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Patterns of Collaboration in Mathematical Research
Six degrees of separation? Not for mathematicians, it seems, based on the author’s study of
a “collaboration graph,” with publishing mathematicians as the vertices and two vertices
joined by an edge if the mathematicians have ever written a joint paper.

By Jerrold W. Grossman

Each year mathematicians publish more than 50,000 research papers. Since 1940, Mathematical Reviews (MR; available
electronically on the World Wide Web as MathSciNet [8]) has catalogued most of them, and MR’s current database contains more
than one and a half million items, produced by more than a third of a million authors. By studying this wealth of data, we can discern
some interesting patterns of publication, and in particular some interesting patterns of collaboration.

For simplicity, we call each authored item in the MR database a “paper,” although some of them are monographs of various kinds.
We ignore nonauthored items in the database, such as conference proceedings—the relevant papers in the proceedings have their
own entries as authored items. In maintaining this database, and making it available to subscribers in print form and on the Internet,
the MR editors and staff have taken pains to identify authors as people and not merely as name strings—strings of characters that
the journal listed as an author’s name. For example, Raymond L. Johnson, Roberto Johnson, and Russell A. Johnson all published
under the name string “R. Johnson,” but each of the papers by “R. Johnson” in the database is identified with exactly one of these
three people. To the extent that MR has been successful in this endeavor, the data will accurately reflect the publication habits and
the social network of actual individuals. (Some errors of this type remain, to be sure, but we do not think they substantially affect
our results. Indeed, before they corrected the mistake in 1995, MR listed a paper by the physicist Paul Erdo″ s as being by the
mathematician Paul Erdo″ s. Now, MR denotes these two individuals Paul Erdo″ s2 and Paul Erdo″ s1, respectively, using a convention
that has become increasingly necessary. See [11] for more details.)

The data used in this article cover approximately the period from 1940 to 1999, inclusive, and we have broken it down
approximately by decade. (There is necessarily a lot of imprecision in dating, partly because the reviews in MR typically appear
about a year after publication, which in turn is often more than a year after submission.) We thank the American Mathematical
Society for providing access to this data, as well as Patrick Ion of Mathematical Reviews for helpful conversations.

The cumulative data are summarized in Table 1, whose integer entries represent thousands. The left-most column includes all
the data, and the remaining columns truncate the data after one or more decades. Data are given for all authors, as well as just for
authors who have collaborated.

The third row of Table 1 shows the average number of papers per author. Since mathematicians at all stages in their careers are
included, it is hard to know exactly how to view the statistic that the mean number of papers is about 7. Of course the distribution
has a long right tail, with a standard deviation of more than 15. Table 2 shows the fractions of mathematicians who have written
various numbers of papers. It can be seen
from this table that just slightly more than
half of all publishing mathematicians have
published more than one paper, that the
median number of papers is just 2, and that
more than two thirds of us have written
fewer than five papers. At the other ex-
treme, eight people have written more than
500 papers apiece, including the legendary
Paul Erdo″ s, with about 1500 papers. When
tenure committees count publications, this
kind of information might help to put things
in context.

Table 3 summarizes the data decade by
decade, giving a better view of how things
have changed over the years. Row 2 shows
the explosion in the number of practicing
mathematicians during the period we con-
sider, a compounded annual growth rate of
6% per year (compared with a rate of less
than 2% for the population of the world
during the same period). We infer from
row 3 that in the 1940s the mean number of
papers per mathematician per year was

thru 90s thru 80s thru 70s thru 60s thru 50s thru 40s

Number of papers 1598 1010 572 278 109 30

Number of authors 337 225 137 68 29 10

Mean papers/author 6.87 6.05 5.30 4.89 4.33 3.41
S.D. papers/author 15.34 12.91 11.26 10.49 8.88 5.70

Mean authors/paper 1.45 1.35 1.27 1.20 1.14 1.10
S.D. authors/paper 1.63 1.50 1.40 1.31 1.28 0.3

1-author papers 66% 73% 78% 84% 88% 91%
2-author papers 26% 22% 18% 13% 11% 8%
3-author papers 7% 4% 3% 2% 1% 1%
> 3-author papers 1% 1% 1% 1% 0% 0%

Collaborating authors 253 153 82 34 11 3
Fraction of all authors 75% 68% 60% 49% 39% 28%

Mean collaborators/author 2.94 2.26 1.67 1.20 0.83 0.49

Mean collaborators/ 3.92 3.33 2.79 2.42 2.14 1.74
 collaborating author

Table 1. Cumulative data, by decade; integer figures represent thousands.
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about 0.3, that this figure grew to about 0.4 in the 1960s and 1970s, and that it
reached nearly 0.5 in the 1990s.

We turn now to the issue of collaboration in mathematical research (which may,
indeed, partially explain this increase in productivity). Mathematics is at neither
extreme among the academic disciplines. Laboratory scientists tend to write
articles with many authors; everyone who contributes to the experiments gets a
credit. Scholars in the humanities usually engage in solitary work. In mathematics
we find a definite trend toward increasing collaboration.

As Table 3 shows, the average number of authors per paper has gone from only
1.10 in the 1940s to 1.63 in the 1990s. During the 1940s only 28% of all publishing
mathematicians wrote joint papers, whereas 81% of those who published in the
1990s collaborated at least once during that decade. In the 1940s and 1950s, nearly
90% of all papers were solo works, with only 1–2% of the papers having three or
more authors. If we look at just the last two years’ worth of items in the database,
we find that by the late 1990s, fewer than half of all papers had just one author, and
the number of papers with three or more
authors had grown to 16%.

To really get at the social phenomenon of
collaboration in mathematical research, we
construct the so-called collaboration graph,
which we denote by C. The vertices of C
are the 337,454 mathematicians in our da-
tabase, and two vertices are joined by an
edge if the two mathematicians have pub-
lished a joint paper, with or without other
coauthors. This gives us 496,489 edges, so
the average degree of a vertex in C (the
average number of coauthors per math-
ematician) is about 3. There are 84,115
isolated vertices in C (25%), which we will
ignore for the purposes of this analysis;
after all, these are not collaborating math-
ematicians. That leaves 253,339 vertices
with degree at least 1. Viewed this way, the
average degree (number of coauthors for a
mathematician who collaborates) is about
4.

We look first at the degrees of the verti-
ces—the distribution of the numbers of
coauthors mathematicians have. Much recent research by mathematicians, physicists, sociologists, and others on large real-world
networks (such as collaboration networks among scientists or film actors, the Internet, power grids, telephone call graphs, or neural
networks of simple animals) suggests that the degrees usually follow a power law: The number of vertices of degree x is proportional
to x–β, where β is usually around 3. (See, for example, [1, 2, 3, 9, 12, 13]. Indeed, this has become a very “hot” area of research,
with articles in Nature and the Proceedings of the National Academy of Sciences and several books for a general audience. The
deeper mathematical questions involve ways to capture the struc-
ture of such networks with random graph models, especially as
they evolve over time; the classic Erdo″ s–Rényi model [4] does not
apply.)

Figure 1 shows a log–log plot of the frequencies of degrees, and
the model seems to fit quite well. The data show that 37% of
collaborating mathematicians have just one coauthor, 22% have
two, 12% have three, 6% have four, and 23% have five or more.
More than 400 mathematicians have written with more than 50
colleagues apiece, with Paul Erdo″ s’s 507 coauthors as the most
extreme case. Again, the social interactions have increased over
the years, no doubt due in part to electronic communication and
the proliferation of conferences; Table 3 shows that the mean
number of collaborators per mathematician in one decade grew
from fewer than 1/2 in the 1940s to nearly 3 in the 1990s.

Other graphical properties of C also provide insight into the
interconnectedness of mathematicians. For example, the collabo-

Number of papers    Fraction of mathematicians

 1     42.7%
 2     14.6%
 3       8.0%
 4       5.3%
 5       3.9%

       6–10     10.0%
     11–20       7.4%
     21–50       6.0%
     51–100       1.7%
   101–200       0.4%
     > 200                    < 0.1%

Table 2. Fractions of mathematicians with
various numbers of papers.

90s only 80s only 70s only 60s only 50s only 40s only

Number of papers 587 439 294 168 80 30

Number of authors 192 144 97 51 24 10

Mean papers/author 4.97 4.43 4.03 4.05 3.84 3.41
S.D. papers/author 8.31 6.91 6.15 6.60 6.73 5.70

Mean authors/paper 1.63 1.45 1.33 1.23 1.16 1.10
S.D. authors/paper 1.82 1.63 1.48 1.35 1.26 0.36

1-author papers 54% 66% 73% 81% 87% 91%
2-author papers 33% 27% 22% 16% 11% 8%
3-author papers 10% 6% 4% 2% 2% 1%
> 3-author papers 3% 1% 1% 1% 0% 0%

Collaborating authors 155 104 62 27 9 3
Fraction of all authors 81% 72% 64% 52% 41% 28%

Mean collaborators/author 2.84 2.16 1.62 1.18 0.84 0.49

Mean collaborators/ 3.51 2.99 2.55 2.25 2.08 1.74
 collaborating author

Table 3. Data for each decade; integer figures represent thousands.

Figure 1. Distribution of (nonzero) vertex degrees in C.
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ration graph has one giant component with 208,200 vertices and
461,643 edges; the remaining 45,139 nonisolated vertices and
34,846 edges split into 16,883 components, having from 2 to a
maximum of 39 vertices (two thirds of the components are just
isolated edges).

 Next, we concentrate just on the giant component of C and
consider the distribution of distances between vertices (number of
edges in a shortest path joining the vertices). The average distance
between two vertices is between 7 and 8, with a standard deviation
of about 1½. Apparently, the appropriate popular buzz phrase for
mathematicians should be “eight degrees of separation” [7].

The diameter of the giant component (maximum distance be-
tween two vertices) is 27, and the radius (minimum eccentricity of
a vertex, with eccentricity defined as the maximum distance from
that vertex to any other) is 14. For any fixed vertex u in the giant
component, we can ask for the shape of the distribution of the
distances from u to the other 208,199 vertices in this component.
The distance from u to v is, of course, the familiar “Erdo″ s number”
of v when u = Erdo″ s [5, 6]. These distributions are bell-shaped, usually with long right tails. The means typically range from 6
to 11 (although the mean is only 4.7 for Paul Erdo″ s, and it goes as high as 17.5 for one person on the “fringes” of C ). The standard
deviations of these distributions are remarkably constant, with the numbers varying only between 1.19 and 1.35 in a random sample
of 100 mathematicians. So although the average “Jane Doe” number varies quite a bit, depending on who Jane Doe is, the
distribution of these numbers has pretty much the same shape and spread for everyone. Figure 2 shows the distribution of Erdo″ s
numbers and the distribution of Jane Doe numbers for a person chosen at random. It seems that people farther from the heart of
the graph might take longer to get to the heart but, once there, have the same fan-out pattern.

As a final measure, we compute the clustering coefficient of C to be 0.15. The clustering coefficient [10] of a graph is the fraction
of ordered triples of vertices a, b, c in which edges ab and bc are present that have edge ac present. In other words, how often are
two neighbors of a vertex adjacent to each other? This value is 10,000 times higher than we would expect for a random graph with
253,000 vertices and 496,000 edges. Such behavior is typical of the  “small-world” networks studied in the literature [12].

The Mathematical Reviews data provide a wonderful opportunity for further study of the publishing patterns of mathematicians,
both as individuals and as a highly and intricately connected corpus. For instance, it would be interesting to look at the differences
among mathematicians in different subfields, to see to what extent a person’s publication record over the first six years gives an
indication of future productivity, or to notice significant differences in publication or collabor-ation patterns among mathemati-
cians at different types of institutions or in different countries. Further information is available on the author’s Erdo″ s Number Project
Web site [5].
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Figure 2. Distributions of Erdo″s numbers (front) and Jane Doe
numbers (back).


