
1

from SIAM News, Volume 32, Number 5

Parallel Pseudorandom
Number Generation
By Michael Mascagni

Monte Carlo applications are widely perceived as embarrassingly parallel. (Monte Carlo enthusiasts prefer the term “naturally
parallel” to the somewhat derogatory “embarrassingly parallel” coined by computer scientists.) The truth of this notion depends,
to a large extent, on the quality of the parallel random number generators used. It is widely assumed that with N processors executing

N copies of a Monte Carlo calculation, the pooled result will achieve a variance N times smaller than a
single instance of the calculation in the same amount of time. This will be true only if the results in each
processor are statistically independent, which will be true, in turn, only if the streams of random
numbers generated in each processor are independent.

In this article, we outline some methods for parallel pseudorandom number generation. We consider
parameterized versions of three random number generators. The exact meaning of parameterization
depends on the type of parallel pseudorandom number generator (PPRNG) under discussion. (We
distinguish parameterization from splitting methods. Splitting is the production of parallel streams of
pseudorandom numbers by taking substreams from a single, long-period PRNG.) In general, we seek
to determine a parameter in the underlying recursion of the PRNG that can be varied. Each valid value
of this parameter will lead to a recursion that produces a unique, full-period stream of pseudorandom

numbers. We then discuss efficient means for specifying valid parameter values and consider these choices in terms of the quality
of the pseudorandom numbers produced.

Linear Congruential Generators

The most commonly used generator of pseudorandom numbers is the linear congruential generator (LCG). The LCG was first
proposed for use by Lehmer (circa 1949) and is referred to as the Lehmer generator in the early literature. The linear recursion
underlying LCGs is:

 xn = axn – 1 + b (mod m) (1)

When the multiplier, a, additive constant, b, and modulus, m, are chosen appropriately, we obtain a purely periodic sequence with
period as long as Per(xn) = 2k when m is a power of two and Per(xn) = m – 1 when m is prime. It is well known that s-tuples made
up from LCGs lie on lattices composed of a family of parallel hyperplanes [8]. The xn’s in (1) are integer residues modulo m. A
uniform pseudorandom number in [0,1] is produced via zn = xn/m, and the initial value of the LCG, x0, is often called the seed.

The most important parameter of an LCG is the modulus m. Its size constrains the period, and for implementation reasons it is
always chosen to be either prime or a power of two. The parameterization method used is based on the type of modulus that has
been chosen. When m is prime, a method based on use of the multiplier a as the parameter has been proposed. This choice, the
rationale for which is outlined in [12], leads to several interesting computational problems.

To parameterize a when m is prime, we must first determine the family of permissible a’s. When m is prime and we want to obtain
the maximal period (of length m – 1 in this case), a condition on a is that it be a primitive element modulo m [4]. An integer a is
primitive modulo m if the set of integers {ai (mod m) | 1 ≤ i ≤ m – 1} equals the set {1 ≤ i ≤ m – 1}. Given primitivity, we can
make use of the following fact: If a and α are primitive elements modulo m, then α = ai (mod m) for some i relatively prime to φ(m).
When m is prime, φ(m) = m – 1. Thus, a single reference primitive element a and an explicit enumeration of the integers relatively
prime to m – 1 furnish an explicit parameterization for the jth primitive element, aj, as a aj

j= l (mod m), where l j is the jth integer
relatively prime to m – 1. Given an explicit factorization of m – 1, efficient algorithms for computing l j can be found [12].

Two important questions remain open: (1) Overall, is it more efficient to choose m to be amenable to fast modular multiplication
or to fast calculation of the jth integer relatively prime to m – 1? (2) Does the good inter-stream correlation mentioned in [12] also
ensure good intra-stream independence via the spectral test? The first question is of practical interest with respect to performance.
For the second, however, a negative answer would mean that such techniques are less attractive for parallel pseudorandom number
generation.

An alternative way to use LCGs to make a PPRNG is to parameterize the additive constant in (1) when the modulus is a power
of two, i.e., when m = 2k for some integer k > 1. This technique was first proposed in [17] as a way to provide a PPRNG for the
NYU Ultra-computer. The technique has some interesting advantages over parameterization of the multiplier. Use of power-of-
two modulus LCGs also has considerable disadvantages, however.

The parameterization chooses a set of additive constants {bj} that are pair-wise relatively prime, i.e., gcd(bi, bj) = 1 when i ≠ j. A
prudent choice is to let bj be the jth prime. This ensures the pairwise relative primality and also provides the largest set of such

APPLICATIONS ON
A D VA N C E D
A R C H I T E C T U R E
C O M P U T E R S
Greg Astfalk, Editor

2

residues. With this choice, certain favorable inter-stream properties can be theoretically derived from the spectral test [17].
However, the difficult problem of computing the jth prime arises. This aspect of the generator is not discussed in detail in [17], in
part because the authors expect to provide only a small number of PRNGs. When the number of PRNGs to be provided with this
method is large, fast algorithms can be used for the computation of π(x), the number of primes less than x [3].This is the inverse
of the desired function, so we designate π–1(j) as the jth prime. The details of such an implementation need to be specified, but a
related method for computing the jth integer relatively prime to a given set of integers is given in [12]. It is believed that the issues
for computing π–1(j) are similar.

One important advantage of this parameterization is an inter-stream correlation measure based on the spectral test suggesting
that there will be good inter-stream independence. Given that the spectral test for LCGs measures the quality of the multiplier, this
sort of result is to be expected. A disadvantage of this parameterization is the need to compute π–1(j) if a large number of streams
are to be provided. Regardless of the efficiency of the implementation, this is known to be a difficult computation with respect to
computational complexity.

Finally, one of the biggest disadvantages of a power-of-two modulus is that the least significant bits of the integers produced by
these LCGs have extremely short periods. If {xn} are the residues of the LCG modulo 2k, with properly chosen parameters, {xn}
will have period 2k. However, {xn (mod 2j)} will have period 2j for all integers 0 <j < k [4]. In particular, the least significant
bit of the LCG will alternate between 0 and 1. This is such a major shortcoming that it motivated us to consider param-eterizations
of prime modulus LCGs, as discussed earlier.

Shift-register Generators

Shift-register generators (SRGs) are linear recursions modulo 2 [5] of the form:

x a xn k i
i

k

n i+
=

−

+= ()∑
0

1

2mod (2)

where the ai’s are either 0 or 1. An alternative way to describe this recursion is to specify the kth degree binary characteristic
polynomial [6]:

f x x a xk
i

i

k
i() = + ()

=

−

∑
0

1

2mod (3)

If we want to obtain the maximal period of 2k – 1, a sufficient condition is that f(x) be a primitive kth degree polynomial modulo
2. If only a few of the ai’s are 1, then (2) is very cheap to evaluate. For this reason, known primitive trinomials are often used to
specify SRG recursions. This leads to very efficient, two-term recursions.

There are two ways to make pseudorandom integers from the bits produced by (2). The first, called the digital multi-step method,
takes successive bits from (2) to form an integer of the desired length. With the digital multistep method, n iterations of (2) are
required to produce a new n-bit pseudorandom integer. The second method, called the generalized feedback SRG, creates a new
n-bit pseudorandom integer for every iteration of (2). This is done by constructing the n-bit word from xn+k and n – 1 other bits from
the k bits of the SRG state. Although these two methods seem different, they are closely related and theoretical results for one always
hold for the other.

One technique for parameterizing SRGs is analogous to the LCG parameterization discussed in the preceding section. There we
took the object that made the LCG full-period, the primitive root multiplier, and found a representation for all the multipliers.
Analogously, we identify the primitive polynomial in the SRG as the object to parameterize. We begin with a known primitive
polynomial of degree k, p(x). It is known that only certain decimations of the output of a maximal-period SRG are themselves
maximal and unique with respect to cyclic reordering [6]. We seek to identify those decimations.

The number of decimations that are both maximal-period and unique when p(x) is primitive modulo 2 and k is a Mersenne
exponent is 2k – 2/k. If a is a primitive root modulo the prime 2k – 1, then the residues ai (mod 2k – 1) for i = 1 to 2k – 2/k form a
set of all the unique, maximal-period decimations. Thus, we have a parameterization of the maximal-period sequences of length
2k – 1 arising from primitive degree-k binary polynomials through decimations.

The entire parameterization proceeds as follows: Assume that the kth stream is required, compute dk ≡ ak (mod 2k – 1), and take
the dkth decimation of the reference sequence produced by the reference primitive polynomial p(x). This can be done quickly with
polynomial algebra. Given a decimation of length 2k + 1, this can be used as input to the Berlekamp–Massey algorithm to recover
the primitive polynomial corresponding to this decimation. The Berlekamp–Massey algorithm finds the minimal polynomial that
generates a given sequence [15] in time linear in k.

This parameterization is relatively efficient when the binary polynomial algebra is implemented correctly. Use of such a
parameterization has one major drawback: Although the reference primitive polynomial p(x) may be sparse, the new polynomials
are not necessarily sparse. (A polynomial is considered sparse if most of the ai’s in (2) are zero.) The cost of stepping (2) once is
proportional to the number of non-zero ai’s in (2). We can thus significantly increase the bit-operational complexity of an SRG
in this manner.

The similarity of the parameterization methods for prime modulus LCGs and SRGs is no accident. Both are based on maximal-

3

period linear recursions over a finite field. Thus, the discrepancy and exponential sum results for the two types of generators are
similar [16].

Lagged-Fibonacci Generators

The generators discussed in the preceding sections can be parallelized by variation of a parameter in the underlying recursion.
The additive lagged-Fibonacci generator (ALFG) can be parameterized through its initial values. The ALFG can be written as:

xn = xn – j + xn – k (mod 2m), j < k (4)

In recent years the ALFG has become a popular generator for serial and scalable parallel machines. In fact, the ALFG with j =
5, k = 17, and m = 32 was the standard PPRNG in the Thinking Machines Connection Machine Scientific Subroutine Library. This
generator has become popular for a variety of reasons: It is easy to implement, computation of (4) is cheap, and it does well on
standard statistical tests [9].

An important property of the ALFG is that the maximal period is (2k– 1) 2m – 1. This occurs in very specific circumstances [1,
10], from which we can infer that this generator has 2(k – 1) × (m – 1) different full-period cycles [13]. This means that the state space
of the ALFG is toroidal, with (4) providing the algorithm for movement in one of the torus dimensions. It is clear that finding the
algorithm for movement in the other dimension is the basis of a very interesting parameterization. Since (4) tells us how to cycle
over the full period of the ALFG, we must find a seed that is not in a given full-period cycle in order to move in the second dimension.
The key is to find an algorithm for computing seeds in any given full-period cycle.

A very elegant algorithm for movement in this second dimension is based on a simple enumeration, as follows: We can prove
that the initial seed, {x0, x1 , . . . xk – 1}, can be bit-wise initialized with the following template (m.s.b. is the most significant bit and
l.s.b. the least significant bit):

(5)

Each square is a bit location to be assigned. Each unique assignment gives a seed in a provably distinct full-period cycle [13].
The least significant bits, b0, are specified to be a fixed, non-zero pattern. If we allow an O (k2) precomputation to find a particular
least-significant-bit pattern, the template is particularly simple:

(6)

The elegance of this explicit parameterization leads us to ask about the exponential sum correlations between these parameterized
sequences. It is known that certain sequences are more correlated than others as a function of the similarity in the least significant
bits in the template for parameterization[14]. However, it is easy to avoid all but the most uncorrelated pairs in a computation. In
this case, there is extensive empirical evidence that the full-period exponential sum correlation between streams is O (((2k – 1)2m

– 1)1/2), the square root of the full period. This is essentially optimal. Unfortunately, there is no analytic proof of this result, and improvement
of the best known analytic result [14] is an important open problem in the theory of ALFGs.

Another advantage of the ALFG is that it can be implemented directly with floating-point numbers, thereby avoiding the constant
conversion from integer to floating-point that accompanies the use of other generators. When only floating-point numbers are
required in the Monte Carlo computation, a distinct improvement in speed is achieved. To ensure that the parallel streams remain
unique, however, care must be taken to maintain the identity of the corresponding integer recursion when the floating-point ALFG
is used in parallel.

4

The multiplicative lagged-Fibonacci generator (MLFG) is an interesting cousin of the ALFG. It is defined by:

xn = xn – j × xn – k (mod 2m), j < k (7)

Whereas the MLFG has a maximal period of (2k – 1) 2m – 3, a quarter of the length of the corresponding ALFG period [10], the
MLFG has empirical properties considered superior to those of the ALFG [9]. Of interest for parallel computing is the existence
of a parameterization analogous to that of the ALFG for the MLFG [11].

SPRNG

The SPRNG library (http://www.ncsa.uiuc.edu/Apps/SPRNG) is designed to use parameterized pseudorandom number genera-
tors to provide random number streams to parallel processes. SPRNG is currently in its first full release (version 1.0).

The National Center for Supercomputing Applications at the University of Illinois (funded by the National Science Foundation
under PACI) now supports and maintains SPRNG as part of its high-performance software activities. Most of the high-performance
computing vendors have expressed considerable interest in using SPRNG as a common, parallel pseudorandom number generation
library on their machines. Thus, SPRNG itself could become a lasting contribution to mathematical software for parallel Monte Carlo
computations.

The SPRNG library includes the following:

n Several qualitatively distinct, well-tested scalable RNGs
n Initialization without interprocessor communication
n Reproducibility through use of the parameters to index the streams
n Reproducibility controlled by a single “global” seed
n Minimization of interprocessor correlation with the included generators
n A uniform C, C++, Fortran, and MPI interface
n Extensibility
n An integrated test suite, including physical tests

The decision to use parameterized generators was based on work of the author in parameterizing several common RNGs to
provide full-period streams of random numbers for each unique parameter value. These generators then became the core of those
currently available in SPRNG:

n Additive lagged-Fibonacci: x
n

= x
n–r

+ x
n–s

 (mod 2m)
n Multiplicative lagged-Fibonacci: x

n
n = x

n–r
 × x

n–s
(mod 2m)

n Prime modulus multiplicative con-gruential: x
n
 = ax

n–1
(mod m)

n Power-of-two modulus linear con-gruential: x
n
 = ax

n–1
+ b (mod 2m)

n Combined multiple recursive: z
n
 = x

n
+ y

n
 × 232, where x

n
 is a linear congruential generator modulo 264 and y

n
 satisfies

y
n

= 107374182y
n–1

+ 104480y
n–5

 (mod 2147483647)

Each of these generators can be thought of as being parameterized by a simple integer-valued function, f(⋅), where f(i) gives the
appropriate parameter for the ith random number stream. Given this uniformity, the random number streams are mapped onto the
binary tree through the canonical enumeration via the index i. This allows us to take the parameterization and use it to produce new
streams from existing streams, without the need for interprocessor communication. We accomplish this by allowing a given stream
access only to the streams associated with the subtree rooted at the given stream. This technique can be used for the automatic
management of static and dynamic creation of streams, and it prohibits reuse of streams. To permit a calculation to be redone with
different random numbers, we can apply a mixing function, ps(⋅), so that we map the streams onto the binary tree via the index ps(i)
instead of just i. The function ps(⋅) is a permutation parameterized by the global seed, s. Different values of s give different permuta-
tions and thus map the streams onto the binary tree in different yet distinct ways.

The SPRNG library was designed to be both flexible and as easy to use as possible. The Monte Carlo community is very
conservative, and many groups use RNGs that have been handed down for generations (sometimes all the way back to Lehmer or
Metropolis!). Thus, in addition to developing the library in collaboration with a member of the Monte Carlo community, we made
the library capable of extension to include user-supplied generators. Users can add their own RNGs by rewriting two dummy
routines and recompiling the library; they then have access to their own generators within the SPRNG parallel infrastructure. This
is a powerful capability.

Our implementation experience has shown that any implementation must be thoroughly tested, empirically, to prevent
unforeseen correlations within streams. We found such unanticipated correlations ourselves in very carefully thought out
implementations. Thus, SPRNG includes a comprehensive testing suite for the validation of new generators. Together, the
extensibility and the testing suite aid users who want to implement their own generators in parallel and, at the same time, provide
library developers with a powerful rapid prototyping tool.

Through the default generators, SPRNG is a tool for parallel pseudorandom number generation. The results obtained are
reproducible, and the library provides a simple way to run on distributed-memory parallel machines, with popular languages and
parallel paradigms, and also supports distribution on heterogeneous collections of machines. The developers of Condor , a

5

distributed-computing tool, plan to in-
corporate SPRNG so that Condor will
be a comprehensive tool for Monte
Carlo calculations on distributed het-
erogeneous collections of machines
[7]. When a different RNG is desired,
e.g., when a particular RNG is thought
to give spurious results in a given ap-
plication, a user can substitute a quali-
tatively different generator for the
original by merely relinking the user
program with SPRNG. Finally, new
RNGs can be incorporated into SPRNG
with little effort required beyond cod-
ing the generation and initialization
routines and recompiling the library.

Using SPRNG: Some Examples
Extensive on-line documentation is

available on the SPRNG library’s Web
pages. The curious reader is referred to
these pages for a detailed tutorial
and examples. In this article we present
the bare minimum required for use
of SPRNG via the “simple” interface.
The definition of the init_sprng rou-
tine (the routine called to ini-
tialize the various random number streams
for parallel use), along with
a description of all the inputs required to
call init_sprng , appears at the top of
this page. The simple C code shown at
right illustrates the initialization of sev-
eral SPRNG RNGs in parallel with MPI,
demonstrating how easy it is to replace
existing RNGs with those from SPRNG.

Conclusions and Open Problems
Although care has been taken in con-

structing generators for the SPRNG pack-
age, we realize that there is no such thing
as a PRNG that behaves flawlessly for
every application. This is even more true
when scalable platforms for Monte Carlo
are considered. The underlying recur-
sions used for PRNGs are simple and thus
inevitably have regular structures. This
deterministic regularity permits analysis
of the sequences and is at the same time
the Achilles heel of PRNGs.

Any large Monte Carlo calculation
must be viewed with suspicion—an un-
fortunate interplay between the applica-
tion and a PRNG can produce spurious
results. The only way to prevent this is to
treat each new Monte Carlo-derived re-
sult as an experiment that must be con-
trolled. The tools required to control prob-
lems with a PRNG include the ability to
use another PRNG in the same calcula-
tion. In addition, it must be possible to

int *init_sprng(int streamnum, int nstreams, int seed, int param)
 SPRNG_POINTER init_sprng(integer streamnum, integer nstreams,
 integer seed, integer param)

n init_sprng initializes random number streams .
n streamnum is the stream number; typically the process number, it must be in [0

nstreams-1] .
n nstreams is the number of different streams that will be initialized across all the processes.
n seed is the seed to the generators. The seed is not the starting state of the sequence; rather, it

is an encoding of the starting state. Use of the same seed for all the streams is acceptable (and
recommended).
n param selects the appropriate parameters, e.g., the multiplier for an LCG or the lag for a

lagged-Fibonacci generator.
n init_sprng returns the ID of the stream.

/*
 * A distinct stream is created on each process,
 * then prints a few random numbers.
 */

#include <stdio.h>
#include <mpi.h> /* MPI header file */

#define SIMPLE_SPRNG /* simple interface */
#define USE_MPI /* use MPI to find number of processes */
#include “sprng.h” /* SPRNG header file */

#define SEED 985456376

main(int argc , char *argv[])
{
 double rn;
 int i, myid;

/* MPI initialization calls */

 MPI_Init(&argc , &argv); /* Initialize MPI */
 MPI_Comm_rank(MPI_COMM_WORLD , &myid); /* get process ID*/

/* SPRNG initialization */

 init_sprng(SEED , SPRNG_DEFAULT); /* initialize stream */
 printf(“Process %d, information about stream:\n” , myid);
 print_sprng();

/* print random numbers */

 for (i=0 ; i<3 ; i++) {
 rn = sprng(); /* generate double precision random number */
 printf(“Process %d, random number %d: %.14f\n”, myid, i+1, rn;
 }

 MPI_Finalize(); /* Terminate MPI */
}

6

develop and use entirely new PRNGs. These capabilities, along with parallel and serial tests of randomness [2], are components
that make the SPRNG package a useful tool for parallel Monte Carlo.

Acknowledgments

The SPRNG library was developed with funding from DARPA, Contract Number DABT63–95–C–0123 for ITO: Scalable Systems and
Software, entitled A Scalable Pseudorandom Number Generation Library for Parallel Monte Carlo Computations. This project was a
collaboration between David Ceperley, Lubos Mitas, Faisal Saied, and Ashok Srinivasan of the University of Illinois at Urbana-Champaign and
the author’s group at the University of Southern Mississippi. The author also acknowledges the support and collaboration of Steven Cuccaro,
Daniel Pryor, and M.L. Robinson at the Center for Computing Sciences.

References
[1] R.P. Brent, On the periods of generalized Fibonacci recurrences, Math. Comput., 63 (1994), 389–401.
[2] S.A. Cuccaro, M. Mascagni, and D.V. Pryor, Techniques for testing the quality of parallel pseudorandom number generators, Proc.

Seventh SIAM Conf. Parallel Processing for Sci. Comp., SIAM, Philadelphia, 1985, 279–284.
[3] M. Deleglise and J. Rivat, Computing π(x): The Meissel, Lehmer, Lagarias, Miller, Odlyzko method, Math. Comput., 65 (1996), 235–245.
[4] D.E. Knuth, The Art of Computer Programming: Volume 2, Seminumerical Algorithms, Third Edition, Addison–Wesley, Reading, MA,

1998.
[5] T.G. Lewis and W.H. Payne, Generalized feedback shift register pseudorandom number algorithms, J. ACM, 20 (1973), 456–468.
[6] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, London, 1986.
[7] M. Litzkow, M. Livny, and M.W. Mutka, Condor—A hunter of idle workstations, Proc. 8th Int. Conf. Dist. Comp. Sys., June 1988, 104–

111.
[8] G. Marsaglia, Random numbers fall mainly in the planes, Proc. Natl. Acad. Sci., USA, 62 (1968), 25–28.
[9] G. Marsaglia, A current view of random number generators, Comp. Sci. Stat., Proc. XVIth Sym. Interface, 1985, 3–10.
[10] G. Marsaglia and L.-H. Tsay, Matrices and the structure of random number sequences, Lin. Alg. Appl., 67 (1985), 147–156.
[11] M. Mascagni, A parallel non-linear Fibonacci pseudorandom number generator, abstract, 45th SIAM Anniversary Meeting, 1997.
[12] M. Mascagni, Parallel linear congruential generators with prime moduli, Par. Comp., 24 (1998), 923–936; IMA Preprint #1470, 1998.
[13] M. Mascagni, S.A. Cuccaro, D.V. Pryor, and M.L. Robinson, A fast, high-quality, and reproducible lagged-Fibonacci pseudorandom

number generator, J. Comp. Phys., 15 (1995), 211–219.
[14] M. Mascagni, M.L. Robinson, D.V. Pryor, and S.A. Cuccaro, Parallel pseudorandom number generation using additive lagged-

Fibonacci recursions, Springer-Verlag Lecture Notes in Statistics, 106 (1995), 263–277.
[15] J.L. Massey, Shift-register syn-thesis and BCH decoding, IEEE Trans. Inform. Theory, IT–15 (1969), 122–127.
[16] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, SIAM, Philadelphia, 1992.
[17] O.E. Percus and M.H. Kalos, Random number generators for MIMD parallel processors, J. Par. Dist. Comp., 6 (1989), 477–497.

Michael Mascagni (mascagni@cs.fsu.edu) is an associate professor in the Department of Computer Science at Florida State University in Tallahassee.

