from S AM News, Volume 33, Number 9

Pseudo-random Number Generation for
Parallel Monte Carlo—A Splitting Approach

By Roy Wikramaratna

Monte-Carl o simulations are common and inherently well suited to parallel processing, thus requiring random numbersthat are
also generated in parallel. We describe here a splitting approach for parallel random number generation. Various definitions of the
Monte-Carlo method have been given. As one example[1]: “The Monte-Carlo method is defined as representing the sol ution of
a problem as a parameter of a hypothetical population, and using a random seguence of numbers to construct a sample of the
population from which statistical estimates of the parameters can be obtained.” The method has been defined more broadly [2] as
“any technique making use of random numbersto solve aproblem.” A more encompassing description [6] is*anumerical method
based on random sampling.” In this article we take the definition in its most general sense, and it is the random aspect of Monte
Carlo that is our focus.

Monte-Carlo simulation consists of repeating the same basic cal culation alarge number of times with different input dataand
then performing some statistical analysis on the set of results. Input datafor the different “trials’’ are
selected using valuesin prescribed distributions, using a pseudo-random number generator. The basic
APPLICATIONS ON computationtypically involvesasignificant amount of calculation, so that the pseudo-random number
ADVANCED generation itself represents a small fraction of the total computational effort.

In theory, the accuracy of the method improves with the number of trials. In practice, this

ARCHITECTURE improvement isdependent on the quality of the pseudo-random number generator used. The obvious
approach to parallelization—which has led to the description of Monte-Carlo calculations as “inher-

COMPUTERS ently parallel” or “naturally parallel”—involvessimply assigning each trial to any available processor.
Greg Astfalk, Editor Provided that the number of trials is large compared with the number of processors available, this
approach can lead to efficient parallel computation. This is so even when the computational effort
variesfromonetrial to another. When computational speedsalso vary significantly among processors,
adlightly more sophisticated approach to scheduling may be desirable. However, the basic approach

remains the same.

The success of any Monte-Carlo application depends crucially on the quality of the pseudo-random number generatorsused. To
achieve the theoretical convergence rates associated with the method, the pseudo-random number generators must have certain
properties. Both the quality of the generators and the statistical independence of the results cal cul ated on each processor areimportant.

A recent article in SAM News [5] distinguished between two alternative approaches to the parallelization of Monte-Carlo
applications. With thefirst approach, parameterization, afamily of random number generatorsisdefined by arecursion containing
aparameter that can be varied. Each valid value of the parameter |eads to arecursion that produces a unique, full-period stream
of pseudo-random numbersthat can be used on aparticular processor. By using adifferent parameter value on each of P identical
processors, it is possible to undertake Monte-Carlo-type calculations in parallel, with a speedup approaching P. The benefits of
paral-lelization can be realized only when the results calculated for each processor are statistically independent, i.e., when the
streams of random numbers generated on each processor are independent.

As the number of processors increases, additional valid parameters are needed; even if consideration is limited to pairwise
independence of the random number generators, it is necessary to consider P(P + 1)/2 such pairs of generators for an
implementation on P processors. Three different methods for parallel random number generation were considered in [5]: linear
congruential generators, shift-register generators, and | agged-Fibonacci generators. All of these generatorsareamenabletovarious
forms of parameterization.

Thesecond approach, whichwasnot consideredin[5], issplitting. In splitting, the output from asingle random number generator
with along period issplit into anumber of substreams. The substreams are then used either on different processors or for different
trials in the Monte-Carlo calculation. For the splitting approach to be feasible, the underlying generator must satisfy several
conditions:

1. Thegenerator must pass appropriate theoretical and/or empirical tests of randomness. Thisis equivalent to the requirement that would be
placed on each individual generator in a parameterized approach to parallel generation or on asingle generator in serial applications.

2. The period length of the generator must be sufficiently long that all the realizations can be carried out without exhausting the available
sequence. Asaresult, the period length required can be significantly longer for splitting than for the parameterization approach. Inthelatter case
a separate generator is defined for each processor, which consequently supplies only afraction of the total requirement.

3. Anefficient algorithm is required for initializing the random number generator for each subsequence.

4. An efficient algorithmis required for stepping through each subsegquence.

Additionally, suppose that it is possible to establish a bound on the length of the subsequence, t, required for each realization.
Thefirst subsequenceischosen to consist of thefirst t consecutive numbersin the sequence, the second subsequence to consist of
the next t consecutive numbersin the sequence, and so on. If each realization is assigned to the next processor that becomes free,
then it becomes feasible to undertake the identical Monte-Carlo calculation either on a serial machine or on an arbitrary number
of parallel processors. This holds regardless of the relative computational capacity or availability of the different processors.

Although an absolute bound on the number of random variatesrequired in a particular realization is not always possible, it may
be possible to establish an approximate bound that will rarely be exceeded in practice. Under these circumstances, the above
approach can still be used, provided that there is a well-defined way to extend the subsequence in the few cases in which the
approximate bound is exceeded.

This article describes an approach, known as additive congruential random number (ACORN) generators, that is amenable to
parameterization and is also particularly well suited to splitting. The ACORN generators give rise to sequences that approximate
being uniformly distributed in up to k dimensions, for any given value of k. They can be selected to give sequences with period
lengthsin excess of any given number—specifically, in excess of 2*®, for any value of p. Implementation isstraightforward in any
high-level language; if integer arithmetic is used, identical sequences can be generated on any machine. In addition to providing
an extremely efficient way to calculate the next number in the sequence given the current state of the generator, they offer an
efficient algorithm for stepping through the sequencein strides of arbitrary length. Thislatter feature allows efficient initialization
of subsequences for use on different processors. Finally, there is a natural extension to arelated family of generators that can be
used to complete any realization for which the specified subsequence is of insufficient length. This feature is particularly useful
when the number of random variates required for each realization can be bounded only in an approximate sense.

ACORN Generators

The kth-order ACORN generator is defined [9, 10] from an integer modulus M, an integer seed Y,°(0 < Y < M), and an
arbitrary set of k integer initial valuesY,", m = 1,. . ., k, each satisfying 0 < Y," < M, by

Yo=Y’ n=21 D

Y= (Y Y, Jmod M
n=1lm=1..k)

X¥=Y/M n=1 ®3)

If afew simple constraints on theinitial parameter values are satisfied, the numbers X defined by (1)—(3) appro-ximate being
uniformly distributed on the unit interval, in up to k dimensions. The modulus M needsto be alarge integer, and the seed Y and
the modulus should be chosen to be relatively prime. For example, it is convenient to take M = 2% for some small integer p and
to choose Y, to be an odd integer.

Implementation

The ACORN random number generator is extremely simple to implement in any high-level language, requiring fewer than
twenty executablelinesof Fortran. A sampleimplementation, which can be used for val ues of themodulus up to 2% (corresponding
toachoiceof p = 2), isavailable from the author. The implementation is based on [11]. Extension either to larger values of the
modulus or to higher orders is straightforward. Analogous implementations have been made in both C and C++.

Empirical Testing

Extensive empirical testing, including that documented in [9], has demonstrated that the numbers X¥ are uniformly distributed
in the unit interval [0, 1) and satisfy arange of statistical tests of randomness. It has been shown that increasing the order also
improves the randomness. Based on experience, it is recommended that a generator of at least order 10 be used. It has also been
observed that increasing the modul us improves the randomness of the generator; for a practical implementation, a modulus equal
to 2%, for asmall integer vaueof p, appearsto be areasonable choice.

Theoretical Results
Itisshownin[10, 11] that the numbers Y," are of the form:

YY" = @iv&z:‘ ﬁmod M (4)
where
i = (n+m-i-1)!

Thetheoretical analysisin [10] showsthat in fact the kth-order ACORN generator approximates being uniformly distributed in
al dimensions up to k. Thisisin the sense that the j-tuples (X*, XEgve ooy erﬂ) approximate being uniformly distributed in j
dimensionsfor eachj < k.

For contrast, it isworth mentioning the analogous result for the linear congruential generator, which iswidely used as a source
of uniformly distributed random numbers and isone of the generatorsconsideredin[5]. A linear congruential generator isdefined

by:
V, = (aV,, + d)mod M (6)
U, =V, /M @)

where0 < a < Mand0< d <M, and the U, are the desired pseudo-random numbers defined in the unit interval. The special
cased = 0(known also asthemultiplicative congruential generator) wasproposed originally in[4]. Themoregeneral caseof non-
zero d, due independently to [7] and [8], is often called the mixed congruential generator. It can be shown [9] that a linear
congruential generator approximates being uniformly distributed in one dimension, but not in any higher dimensions. In practice,
for alinear con-gruential generator, it is necessary to make avery careful choice of the combination of parametersa, d, and M in
order to ensure a reasonable approximation to uniformity in higher dimensions. The choice of good combinations of parameters
isanontrivial problem that has been very widely studied; it is dealt with at some length in [3].

Periodicity of an ACORN Sequence

It has been shown [9] that the period length of an ACORN sequence with a modulus equal to a power of two will be an integer
multiple of the modulus, provided only that the seed is chosen to be odd. This meansthat the period length of the sequence can be
increased, effectively without limit, simply by increasing the value of the modulus by a suitable factor and then choosing an odd
vauefor the seed. Asdiscussed el sewherein thisarticle, extension of the ACORN algorithm to modulus values of 2%, or even 2'%,
is straightforward.

Thisresult contrasts with the case of the linear congruential generators, where the period length can never exceed the modulus.
Furthermore, increasing the modulusfor alinear congruential generator isanontrivial exercise. Thisisaconsequence of thetime-
consuming processof identifying appropriate new valuesof the parametersaand d (in (6)) inorder to ensurereasonabledistribution
propertiesin higher dimensions. Implementation of alinear congruential generator also becomes progressively more complicated
with increasing moduli.

Arbitrary-length Strides Through an ACORN Sequence
It ispossible to rewrite (4) as

m al i mfiD
Yiin = ﬁZYjWn Emod M (8)
where

W =(zm) modM 9)

By calculating the numbers W™ for agivenvalueof n = s(theinitidization step), it becomes possibleto cal cul ate strides of
an arbitrary length sthrough an ACORN sequence (the stride step) by making use of (8), provided only that it is possible to carry
out both multiplication and addition modulo M.

For theinitialization step, an obviousway to calculate W™ for any given nistoinitialize an mth-order ACORN generator with
aseed equal to oneand all initial valueszero and apply (1) and (2) mtimes; inthiscase, the W™ areprecisely the Y™ . Although
the method works well for small or moderate values of n, it becomes somewhat inefficient as n becomes larger, requiring atime
approximately equal ton callstothe ACORN algorithm. For large nit becomesmoreefficienttogpply anagorithmthat takes advantage
of the fact that

m . . D
W = 5 W Cmaa (10)

Thisis equivalent to taking a stride step of length j through an ACORN sequence initialized with aseed W’ and initial values
W,i = 1,. . ., m Thestride algorithm has been implemented for amodulus of 2. Care must be taken in order to perform both
the integer addition and the integer multiplication modulo 2%°, required in the stride step, while avoiding overflow. The extension
of this stride algorithm to arbitrary moduli is straightforward in theory, although the details of the implementation become
somewhat more complicated than for the ACORN algorithm itself.

Extension of Subsequences

The stride length s selected should ideally be at |east as large as the maximum number of variates that will be required in any
singlerealization. If itisnot possibleto establish an absol ute bound on the number of variatesrequired, then the stridelength should

3

be large enough to cope with the majority of cases. In the relatively rare event that the specified stride length is insufficient, we
need to extend the subsequencein away that avoidsreuse of theinitial part of the next subsequence. It turnsout that themost natural
and straightforward approach isto simply reduce the order of the sequence by one and continue using the ACORN algorithm with
reduced order. The sequence actually used in this case would then consist of thenumbers XX, XX,, X¥,o.s XE5, XKL,

. . ..Intheexceptional event that morethan 2svariateswererequired for asinglerealization, the order could onceagain bereduced
and the sequence continued as before. This approach can be adopted in either aseria or a parallel implementation.

Computational Performance

The computational performance of the ACORN algorithm is comparable with that of alinear congruential generator that has a
similar period length. Owing to the simplicity of the algorithm, it isfeasible to improve its computational speed. One approachis
in-line coding; another isto modify the implementation by tuning it for specific hardware.

Itisconsidered unlikely that the generation of the random numberswill consume morethan asmall portion of thetotal execution
time in a Monte-Carlo calculation. Thus, the benefits of extensive code modificationsto ACORN are likely to be marginal. The
time taken to generate a single random variate has been seen to be proportional to the order k of the ACORN generator. For an
implementation with a modulus M = 2°®, the time taken to generate each random variate is proportional to p.

The stride algorithm can be coded (for M = 2%°) so that the time taken for a stride of arbitrary length is of the order of several
hundred callsto the ACORN generator. When the stride length exceeds afew thousand random variates, considerable savings can
be achieved by parallelization of the code.

A similar approach can beadopted whenthestridelengthisshorter, butin such casesit may bemoreefficient to cal culateanumber
of realizations, say 10 or 100, at atime on each processor, with astride length that has been increased by a corresponding amount.
For practical problems the time spent in generating the random variates generally represents less than, say, 10% of the total
computational effort. When the total number of realizations is large compared with the number of processors P, the speedup
obtained can approach the absolute theoretical maximum of P.

By adopting this approach, in which a separate pseudo-random subsequence is defined for each realization, it is possible to
perform the computationsefficiently in parallel, evenif the speed or availability of processorsvarieswidely. Theonly requirement
isthat it should be possible to schedule each realization to run on the next processor that becomes available.

Advantages of the ACORN Approach

Themethod described herefor generating uniformly distributed pseudo-random numbersis convenient to use asan of f-the-shelf
generator and offers some additional benefits when compared with the more commonly used methods.
The major advantages of the ACORN approach to random number generation are:

1. Itisextremely simpleto codefor arbitrary modulusand order, and can beimplemented in virtually any high-level programming language.
It can be coded as asubroutine or function, or, for maximum computational efficiency, it can be coded in-line. Implementation asauser-callable
function gives users an extremely straightforward way to access the algorithm from their own software.

2. Therearevery simplerulesfor selecting agood generator; all generators sel ected by theserules appear to give comparableresultsfor given
moduli and order.

3. By codingthegenerator ininteger arith-metic, it ispossibleto obtain identical sequencesonany machineandwithany program-ming language
(provided that the language will permit integer arithmetic modulo 2%°).

4. If theperiodlengthisfoundtobeinsufficient, itisstraightforwardtoincreasetheperiod simply by increasing themodul us. Theperiodlength
increasesin proportion to the modulus, whilefor large moduli the execution time per random number generated increases only in proportion to
the logarithm (base 2) of the modulus.

5. Increasingtheorder of thegenerator increasestherandomnessof the sequence (inthe sensethat akth-order ACORN generator approximates
being uniformly distributed in up to k dimensions). Thisleadsto asimpleway to test the adequacy of the sequence for the particul ar application:
repetition of thewhole M onte-Carl o simul ation with agenerator of higher order. If theresultsof the simulation arethe same, in astatistical sense,
this suggests that the original generator was good enough. Significantly different results are strong evidence that the original generator was
insufficiently random or that the number of realizations was insufficient. In the latter cases, the cal culation should be repeated with generators
of successively higher order and increasing numbers of realizations until the results of the calculation no longer change significantly.

6. Itispossibleto take strides of arbitrary length through the sequence; the time is equivalent to that required for calculating afew hundred
random numbersfor an arbitrary stridelength. Thisprovidesaway toinitialize many generatorsfor useinaparallel application at relatively small
computational cost. The benefits of thisapproach becomeincreasingly significant when the stridelength increases, because thetimerequired to
compute asingle stride isindependent of the stride length. The a gorithm has been implemented in practice for agenerator with modulus 2%in
both Fortran and C++. The algorithm can be extended to generators with larger moduli of the form 2*® for arbitrary integers p, and it could be
equally well implemented in other programming languages.

Conclusions

Thisarticle has outlined a possibl e approach to the parallelization of Monte-Carlo cal culations, based on a splitting approach to
the generation of parallel streams of pseudo-random numbers. Some potential advantages of splitting over the aternative of
parameterization have been identified, most notably the fact that the identical set of calculationsis carried out irrespective of the
number of processors used. It is therefore self-evident that if the method converges in a serial implementation, it will
also converge in aparallel implementation.

4

The ACORN generator has been proposed asasuitable pseudo-random number generator for usein conjunctionwiththesplitting
approach. It appearsto satisfy all the requirementsfor a general -purpose uniform random number generator in serial applications.
The potentially unlimited period length, coupled with the ability to calculate strides of any desired length through an ACORN
sequence, also makesit particularly attractivefor usein parallel applications, eading to the prospect of parallel Monte-Carlo-type
calculations that are truly scalable to arbitrary numbers of processors.

The generator has proved amenable to theoretical analysis, leading to results concerning the periodicity and the uniformity of
the resulting sequences. Further theoretical analysis of the algorithm could lead to further improvementsin our understanding of
this approach to pseudo-random number generation.

The algorithms have been successfully coded and tested. Experience to date with the ACORN generator has been very
encouraging. The simplicity of the implementation makes its incorporation into existing applications that require a source of
uniform random numbers straightforward. Current work isaimed toward theidentification of additional real problemsthat will be
suitable for further validating the ACORN generators and for demonstrating the speedup that can be obtained in practice on a
suitable parallel machine.

References

[1] JH. Halton, A retrospective and prospective survey of the Monte-Carlo method, SIAM Rev., 12 (1970), 1-63.

[2] F. James, Monte Carlo Theory and Practice, Rep. Prog. Phys., 43 (1980),1145-11809.

[3] D. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, Addison-Wesley, Reading, Massachusetts, 1981.

[4] D.H. Lehmer, Mathematical methodsinlarge-scal ecomputing units, Proceedingsof the2nd Symposiumon Large-scaleDigital Calculating
Machinery, Cambridge, Massachusetts, 1949, Harvard University Press, Cambridge, Massachusetts, 1951, 141-146.

[5] M. Mascagni, Parallel pseudorandom number generation, SIAM News, 32 (5) June 1999.

[6] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.

[7] A. Rotenburg, A new pseudo-random number generator, J. Assoc. Comput. Mach., 7 (1960), 75-77.

[8] W.E. Thompson, A modified congruence method of generating pseudo-random numbers, Comput J., 1 (1958), 83-86.

[9] R.S. Wikramaratna, ACORN—A new method for gener ating sequencesof uniformly distributed pseudo-randomnumbers, J. Comput. Phys.,
83(1989), 16-31.

[10] R.S. Wikramaratna, Theoretical background for the ACORN random number generator, AEA Petroleum Services Report AEA-APS-
0244, 1992.

[11] R.S. Wikramaratna, Theor etical analysisof the ACORN randomnumber generator, SIAM Conferenceon Applied Probability in Science
and Engineering, New Orleans, Louisiana (unpublished AEA Petroleum Servicesinternal report PRTD (90)R62), 1990.

Roy Wikramar atna (roy.wikramaratna@aeat.co.uk) isatechnical manager with AEA Technology plc, at Winfrithin Dorset, UK. Hisresearch
interests are in mathematical, numerical and computational methods with applicationsin oil reservoir engineering.

