following:

Several qualitatively distinct, well-tested scalable RNGs

Initialization without interprocessor communication

Reproducibility through use of the parameters to index the streams
Reproducibility controlled by a single “global” seed

Minimization of interprocessor correlation with the included generators
A uniform C, C++, Fortran, and MPI interface

Extensibility

An integrated test suite, including physical tests

The decision to use parameterized generators was based on work of the author in parameterizing several common RNGs
provide full-period streams of random numbers for each unique parameter value. These generators then became the core of thc
currently available ilsSPRNG

m Additive lagged-Fibonacck = x_ + x__ (mod 2))

® Multiplicative lagged-Fibonacckn=x  x x __ (mod )

® Prime modulus multiplicative con-gruential:=ax _, (mod m)

m Power-of-two modulus linear con-gruentiad:=ax _, + b (mod )

m Combined multiple recursive:z = x +y x 2% wherex is a linear congruential generator moduf andy_ satisfies
y, = 107374189 , + 104489,  (mod 2147483647)

Each of these generators can be thought of as being parameterized by a simple integer-valued(flirvetieref(i) gives the
appropriate parameter for tita random number stream. Given this uniformity, the random number streams are mapped onto the
binary tree through the canonical enumeration via the indéms allows us to take the parameterization and use it to produce new
streams from existing streams, without the need for interprocessor communication. We accomplish this by allowing a given strean
access only to the streams associated with the subtree rooted at the given stream. This technique can be used for the autom:
management of static and dynamic creation of streams, and it prohibits reuse of streams. To permit a calculation to ible redone w
different random numbers, we can apply a mixing funcpgf), so that we map the streams onto the binary tree via thep{@ex
instead of just. The functiorp([Jis a permutation parameterized by the global se&dfferent values af give different permuta-
tions and thus map the streams onto the binary tree in different yet distinct ways.

The SPRNGlibrary was designed to be both flexible and as easy to use as possible. The Monte Carlo community is very
conservative, and many groups use RNGs that have been handed down for generations (sometimes all the way back to Lehmer
Metropolis!). Thus, in addition to developing the library in collaboration with a member of the Monte Carlo community, we made
the library capable of extension to include user-supplied generators. Users can add their own RNGs by rewriting two dummy
routines and recompiling the library; they then have access to their own generators wsRiRNi@arallel infrastructure. This
is a powerful capability.

Our implementation experience has shown that any implementation must be thoroughly tested, empirically, to prevent
unforeseen correlations within streams. We found such unanticipated correlations ourselves in very carefully thought out
implementations. ThussPRNGincludes a comprehensive testing suite for the validation of new generators. Together, the
extensibility and the testing suite aid users who want to implement their own generators in parallel and, at the sanvédéme, pro
library developers with a powerful rapid prototyping tool.

Through the default generatoiSPRNGIs a tool for parallel pseudorandom number generation. The results obtained are
reproducible, and the library provides a simple way to run on distributed-memory parallel machines, with popular languages anc
parallel paradigms, and also supports distribution on heterogeneous collections of machines. The deve&opeéss ,cd
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distributed-computing tool, planto in- int*init_sprng(intstreamnum, intnstreams, intseed, int param)

corporateSPRNGs0 thatCondor will SPRNG_POINTER init_sprng(integer streamnum, integer nstreams,

be a comprehensive tool for Monte integer seed, integer param)

Carlo calculations on distributed het-

erogeneous collections of machines m init_sprng  initializes random numbetreams .

[7]. When a different RNG is desired, ®m streamnum is the stream number; typically the process number, it must He in

e.g., when a particular RNG is thoughgstreams-1] . ' S

to give spurious results in a given ap- ® nstreams is the number of different streams that will be initialized across all the processes.

plication, a user can substitute a quali- H seed |s_theseedo the generators. The seed is not the starting state of the sequence; rather, it

tatively different generator for the's an encoding of the starting state. Use of the same seed for all the streams is acceptable (and
recommended).

original by merely relinking the user =" " oidcts the appropriate parameters, e.g., the multiplier for an LCG or the lag for a
program Wlth_SPRNG Flnal_ly, NEW  |5gged-Fibonacci generator.
RNGs can be incorporated irtS88RNG  'w init_sprg  returns thdD of the stream.

with little effort required beyond cod-
ing the generation and initialization
routines and recompiling the library.

Using SPRNG Some Examples
Extensive on-line documentation is
available on thesPRNGIlibrary’s Web
pages. The curious reader is referred to
these pages for a detailed tutorial 1
and examples. In this article we present
the bare minimum required for use
of SPRNGvia the “simple” interface.
The definition of thenit_sprng rou-
tine (the routine called to ini-
tialize the vamus random number streams
for parallel use), along with
a description of all the inputs required to
call init_sprng , appears at the top of
this page. The simple C code shown at
right illustrates the initialization of sev-
eral SPRNGRNGs in parallel with MPI,
demonstrating how easy it is to replace

existing RNGs with those frolBPRNG

* A distinct stream is created on each process,
* then prints a few random numbers.
*/

#include <stdio.h>
#include <mpi.h>  /* MPI header file */

#define SIMPLE_SPRNG /* simple interface */
#define USE_MPI /*use MPItofind number of processes */
#include “sprng.h” /* SPRNG header file */

#define SEED 985456376

main( int argc , char *argv[] )

Conclusions and Open Problems {
Although care has been taken in con-
structing generators forthe SPRNG pack-
age, we realize that there is no such thing
as a PRNG that behaves flawlessly for
every application. This is even more true
when scalable platforms for Monte Carlo
are considered. The underlying recur-
sions used for PRNGs are simple and thus
inevitably have regular structures. This

deterministic regularity permits analysis . o
of the sequences and is at the same time init_sprng(SEED , SPRNG_DEFAULT); /*initialize stream*/

the Achilles heel of PRNGs printf(“Process %d, information about stream:\n” , myid);

double rn;
int i, myid;

/* MPl initialization calls */

MPI_Init( &argc , &argv ); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myid); /*get process ID*/

/* SPRNG initialization */

Any large Monte Carlo calculation ~ P1ntspmg();
must be viewed with suspicion—an un-
fortunate interplay between the applica-
tion and a PRNG can produce spurious
results. The only way to prevent this is to
treat each new Monte Carlo-derived re-
sult as an experiment that must be con-
trolled. The tools required to control prob-
lems with a PRNG include the ability to
use another PRNG in the same calcula-
tion. In addition, it must be possible to

[* print random numbers */
for (i=0;i<3;i++) {

m =sprng(); /* generate double precision random number */
printf(“Process %d, random number %d: %.14\n", myid, i+1, rn;

MPI_Finalize(); /* Terminate MPI */




develop and use entirely new PRNGs. These capabilities, along with parallel and serial tests of randomness [2], are componen
that make th&PRNQ®@ackage a useful tool for parallel Monte Carlo.
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