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The Bes of the 20th Century: EditorsNameTop 10 Algorithms

By Barry A. Cipra

Algos is the Greek word for pain. Algor is Latin, to be cold. Neither is the root for algorithm, which stems instead from al-
Khwarizmi, the name of the ninth-century Arab scholar whose book al-jabr wa’'| mugabalah devolved into today’ s high school
algebratextbooks. Al-Khwarizmi stressed the importance of methodical proceduresfor solving problems. Were he around today,
he'd no doubt be impressed by the advances in his eponymous approach.

Some of thevery best algorithms of the computer age are highlighted in the January/February 2000 issue of Computing in Science
& Engineering, ajoint publication of the American I ngtitute of Physicsand thel EEE Computer Society. Guest editorsJack Don-garraof the
University of Tennessee and Oak Ridge Nationa Laboratory and Fran-cis Sullivan of the Center for Comput-ing Sciences  the Indtitute for
Defense Analyses put togeth-er alist they cdl the* Top Ten Algorithms of the Century.”

“Wetried to assemble the 10 al-gorithms with the greatest influence on the devel opment and practice of science and engineering
in the 20th century,” Dongarra and Sullivan write. Aswith any top-10 list, their selections—and non-sel ections—are bound to be
controversial, they acknowledge. When it comes to picking the algorithmic best, there seems to be no best algorithm.

Without further ado, here sthe Ci SE top-10list, in chronological order. (Datesand names associated with the al gorithms shoul d beread
as first-order approximations. Most algorithms take shape over time, with many contributors.)

1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis
algorithm, also known asthe M onte Carlo method.

TheMetropolisa gorithmamstoobtain approxi mate sol utionsto numerical problemswith unmanageably many degrees of freedom
and to combinatorial problems of factorial size, by mimicking a random process. Given the digital computer’s reputation for
deterministic calculation, it' sfitting that one of its earliest applicationswasthe generation of random numbers.

1947: George Dantzig, at the RAND Corporation, creates the simplex method for linear programming.
In terms of widespread application, Dantzig's algorithm is one of the most successful of all time: Linear
programming dominates the world of industry, where economic survival depends on the ability to optimize
within budgetary and other constraints. (Of course, the“real” problemsof industry are often nonlinear; theuse
of linear programming is sometimesdictated by the computational budget.) The simplex method isan elegant
way of arriving at optimal answers. Although theoretically susceptible to exponential delays, the algorithm
in practiceis highly efficient—which in itself says something interesting about the nature of computation.

In terms of wide-
spread use, George . . . . .
Dantzig’s simplex 1950: MagnusHestenes, Eduard Stiefel, and CorneliusLanczos, all from thenstitutefor Numerical Analysis

methodisamongthe gt the National Bureau of Standards, initiate the development of Krylov subspaceiteration methods.

most successful al-

gorithms of all time. These algorithms address the seemingly simple task of solving equations of the form Ax = b. The catch,

of course, isthat Aisahugen x nmatrix, so that the algebraic answer x = b/A is not so easy to compute.
(Indeed, matrix “division” isnot a particularly useful concept.) Iterative methods—such as solving equations of
theformKx, . ; = Kx + b — Axwithasimpler matrix K that’ sideally “close” to A—Ilead to the study of Krylov subspaces. Named
for the Russian mathematician Nikolai Krylov, Krylov subspaces are spanned by powers of a matrix applied to an initial
“remainder” vectorr, = b — Ax,. Lanczosfound anifty way to generate an orthogonal basisfor such a subspace when the matrix
issymmetric. Hestenes and Stiefel proposed an even niftier method, known as the conjugate gradient method, for systemsthat are
both symmetric and positive definite. Over thelast 50 years, numerous researchers have improved and extended these algorithms.
The current suite includes techniques for non-symmetric systems, with acronyms like GMRES and Bi-CGSTAB. (GMRES and
Bi-CGSTAB premiered in SSAM Journal on Scientific and Satistical Computing, in 1986 and 1992,

respectively.)

1951: Alston Householder of Oak Ridge National L aboratory formalizesthedecompositional appr oach
to matrix computations.

The ability to factor matricesinto triangular, diagonal, orthogonal, and other special forms has turned
out to be extremely useful. The decompositional approach has enabled software devel opers to produce
flexible and efficient matrix packages. It also facilitates the analysis of rounding errors, one of the big
bugbears of numerical linear algebra. (In 1961, James Wilkinson of the National Physical Laboratory in
London published a seminal paper in the Journal of the ACM, titled “Error Analysis of Direct Methods
of Matrix Inversion,” based on the LU decomposition of a matrix as a product of lower and upper
triangular factors.)

Alston Householder

1957: John Backus leads ateam at IBM in developing the Fortran optimizing compiler.
The creation of Fortran may rank asthe single most important event in the history of computer programming: Finally, scientists



(and others) could tell the computer what they wanted it to do, without having to descend into the netherworld of machine code.
Although modest by modern compiler standards—Fortran | consisted of amere 23,500 assembly-languageinstructions—theearly
compiler was nonetheless capable of surprisingly sophisticated computations. As Backus himself recalls in a recent history of
Fortran I, 11, and |11, published in 1998 in the IEEE Annals of the History of Computing, the compiler “produced code of such
efficiency that its output would startle the programmers who studied it.”

1959-61: J.G.F. Francisof Ferranti Ltd., London, finds a stable method for computing eigenval ues, known asthe QR algorithm.

Eigenvalues are arguably the most important numbers associated with matrices—and they can be the trickiest to compute. It's
relatively easy to transform a square matrix into amatrix that’s“amost” upper triangular, meaning one with a single extra set of
nonzero entries just below the main diagonal. But chipping away those final nonzeros, without launching an avalanche of error,
isnontrivial. The QR algorithmisjust the ticket. Based on the QR decomposition, which writes A as the product of an orthogonal
matrix Q and anupper triangular matrix R, thisapproachiteratively changesA = QRintoA , ; = RQ,withafew bellsandwhistles
for accel erating convergenceto upper triangul ar form. By the mid-1960s, the QR algorithm had turned once-formidableeigenvalue
problems into routine cal culations.

1962: Tony Hoare of Elliott Brothers, Ltd., London, presents Quicksort.

Putting N thingsin numerical or al phabetical order ismind-numbingly mundane. Theintellectual challengeliesindevising ways
of doing so quickly. Hoare's algorithm uses the age-old recursive strategy of divide and conquer to solve the problem: Pick one
element asa“ pivot,” separate therest into piles of “big” and “small” elements (as compared with the pivot), and then repeat this
procedure on each pile. Although it’ spossibleto get stuck doingdl N(N — 1)/2 comparisons (especialy if you use asyour pivot the first
itemonalist that’ salready sorted!), Quicksort runson averagewith O(Nlog N) efficiency. Itsel egant simplicity hasmade Quicksort
the pos-terchild of computational complexity.

1965: JamesCooley of thel BM T.J. Watson Research Center and John Tukey of Princeton
University and AT& T Bell Laboratories unveil the fast Fourier transform.

Easily themost far-reaching algo-rithmin applied mathematics, the FFT revolutionized
signal processing. Theunderlying ideagoesback to Gauss (who needed to cal cul ate orbits
of asteroids), but it was the Cooley—Tukey paper that made it clear how easily Fourier
transforms can be computed. Like Quicksort, the FFT relies on a divide-and-conquer
ot . strategy to reducean ostensibly O(N?) choretoan O(NlogN) frolic. But unlike Quick- sort,
sk % ."" £. % theimplementationis(at first sight) nonintuitiveandlessthanstraightforward. Thisinitself
gave computer scienceanimpetustoinvestigatetheinherent complexity of computational
problems and algorithms.
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1977: Helaman Ferguson and Rodney Forcade of Brigham Y oung University advance an integer relation detection algorithm.

The problemisan old one: Given abunchof real numbers, say x;,%,, . . .,X,, arethereintegersa,, a,,. . ., a,(notall 0) for which
ax, tax, +. . . +ax,=0?Forn=2, thevenerable Euclidean algorithm does the job, computing termsin the continued-fraction
expansion of x,/X,. If x,/x, isrational, the expansion terminates and, with proper unraveling, givesthe“smallest” integers a, and a,.
If the Euclidean algorithm doesn’t terminate—or if you simply get tired of computing it—then the unraveling procedure at least
provides lower bounds on the size of the smallest integer relation. Ferguson and Forcade’ s generalization, although much more
difficult to implement (and to understand), is also more powerful. Their detection algorithm, for example, has been used to find
the precise coefficients of the polynomials satisfied by the third and fourth bifurcation points, B, = 3.544090 and B, = 3.564407,
of thelogistic map. (Thelatter polynomial isof degree 120; itslargest coefficient is 257%.) It has also proved useful in simplifying
calculations with Feynman diagrams in quantum field theory.

1987: Leslie Greengard and Vladimir Rokhlin of Yale University invent the fast multipole algorithm.

Thisalgorithm overcomes one of the biggest headaches of N-body simulations: thefact that accurate cal cul ations of the motions
of N particlesinteracting viagravitational or electrostaticforces(think starsinagalaxy, or atomsinaprotein) would seemtorequire
O(N? computations—one for each pair of particles. The fast multipole algorithm gets by with O(N) computations. It does so by
using multipole expansions (net charge or mass, dipole moment, quadrupole, and so forth) to approximate the effects of a distant
group of particlesonalocal group. A hierarchical decomposition of spaceisused to defineever-larger groupsasdistancesincrease.
One of thedistinct advantages of the fast multipolealgorithm isthat it comes equi pped with rigorous error estimates, afeature that
many methods lack.

What new insights and algorithms will the 21st century bring? The complete answer obviously won't be known for another
hundred years. One thing seems certain, however. As Sullivan writesin theintroduction to thetop-10list, “ The new century is not
going to be very restful for us, but it is not going to be dull either!”

Barry A. Ciprais a mathematician and writer based in Northfield, Minnesota.



