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An Unexpected Union—
Physics and Fisher Information
Physics from Fisher Information: A Unification. By B. Roy Frieden, Cambridge University Press, New York, 1998, 328 pages,
$74.95.

First printed in 1998, and twice reprinted in 1999, the book under review is certainly being
talked about. One suspects that the ideas it contains—if not the book itself—will continue to
be discussed for generations to come. The exposition begins with a quote from John Archibald
Wheeler to the effect that “observer participancy gives rise to information, and information
gives rise to physics.”

The idea that observers are participants in the events they observe has been around at least
since Heisenberg, but Frieden has exploited it more systemati-
cally than any predecessor. To do so, he formulates a single
unifying principle—that of extreme physical information (EPI)—
from which he derives Maxwell’s equations, the Einstein field
equations, the Dirac and Klein–Gordon equations of quantum
mechanics, various laws of statistical physics, and even a few
previously undiscovered laws governing nearly incompressible

turbulent fluid flows. Although EPI is obviously a unification, Frieden doubts that it will ever
become the long sought “theory of everything.”

Fisher information is named for its inventor, R.A. Fisher (1890–1962), a British biostatis-
tician who was among the first to develop and employ—when and as the need arose during
his work in genetics and eugenics—such methods as maximum likelihood estimation, the
analysis of variance, and the design of experiments. He also pointed out that Gregor Mendel
had probably falsified the “data” in his famous pea-plant experiments, which seem too clean
to be the result of any natural process.

Fisher’s idea was that attempts to measure physical quantities—such as the time required
for the winner of a 100-yard dash to reach the finish line—are invariably frustrated by “noise.”
That’s why multiple stopwatches are ordinarily employed. Moreover, the quantity of infor-
mation concerning the actual elapsed time contained in such a sample varies directly with the
degree to which the sample measurements cluster about a common value. Thus, if yn denotes
the figure (time) recorded on device (stopwatch) n � {1, ..., N} and if yn = � + xn, where � is the “true” elapsed time and x1, . . .
, xn represent random errors, then the quantity I of information concerning � contained in the vector y = (y1, . . . , yN) of
observations should be inversely related to a (scalar) measure of the dispersion of the elements of y about �.

Accordingly, if p(y|�) is the N-dimensional probability density function describing the deviation of y from �1 and �0(y) denotes
an unbiased estimator of �, the expected error
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vanishes almost surely. Meanwhile, the mean square error

                                                                                                                                                                                                  (2)

remains positive a.s. Fisher information I = I(�) is defined to be

                                                                                                                                             (3)

I satisfies the consequence of the Cauchy–Schwartz inequality known as the Cramer–Rao inequality: Ie2 � 1. If N = 1 and
p(y|�) = p(y – �), (3) reduces to
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Moreover, the substitution p(x) = [q(x)]2 yields the even simpler form

                                                                                                                                                                                                   (5)

The introduction of “real probability amplitudes” q(x) in place of probability density functions p(x) simplifies many calculations
in modern physics. Moreover, since the integrability of p(x) is equivalent to the square integrability of q(x), the substitution allows
the analysis to take place in Hilbert space, a change of venue that von Neumann welcomed.

In higher dimensions, the quantity [q�(x)]2 becomes �q.�q or, after the introduction of complex probability amplitudes, �������
where * denotes complex conjugation. Frieden presents an entire table of Lagrangian functions, gleaned from branches of physics
as diverse as classical and fluid mechanics, electro- and thermodynamics, quantum theory, and general relativity, in which such
forms appear. This suggests that an approach via Fisher information could furnish at least a partial answer to a long unanswered
question: Where do Lagrangians come from? Frieden quotes a standard text† to the effect that Lagrangians are often plucked out
of thin air, simply because the associated Euler–Lagrange equations are the expected equations of motion. There is, as yet, no
general explanation for the remaining terms present in the Lagrangians of Frieden’s table. The success of the EPI technique requires
an ability to account for the additional terms that occur in particular branches of physics.

If an experiment is designed to estimate several different parameter vectors �n from measurements yn = �n + xn, the appropriate
generalizations of (5) are

                                                                                                                                                                                                   (6)

with either real or complex probability amplitudes. As long as N (the largest n) is even, complex amplitudes can be formed from real
ones by writing i = (–1)1/2  and �n = q2n–l + iq2n , n = 1, . . . , N/2. Alternatively, the qn’s can be recovered from the �n’s by
separating the real and imaginary parts. The choice between real and complex amplitudes is strictly a matter of convenience. It is
also con-venient to define q(x) as (ql(x), . . . , qn(x)), and �(x) as (�1,(x), . . . , �N/2(x)).

It follows from (4) that if the random deviations x follow a normal or Bernoulli distribution about �, then I is inversely proportional
to their variance. If x is logistically distributed, so that p(x) = 1/(l + exp(–ax)), then I = a/2. Or, if the deviations are 2-vectors
drawn from a bivariate normal distribution in which the components share a common mean �, a common variance �2, and a
covariance 	, then I becomes 2/�2 (1 + 	). The information content of two variables is thus a decreasing function of their degree
of correlation—yet another reason why experimenters should and typically do make the extra effort to observe independent random
variables whenever possible.

The form of the foregoing result leads Frieden to speculate that every experiment may constitute a (zero-sum) game against
nature, in which the experimenter strives to maximize the Fisher information obtained, while a hostile nature (information demon)
strives to minimize it by introducing unexpected correlations and the like. It seems an interesting—if as yet undeveloped—idea.

Frieden compares Fisher information with the Shannon, Boltzmann, and Kullback–Liebler definitions of entropy, which likewise
represent attempts to identify useful scalar measures of information. The comparison is most easily made with Shannon entropy
H = �[ln p(x)]p(x)dx, and the discrete approximation
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which converges to H as �x � 0. 
H differs from the discrete form

                                                                                                                                                                                                      (8)

of (4) in that the probabilities p(.) can be reassigned among the carriers x1, . . . , xn without altering the value of (7). Not so (8).
It matters for Fisher information I—but not for Shannon information H—whether the likeliest carriers are clustered in space. It is
this feature that uniquely qualifies I to illuminate Lagrangian physics.

I, like H, can be viewed as a measure of physical disorder. When H coincides with traditional Boltzmann entropy HB, as it often
does, the second law of thermodynamics stipulates that dH(t)/dt is never negative. And in a variety of other circumstances—among
them the situation in which p(x,t) obeys a Fokker–Planck equation of the form pt = [D1(x,t)p]x + [D2(x,t)p]xx—it turns out that dI(t)/
dt is never positive. It is also possible to define temperature in terms of Fisher information, and to deduce a version of the perfect
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gas law incorporating that precise definition of temperature, which suggests that it may eventually prove possible to recover all
of thermodynamics from the notion of Fisher information. That, of course, remains to be done.

According to (4) and (5), Fisher information I is a real-valued functional defined on the space of PDFs p(.), or probability
amplitudes q(.). In order to derive the laws of physics from Fisher information, one must find a second such functional J that, when
subtracted from I, furnishes the missing terms in the Lagrangians of Frieden’s table. In what follows, I will always have the form
(6), while J will have a form appropriate to the particular branch of physics under consideration. Moreover, I will always represent
the information in the data obtained via experiment, while J will represent the information content of the physical situation being
explored. It makes sense, therefore, to suppose that I can never exceed J, to define an efficiency � = I/J, and to observe that � has always
turned out to be either 1 or 1/2 in every situation (branch of physics) that Frieden and his co-workers have explored to date.

An experiment, however sensitive, must always perturb the probability amplitudes q(x) of the system under observation by an
amount 
q. The consequent perturbations 
I and 
J represent quantities of information transferred from nature (the system) to the
experimenter. Frieden proposes

                                                                                   axiom 1: 
I = 
J.

This is a conservation law concerning the transfers of information possible in certain more or less idealized experiments. Its
validity, according to Frieden, is demonstrated many times over in his book and is the key to his EPI approach to the understanding
of physical reality. The axiom can actually be confirmed whenever the “measurement space” has a conjugate space connected to
it by a unitary transformation. The author augments the foregoing conceptual axiom with two additional axioms of a more technical
nature.

To consider the effects on the functional K of a small perturbation 
q(x) of its argument q(x), we write K = I – J. Then, by
axiom 1, we can write

                                                                                                                                                                                                   (9)

and ask for which probability amplitudes q(x) equation (9) holds. The answer is naturally expressed in terms of Euler–Lagrange
equations from the calculus of variations, a process best understood by seeing it in action.

Consider a (small) particle of mass m moving on a line about its rest position �. If the particle is subject to a conservative scalar
potential field V(x), its total energy W is conserved. In terms of complex wave functions �n(x), the expression (6) for I becomes

                                                                                                                                                                                                 (10)

the summation extending from n = 1 to n = N/2. The particle in question will have not only a position x relative to its rest position
�, but a momentum � relative to its rest momentum 0. Moreover, in the same way the observations xn = yn – � are drawn from
probability distributions pn(x) = [qn(x)]2 corresponding to complex amplitudes �n(x), observed values �n would be drawn from
distributions �n(�) corresponding to complex amplitudes �n(�). Again, we write � = (�1, . . . , �N/2) and � = �1, . . . , �N/2).
Frieden concludes on physical grounds—by analysis of an experimental apparatus that could in theory be used to perform the
required measurements—that J[�] = I[�]. Moreover, the �n and �n are Fourier transforms of one another, so that

                                                                                                                                                                                                 (11)

When the resulting expressions for �n�(x) are substituted in (10),

                                                                                                                                                                                                 (12)

He then identifies the summation in (12) with the probability distribution �(�) mentioned earlier, so that

                                                                                                                                                         (13)

Finally, he makes the specifically nonrelativistic approximation that the kinetic energy E of the particle is �2 /2m, so that

                                                                                                                                                                                                                             (14)
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Since I and J have now been expressed in terms of the quantities �n(x), K = I – J can be combined into a single integral of the
form K = �L (�n�, �n, x) dx, and the associated Euler–Lagrange equations written:

                                                                                                                                                                                                (15)

the time-independent Schrödinger equation. This is the (one-dimensional, nonrelativistic) approximation of the (covariant,
relativistic) Klein–Gordon equation, which can be derived—without approximation—in similar fashion. The unitary nature of the
Fourier transformation played an essential role in the foregoing derivation, particularly that of equation (12), where it justified the
conclusion that � = I/J = 1 in the present theory. That means that quantum mechanics is “efficient” in the sense that the
underlying experiments are capable of extracting all available information. Many other physical theories, including electromag-
netic theory and gravitational theory, yield only � = 1/2.

Frieden derives a version of Heis-enberg’s uncertainty principle from the Cramer–Rao inequality, and contrasts the result with
the standard version obtained via Fourier duality. He remarks that the EPI version is stronger than the standard one in the sense
that it implies the other, whereas the converse is untrue. The standard result applies only to uncertainties that exist before any
measurements are taken, while the EPI version also applies to uncertainties that remain afterward.

The material described here is contained in the book’s first four chapters and in Appendix D. The next six chapters present further
applications of the EPI method. Statistical mechanics, like quantum mechanics, is found to be efficient in the sense that � = I/
J = 1, while most other theories are only halfway efficient. Frieden finds this unsurprising—quantized versions of most physical
theories, including gravitation and electromagnetism, have not been developed, although he expects that they will be found in due
course. Indeed, he and others are currently applying the EPI method to a study of quantum gravity—in steps analogous to those
that led to the Schrödinger equation presented here—and, in higher dimensions, to the Klein–Gordon equation. Feynman path
integrals seem to emerge naturally in this ongoing investigation, which seems destined to culminate in a vector wave equation of
gravity.

Also under attack are various problems in turbulence. Probability laws of fluid density and velocity have been found for low-
velocity flow in a nearly incompressible fluid. The new laws agree well with published data arising from detailed simulations of
such turbulence. Frieden also remarks that the EPI method applies most naturally to the laws of physics that are expressed in the
form of (differential) field equations. He sees no reason, however, why the method could not be extended to cover laws concerning
the sources of the fields in question. The exposition ends as it began, quoting John Archibald Wheeler’s words on observer
participation. It seems safe to conclude, all in all, that the unexpected union between physics and Fisher information will prove both
lasting and fruitful.

James Case writes from Baltimore, Maryland.
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