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It was a bold step for one of the bastions of theoretical mathematical research—the Isaac Newton Institute, in Cambridge,
England—to focus its first-ever short programme on mathematics-in-industry. The bare facts are that about 70 researchers, all of
an intensely collaborative nature, came together for each of three one-week sessions to discuss free boundary problems in the food,
glass, and metals industries. Free boundary problems had been selected because of their proven ubiquity in industrial research,
coupled with their mathematical fascination. What emerged were some dramatic revelations about the insights that all kinds of
mathematics may soon be able to offer all branches of industry, ranging from high-tech to low-tech.

New, Unstructured Study Group Format

Many frameworks have been devised to bring mathematics to bear on industrial problems as effectively as possible. Well-
established clinics, study groups, and workshops are held every year around the world, all geared to moving academic expertise
across the chasm into industry in order to solve specific problems. The very act of posing an industrial problem in mathematical
terms has been shown, time and again, to lead to new insight and new mathematics.

The Newton programme had quite a different format—each of the week-long sessions was an unstructured coming together,
catalysed by a handful of overview presentations by industrialists on Monday, followed by three days of spontaneous open
discussions. The output was an astonishing list of topics considered ripe for further
specific studies, compiled on Friday (and available at (http://www.newton.cam.ac.uk/
programs/old_progs/FBP/index.html). Suffice it to say here that intense debates were
generated on topics ranging from the modelling of mastication, especially so-called
bolus formation, to the “fictive temperature” of a solidifying glass, and from the
extrusion of molten chocolate to the hot tearing of mushy alloys.

There were two particularly eye-catching examples from the food industry. The first,
illustrated in Figures 1–4,  concerns the manufacture of crumpets. (“Crumpet” is one of
those words that mean different things in different places, but it definitely does not mean
“English muffin.”) Like many breads, cakes, and biscuits, a crumpet is formed from
dough that has been suitably kneaded and proved. (Why dough needs to be kneaded and
proved, explained at the microstructural level, is a mathematical research topic in itself.)

In baking, most dough turns into a bubbly mixture, as in bread, with the solidified
dough forming a more or less connected matrix. Crumpets, however, are heated in a
special way, on a hot plate at 230°C. After a few seconds, crumpet dough takes on the
“columnar” morphology seen in Figure 4. To predict the conditions under which such
fingering occurs—what a challenge for free boundary theorists! The difference in topology between a crumpet and bread is all
important: Without its high genus, the crumpet would not be penetrated so easily by molten butter and jam, and it would lose all
its distinctiveness.

A second, equally mouth-watering
problem concerns the “enrobing” of cake,
biscuits, or ice cream with a thin layer of
chocolate that is initially molten. Choco-
late is a wonderful material that can so-
lidify into at least six phases, and yet the
only phase that is nice to eat is meta-
stable! Fortunately, molten chocolate can
be thought of as a Newtonian liquid, and
we are led to the free boundary problem
shown in Figure 5 for a biscuit.

We need to solve the slow flow equa-
tions

O = –�p + ���u + �g, � � u = 0
                                                                                          (1)

for the pressure p and velocity u in the
flow region �, where � is the chocolate
viscosity, � the density, and g gravity,
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Figure 1. Top view of half-crumpet. (Fig-
ures 1–4 courtesy of  Leo Pyle of Reading
University.)

Figure 2. Horizontal slice at one-third height
from base.

Figure 3. Horizontal slice at two-thirds
height from base.
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with no slip conditions on B; crucially, there is no traction on the free surface  ��, which is also a material surface.  Discussions
of similar problems with circular symmetry [1] have revealed an
interesting nonuniqueness in the nearly unidirectional flow that oc-
curs towards the base of B. But the most important prediction concerns
the thickness of the chocolate at the “shoulder” of B: No one will buy
your biscuits if the coating at the shoulder is too thin.

The key to the diversity and novelty of the Newton programme was
the ability of the academics and industrialists to confront each other on
an equal footing, with everyone free to probe and enunciate questions
of philosophy and strategy among themselves. At one time, for
example, we had rigorous thermodynamicists arguing with expert
chocolate manufacturers; such interactions created as much astonish-
ment as fervour. This eclectic approach had one dramatic conse-
quence. Unlike settings in which specific problems are addressed, and
in which it is mutually advantageous for industrial and academic
researchers to work together, the Newton programme, lacking a
common goal, allowed such frankness that wild disagreements were
common. Even well-hardened study group veterans found themselves
becoming intellectually overstressed!

The academics present had a rare glimpse into how industrialists
select problems that they consider suitable for the attention of academ-
ics, and the industrialists were able to see the full scope and capabili-
ties of modelling and analysis. It was these revelations to both groups that allowed the overwhelming plethora of opportunities to
emerge as candidates for future targeted research.

Challenge to the Mathematics Community

One overriding implication surprised us all. If the mathematics community is ever to fulfill its potential as a source of new insights
into industrial problems (rather than leaving industrial researchers to do their own mathematics), its members must learn to
recognise that mathematics is everywhere, underlying activities that range from eating
to flying. The task is so vast that mathematical scientists must learn to group their
activities in as manageable a way as possible if they are to avoid wasteful duplication
of effort and present a coherent picture to students, politicians, and others. It is a tough
job for a mathematician, let alone a politician, to overview an activity that encompasses
so much of science—especially when it is so unstable to small modifications to well-
established models.

Take traffic flow, for example. A crude way to model dense flows is to adopt the
kinematic wave approach [2], where the vehicle velocity u and flux �u are related by the
conservation law

������������������������������������������������������/�t + ���x (�u) = 0.                                          (2)

It is common to model driver reaction with a decreasing function u(�),
say u = 1 – �, where 0 < � < 1. At a recent Study Group in Shanghai, the traffic was
bicycles (and thousand-foot traffic jams were commonplace at right turns). How do you
control such traffic so as to minimise congestion? (When cars and bikes are interacting,
the situation is even more of a nightmare to model.)

Colin Please and Alistair Fitt came up with the following neat idea for the case in
which a fraction 	 of the cyclists want to turn right. Write u = u*(1 – �), where the constant u* = 1 on the highway and
u* = 
 < 1 at the turn. The maximum flux around the turn is then 
/4 (the flow is “choked” in gas dynamics parlance). Thence,
a simple conservation-of-mass argument shows that jams will occur whenever 	 > 
/4. There seem to be many generalisations
of this kind of argument.

A few years ago, a Japanese Study Group in Kobe considered an equally fascinating transportation problem. Residents living
near tunnel mouths on the Shinkahsen line experience house-rattling shock waves a few seconds before the emergence of each 200-
mph train. This is another new problem for experts in hyperbolic PDEs—with the twist in this case coming from the effect of wall
drag on tunnels longer than a mile or so.

One modelling approach is to modify the traditional inviscid gas dynamics equations, comprising (2) together with conservation
of momentum

�����������������������������������������������������������������������������u/�t + ���x (p + �u2) = 0                                                                          (3)

and energy

Figure 4. Vertical slices of two crumpets: When the columns
fail to reach the top, the crumpet is said to be “blind.”

Figure 5. Yet another example of a free
boundary problem from the food industry:
the coating of a biscuit with molten choco-
late.
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������������������������������������������������������������������(e + 1/2 u2)/�t + �(�u(e + 1/2 u2))/�x+ �(pu)/�x = 0,                                                     (4)

by inserting a  term proportional to –�  u |u| on the right-hand side of (3). This term, a crude “Fanno” approximation for the wall drag
exerted on the air pushed ahead of the train, is important only over relatively long distances. The accurate incorporation of this term
into asymptotic and numerical solutions
continues to challenge applied mathemati-
cians in the UK and Japan.

To get back to the Newton programme,
and another class of problem altogether,
the workshop revealed a beautiful inverse
problem concerning the manufacture of
windshields. In the “sag” process, the wind-
shield frame is positioned more or less
horizontally, and an initially flat glass sheet
is lowered onto the frame. Heaters are placed
to make the sheet sag to a shape specified
by the auto manufacturer.

In the simplest model, the windshield
can be thought of as a viscous plate (or,
better, as a viscoelastic shell) whose bend-
ing stiffness is a function of temperature,
and hence of position, which is to be deter-
mined. Thus, we need to find the coeffi-
cients of an elliptic PDE with simply sup-
ported boundary conditions whose solu-
tion is as close as possible to a prescribed
function. But this is not just a hyperbolic
problem for the bending stiffness—near
the corners of the frame, the windshield can
easily “lift off,” thereby losing its convex-
ity (even a 1-mm lift-off can be a disaster!). Hence, we have a novel contact problem embedded in the inverse problem. And what
if the auto designer were to demand that the windshield be developable . . . . ?

With all these problems awaiting mathematical attention, how is our community to respond? In particular, how can we as
mathematicians broaden our range of activities without diluting our knowledge so that we can make the contributions of which we
are uniquely capable? This is a difficult question whose answer will depend on many factors. A crucial one will be the inevitable
observation that mathematics-in-industry fares much better in some mathematics communities than others. The Newton meeting
would not have revealed what it did had we not benefitted from a hard core of study group old hands from the UK and Europe, all
of whom were used to entering into discussions on practical problems in an untrammeled way.

Of course, mathematicians all over the world engage in mathematics-in-industry on a more or less one-to-one level. Researchers
involved in these time-consuming and academically low-profile activities often pay a heavy price—a lack of publications and a
sense of ostracism—even though the ideas are every bit as exciting and important as those in traditional academic activity. But if
these researchers remain voices in the applied mathematics wilderness, what hope is there for the wider realisation that the Newton
programme revealed?
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The accompanying article by John
Ockendon highlights the tremendous po-
tential of workshops on industrial math-
ematics. They yield fascinating problems,
and, equally important, they connect sci-
entists and engineers (and mathemati-
cians!) who would otherwise not even
know each other. It is part of SIAM’s
mission to encourage these interactions,
to help make them happen and to help
make people aware of them.

A SIAM Committee on Workshops
has just been established. Its purpose is to
see how, as a society, we can become
active in this area. Its membership will be
a mixture of academic and industrial
mathematicians. Don Schwendeman of
RPI (schwed@rpi.edu) has agreed to chair
this ad hoc committee. The experience of

applied mathematicians who have or-
ganized workshops (often introducing
graduate students to a new vision of what
real problems involve) has made their
value clear. The European Consortium
for Mathematics in Industry is a union of
departments and labs that concentrate on
developing joint workshops. SIAM
needs to promote that same effective
collaboration on industrial mathematics.

John’s article is full of illuminating
examples. They are a sure indication that
there are many more to be uncovered—
in industries that we haven’t even heard
from. This is a moving boundary be-
tween universities and industry, and I
hope that the new committee will help it
to move.—Gilbert Strang, SIAM Past-
President.
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