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An Unexpected Union—
Physicsand Fisher I nformation

Physicsfrom Fisher Information: A Unification. By B. Roy Frieden, Cambridge University Press, New York, 1998, 328 pages,

$74.95.

First printed in 1998, and twice reprinted in 1999, the book under review is certainly being
talked about. One suspectsthat the ideas it contains—if not the book itself—will continueto
bediscussed for generationsto come. The exposition beginswith aquotefrom John Archibald
Wheeler to the effect that “ observer participancy givesrise to information, and information
givesriseto physics.”

Theideathat observers are participantsin the events they observe has been around at least
since Heisenberg, but Frieden has exploited it more systemati-
cally than any predecessor. To do so, he formulates a single

unifying principle—that of extremephysical information (EPI)—
BOOK REVIEW from which he derives Maxwell’s equations, the Einstein field
By James Case equations, the Dirac and Klein—-Gordon equations of quantum
mechanics, various laws of statistical physics, and even a few
previously undiscovered laws governing nearly incompressible
turbulent fluid flows. Although EPI isobviously aunification, Frieden doubtsthat it will ever
become the long sought “theory of everything.”

Fisher information is named for itsinventor, R.A. Fisher (1890-1962), a British biostatis-
tician who was among the first to develop and employ—when and as the need arose during
his work in genetics and eugenics—such methods as maximum likelihood estimation, the
analysis of variance, and the design of experiments. He also pointed out that Gregor Mendel
had probably falsified the “data’ in hisfamous pea-plant experiments, which seem too clean
to be the result of any natural process.

Fisher’sideawas that attempts to measure physical quantities—such as the time required
for thewinner of a100-yard dashto reachthefinishline—areinvariably frustrated by “ noise.”
That's why multiple stopwatches are ordinarily employed. Moreover, the quantity of infor-
mation concerning the actual elapsed time contained in such asamplevariesdirectly with the
degree to which the sample measurements cluster about acommon value. Thus, if y, denotes

Ronald A. Fisher, 1929, as sketched
by B. Roy Frieden, author of the
book under review. The sketch,
which appears in Physics from
Fisher Information: A Unification,
was done from a photograph taken
at the time of Fisher's election as a
Fellow of the Royal Society.

the figure (time) recorded on device (stopwatch) n € {1, ..., N} andify, = 6 + x,, where 6 isthe“true” elapsed timeand x,, . . .

, X, represent random errors, then the quantity | of information concerning 6 contained in

the vectory = (y;, . . . , Yy Of

observations should be inversely related to a (scalar) measure of the dispersion of the elements of y about 6.
Accordingly, if p(y|0) isthe N-dimensional probability density function describing the deviation of y from 61 and 6%(y) denotes

an unbiased estimator of 0, the expected error

E[6°(y)-6] =
[[6°(y) -] p(y|6) dy
vanishes almost surely. Meanwhile, the mean square error
& = [[6°(y) - 6] p(y]6) dy

remains positive a.s. Fisher information | = 1(0) is defined to be

I = [[aInp(yle)/ 6] p(yi6) d.
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| satisfies the consequence of the Cauchy—Schwartz inequality known as the Cramer—Rao inequality: 1e? > 1. If N = 1 and

p(yle) = p(y — 90), (3) reduces to



[{{op(y-8)/ a(y-6)] 1 p(y -0} dy =
J{[p 09T o0} ax=1. "

Moreover, the substitution p(x) = [q(X)]? yields the even simpler form
2
I =4f[q'(x)] dx. (5)

Theintroduction of “real probability amplitudes’ g(x) in place of probahility density functionsp(x) simplifiesmany calcul ations
in modern physics. Moreover, sincetheintegrability of p(x) isequivalent to the squareintegrability of g(x), the substitution allows
the analysis to take place in Hilbert space, a change of venue that von Neumann welcomed.

In higher dimensions, the quantity [g'(x)]2 becomesVg-Vqor, after theintroduction of complex probability amplitudes, Vy-Vy™*,
where* denotes complex conjugation. Frieden presents an entire table of Lagrangian functions, gleaned from branches of physics
asdiverse as classical and fluid mechanics, electro- and thermodynamics, quantum theory, and general relativity, in which such
forms appear. This suggests that an approach via Fisher information could furnish at least a partial answer to along unanswered
guestion: Where do Lagrangians come from? Frieden quotes a standard text' to the effect that L agrangians are often plucked out
of thin air, simply because the associated Euler—Lagrange equations are the expected equations of motion. There is, as yet, no
general explanation for the remaining terms present inthe L agrangians of Frieden’ stable. Thesuccessof the EPI techniquerequires
an ability to account for the additional terms that occur in particular branches of physics.

If an experiment isdesigned to estimate several different parameter vectorso, frommeasurementsy, = 6, + X, theappropriate
generalizations of (5) are

| =4[ Ogfl g, dx
=4[y W [ dx, 6)

with either real or complex probability amplitudes. Aslong as N (the largest n) iseven, complex amplitudes can be formed fromred
onesby writingi = (<1)¥2 and vy, = Qg + iy, N = 1,. . ., N/2. Alternatively, the g,'s can be recovered from the y,’s by
separating the real and imaginary parts. The choice between real and complex amplitudesis strictly amatter of convenience. Itis
also con-venient to define q(x) as (q(x), . - ., g.(X)), and y(X) as (y,(X), . . ., Yna(X)).

Itfollowsfrom (4) thatif therandom deviationsxfollow anormal or Bernoulli distribution about 6, then | isinversely proportional
to their variance. If x islogistically distributed, so that p(x) = /(I + exp(—ax)), then | = &/2. Or, if the deviations are 2-vectors
drawn from a bivariate normal distribution in which the components share a common mean 6, a common variance ¢?, and a
covariancep, then| becomes2/c? (1 + p). Theinformation content of two variablesisthus adecreasing function of their degree
of correlation—yet another reason why experimenters should and typically do makethe extraeffort to observeindependent random
variables whenever possible.

The form of the foregoing result leads Frieden to speculate that every experiment may constitute a (zero-sum) game against
nature, in which the experimenter strivesto maximize the Fisher information obtained, while ahostile nature (information demon)
strives to minimize it by introducing unexpected correlations and the like. It seems an interesting—if as yet undevel oped—idea.

Frieden comparesFisher informationwith the Shannon, Boltzmann, and Kullback—Liebler definitionsof entropy, whichlikewise
represent attempts to identify useful scalar measures of information. The comparison is most easily made with Shannon entropy
H=] [In p(X)]p(X)dx, and the discrete approximation

3H=-Ax"Y p(x,)Inp(x,), )

which convergesto H as Ax — 0. 8H differs from the discrete form
81 = =8xY [P(s) = P06 1 P(,) ®
of (4) in that the probabilities p(*) can be reassigned among the carriersx,, . . ., X, without altering the value of (7). Not so (8).

It mattersfor Fisher information I—but not for Shannon information H—whether the likeliest carriers are clustered in space. Itis
this feature that uniquely qualifies| to illuminate Lagrangian physics.

I, like H, can be viewed as ameasure of physical disorder. When H coincideswith traditional Boltzmann entropy Hg, asit often
does, the second law of thermodynamics stipul atesthat dH(t)/dt isnever negative. Andin avariety of other circumstances—among
themthesituationinwhich p(x,t) obeysaFokker—Planck equation of theformp, = [D,(x,t)p], + [D,(X,t)p]l—itturnsoutthat di(t)/
dt isnever positive. It isalso possible to define temperature in terms of Fisher information, and to deduce a version of the perfect
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gas law incorporating that precise definition of temperature, which suggests that it may eventually prove possible to recover all
of thermodynamics from the notion of Fisher information. That, of course, remains to be done.

According to (4) and (5), Fisher information | is a real-valued functional defined on the space of PDFs p(-), or probability
amplitudesq(). In order to derivethelaws of physicsfrom Fisher information, one must find asecond such functional Jthat, when
subtracted from [, furnishes the missing termsin the Lagrangians of Frieden’ stable. In what follows, | will always have theform
(6), while Jwill have aform appropriate to the particular branch of physicsunder consideration. Moreover, | will alwaysrepresent
the information in the data obtained via experiment, while J will represent the information content of the physical situation being
explored. It makessense, therefore, to supposethat | cannever exceed J,todefineanefficiency k = 1/J,andtoobservethat k hasalways
turned out to be either 1 or 1/2 in every situation (branch of physics) that Frieden and his co-workers have explored to date.

An experiment, however sensitive, must always perturb the probability amplitudes q(x) of the system under observation by an
amount 3g. The consequent perturbations 3l and 8J represent quantities of information transferred from nature (the system) to the
experimenter. Frieden proposes

axiom 1: 81 = &J.

Thisisaconservation law concerning the transfers of information possible in certain more or less idealized experiments. Its
validity, according to Frieden, isdemonstrated many timesover in hisbook and isthe key to his EPI approach to the understanding
of physical reality. The axiom can actually be confirmed whenever the “measurement space” has a conjugate space connected to
it by aunitary transformation. Theauthor augmentstheforegoing conceptual axiom with two additional axiomsof amoretechnical
nature.

To consider the effects on the functional K of asmall perturbation 5q(x) of its argument q(x), wewrite K = | — J. Then, by
axiom 1, we can write

0K =d(I =J) =al -aJ =0, (9)
and ask for which probability amplitudes g(x) equation (9) holds. The answer is naturally expressed in terms of Euler—Lagrange
equations from the calculus of variations, a process best understood by seeing it in action.

Consider a(small) particle of massmmoving on aline about itsrest position 6. If the particle is subject to aconservative scalar
potential field V(x), itstotal energy Wis conserved. In terms of complex wave functions y,(X), the expression (6) for | becomes

1 =4NY [op, (xye o (10)

thesummationextendingfromn = 1ton = N/2. Theparticleinquestionwill havenot only aposition x relativetoitsrest position
0, but a momentum p relative to its rest momentum 0. Moreover, in the same way the observationsx, = y, — 6 aredrawn from
probability distributions p,(x) = [q,(X)]? corresponding to complex amplitudes y,(x), observed values n,, would be drawn from
distributions 7,(1) corresponding to complex amplitudes ¢,(1). Again, wewrite d = (¢, - - -, dyp) A Y = Yy, . . ., Wyp)-
Frieden concludes on physical grounds—by analysis of an experimental apparatus that could in theory be used to perform the
reguired measurements—that J[¢] = I[y]. Moreover, the ¢, and y,, are Fourier transforms of one another, so that

W, (x) = (1/+2m)
J @u(exp(-imin)dp (12)
When the resulting expressions for ' (x) are substituted in (10),
| =(aNm?) Wy o (K]* = J. (12)

He then identifies the summation in (12) with the probability distribution n(p) mentioned earlier, so that

J = (4Nin?)E[u?] (13)

Finally, he makes the specifically nonrelativistic approximation that the kinetic energy ‘£ of the particleis pu2 /2m, so that

J = (8Nm/A?)E[£]
(8NMVA? ) E[W - V(x)]

(
(

8NMYA? ) [[W = V(x)]p(x) dx (14)
SNMVA?) [[W=V(x)] S |0, (x| dx.
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Since | and J have now been expressed in terms of the quantitiesy,(X), K = | — J can be combined into asingleintegral of the
formK = [£ (y,/, v, X) dx, and the associated Euler—L agrange equations written:

Y (X)+(2m/A2) W = V(x)]y,(x) =0,
n=1..,N/2, (15)

the time-independent Schrodinger equation. This is the (one-dimensional, nonrelativistic) approximation of the (covariant,
relativistic) Klein—Gordon equation, which can be derived—without approximation—in similar fashion. The unitary nature of the
Fourier transformation played an essential rolein theforegoing derivation, particularly that of equation (12), whereit justified the
conclusion that k = I/J = 1 in the present theory. That means that quantum mechanics is “efficient” in the sense that the
underlying experiments are capable of extracting all available information. Many other physical theories, including electromag-
netic theory and gravitational theory, yieldonly x = 1/2.

Frieden derives aversion of Heis-enberg’ s uncertainty principle from the Cramer—Rao inequality, and contrasts the result with
the standard version obtained via Fourier duality. He remarks that the EPI version is stronger than the standard one in the sense
that it implies the other, whereas the converse is untrue. The standard result applies only to uncertainties that exist before any
measurements are taken, while the EPI version also applies to uncertainties that remain afterward.

Thematerial described hereiscontainedinthebook’ sfirst four chaptersandin Appendix D. Thenext six chapterspresent further
applications of the EPI method. Statistical mechanics, like quantum mechanics, is found to be efficient in the sensethat « = 1/
J = 1, whilemost other theories are only halfway efficient. Frieden finds this unsurprising—quantized versions of most physical
theories, including gravitation and el ectromagnetism, have not been devel oped, although he expectsthat they will befound in due
course. Indeed, he and others are currently applying the EPI method to a study of quantum gravity—in steps analogous to those
that led to the Schrédinger equation presented here—and, in higher dimensions, to the Klein—-Gordon equation. Feynman path
integrals seem to emerge naturally in this ongoing investigation, which seems destined to culminate in avector wave equation of
gravity.

Also under attack are various problems in turbulence. Probability laws of fluid density and velocity have been found for low-
velocity flow in anearly incompressible fluid. The new laws agree well with published data arising from detailed simulations of
such turbulence. Frieden also remarks that the EPI method applies most naturally to the laws of physicsthat are expressed in the
form of (differential) field equations. He seesno reason, however, why the method could not be extended to cover laws concerning
the sources of the fields in question. The exposition ends as it began, quoting John Archibald Wheeler’s words on observer
participation. It seemssafeto conclude, all in all, that the unexpected union between physicsand Fisher information will proveboth
lasting and fruitful.

James Case writes from Baltimore, Maryland.



