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Data Fusion and Nonlinear Optimization
By L. Fatone, P. Maponi, and F. Zirilli

The practice of collecting data at a scene from multiple sensors of different types results in extremely large amounts of data and
has led to the emergence of the research area known as “data fusion.”

Data fusion has been defined [10] as a “formal framework in which are expressed means and tools for the alliance of data of the
same scene originating from different sources. It aims at obtaining information of greater quality; the exact definition of greater
quality will depend upon the application.” Within the general category of data fusion is image fusion, which van Genderen and Pohl
[7] describe as the “combination of two or more different images (of the same scene) to form a new image by using a certain
algorithm.”

In the images considered, different quantities are measured, relative to the same scene, by different sensors. To reconstruct these
quantities, we can invert the data collected by each sensor, ignoring the other available data, or we can invert all the data collected
by the different sensors together. The first approach corresponds to the solution of an inverse problem, while the second corresponds
to the “joint” solution of several inverse problems—that is, to a fusion approach. A fusion approach is an attempt to obtain from
the available data set higher-quality information about a scene than can be obtained by inversion of the data from the individual
sensors, one by one.

The use of data fusion techniques has become common in many application fields, including remote sensing [7], medical imaging
[5], and, more generally, inverse scattering problems [3]. In the engineering literature, several fusion approaches have been
suggested and developed for improving the quality and accuracy of the information obtained from a given data set; a general survey
of the field can be found in [8] and the references therein. If we restrict our attention to remote sensing, Pohl and van Genderen
[7] have summarized the most commonly used methods for data fusion.

Data fusion has attracted the interest of the mathematical community in recent years and can be regarded today as a promising
chapter of the emerging area of applied mathematics called “image science.” The key factors responsible for this interest are the
following: (i) Most scientific data today are digitized, which makes possible, for example, the representation of an image as a matrix
of numbers. (ii) The process of measuring an unknown quantity in a scene with a sensor can be modeled by and translated into a
set of mathematical relations (usually integral equations) between the measured quantity and the measured data. This is the case
in remote sensing, in the use of radar to measure the reflectivity of a scene, or in medical imaging, in the use of computed tomography
to measure the mass density of human tissue.

Inverse problems are an established but still flourishing research area in mathematics. We restrict our attention here mainly to
linear inverse problems, in which the relation between the unknown and the data is usually represented by a linear equation in an
infinite-dimensional Hilbert (or Banach) space.

The main characteristic of linear inverse problems is their ill-posedness—that is, the linear operators in the corresponding linear
equations are injective (i.e., they are invertible), although their inverse operators are not bounded. In the processing of real data,
which contain errors, the ill-posedness of these problems is a source of difficulty. A naive approach can start from arbitrarily “good”
data and produce an arbitrarily “bad” answer. To handle these difficulties, the mathematical literature suggests the use of
regularization techniques, such as Tichonov regularization [1].

In this article we present a set of ideas for translating the “joint” solution of several linear (or nonlinear) inverse problems into
the solution of a nonlinear (possibly constrained) optimization problem. Such a formulation of data fusion problems leads to
challenging optimization problems, as explained later in this article. We present two examples: a remote sensing application and
an inverse scattering problem in which the ideas described here are used, beginning from experimental data, to produce interesting
results.

A Model Fusion Problem

We propose a data fusion methodology for merging two (or more) data sets relative to a scene, based on the assumption that the
unknowns to be determined have in common something that we call “structure.” This assumption is justified by the fact that the
unknowns are relative to the same scene. This approach has been considered in the scientific literature; see, for example, [3] and
[4].

The term “structure” can be defined in several ways. In general, we define structure as a change in the unknown measured
quantities with position in the scene. In this way, two (unknown) quantities are said to have a common structure if they change at
the same physical locations. Our approach to the fusion of two data sets is to define an objective function that quantifies the
difference in structure between the two unknown (measured) quantities, and then to minimize this objective function subject to a
suitable form of the data constraints.

Let R be the set of real numbers; RN, N > 1, the N-dimensional real Euclidean space, and C the set of complex numbers. Let
� ��R2 be an open set containing the scene being observed. We consider the measurement procedure associated with two sensors,
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or more generally with two physical experiments, represented by the equations:

                                                                             Fi(mi) = ui, i = 1, 2,                                                                                  (1)

where Fi, i = 1, 2, are operators that model the measurement processes (i.e., linear or nonlinear operators representing the physical
experiments); mi : � � R (or C), i = 1, 2, are the real (or complex) physical quantities measured by the sensors (i.e., the
unknowns of the problem); and ui, i = 1, 2, are the data obtained from the experiments (i.e., the measured data that we call images
when u1, u2 are functions defined on a subset of R2). The data, an estimate of the error affecting them, and the operators used to
model the experiments are assumed to be known. As mentioned earlier, the equations in (1) are usually linear equations in infinite-
dimensional spaces.

It is easy to see that what follows can be generalized to more than two experiments (i.e., equations). The approach described here,
however, is of practical value only for moderate numbers of experiments.

For i = 1, 2 the inverse problem consists of determining the unknown mi when the data ui and the mathematical model of the
physical experiment (i.e., the operator Fi ) are known. The simplest approach to reconstruction of the unknowns mi, i = 1, 2, is to
solve the corresponding equation (1), inverting, if possible, the operators Fi , i = 1, 2. In this way, the two data sets are inverted
individually, and the fact that the two equations (1) refer to the same scene is ignored.

A fusion procedure, by contrast, attempts to exploit this last fact. Because the two quantities u1, u2 refer to the same scene, we
assume that the corresponding m1 and m2 have in common the characteristic we call structure; that is, for i = 1, 2 there exists an
operator Si, to be modeled, that maps mi in the structure Si(mi) associated with mi. When m1 and m2 refer to the same scene, we assume
that S1(m1) = S2(m2). The structure operators Si, i = 1, 2, can be defined in many different ways, most commonly as follows:
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A measure of the difference in structure between m1 and m2 can be defined as follows:

������������������������������������������������������������������������������ � ||| S1(m1) – S2(m2) |||2,                                                                            (2)

where ||| . ||| is a suitable norm of ., so that a possible approach to the joint inversion of (1) is to solve the following optimization
problem: Given � > 0,

                                                                                                                           
1 2,

minimize
m m

 {|||S1(m1) – S2(m2)|||
2 + G(m1, m2)}                                                                (3)

subject to the constraint:

                                                                                          |||F1(m1) – u1|||
2 + |||F2(m2) – u2|||

2 � �2.                                                                     (4)

The real function G (m1,m2) in (3) is a penalty term containing a priori information about the desired solution eventually available.
In (4) the parameter � is a target misfit; its value depends on the errors present in the data.

The nonlinear optimization problem (3), (4) is only one example of the translation of a data fusion problem into mathematical
terms. Other variations of this problem can be investigated, and, consequently, other ad hoc optimization problems can be
formulated. Special algorithms can be designed for the numerical solution of the proposed optimization problems. In fact, we expect
problem (3), (4) and its variations to be challenging optimization problems. The operators S1, S2 in (3) are usually highly nonlinear,
and the discretized version of the unknowns m1, m2 can lead to finite-dimensional optimization problems involving hundreds of
thousands, if not millions, of independent variables. The ill-posedness of (1) and, consequently, of the constraint (4) combines with
the highly nonlinear character of the objective function (3) and the huge number of independent variables in the discretized version
of problem (3), (4) to produce a very difficult optimization problem.

Optimization Problems in Image Fusion: SAR/Optical Image Fusion

Remotely sensed images obtained by sensors traveling on satellites have proved to be of great interest to those responsible for
assessing the Earth’s resources and monitoring the environment. This is so because the large amounts of data acquired by sensors
of different types provide repeated coverage of the planet on a regular basis. Efficient exploitation of these data requires the
development of effective data fusion techniques that can take advantage of the multisource and multitemporal nature of the data.

We limit our attention here to an example of image fusion in remote sensing: the combination of images from optical and SAR
(Synthetic Aperture Radar) sensors relative to the same scene on the Earth’s surface to achieve better information-extraction
capabilities over features of interest in the observed scene.

The optical data measure the reflectivity of the ground cover in the visible and near-infrared spectrum (i.e., the luminance of the
scene). The SAR data measure the reflectivity in the microwave spectrum (i.e., the backscattering coefficient) and are very sensitive
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to the shape, orientation, roughness, and moisture content of the illuminated objects on the ground. The wavelength of the radiation
used by microwave sensors is much longer than that used by optical sensors. Because optical and SAR imaging systems have
different physics, they have a potential for complementarity and data fusion.

In this case, in (1) u1, u2 represent the SAR and optical images, respectively; m1, m2 are the corresponding reflectivity and
luminance of the scene; F1 and F2 represent the SAR and the optical image measurement simulators that, for simplicity, we assume
later to be the identity operators. The images u1, u2 are regarded as real functions defined on a rectangular region � of R2, discretized
on the rectangular grid given by the usual pixel structure of the images.

Because F1, F2 are chosen to be the identity operators, the basic assumption requiring that the reflectivity and the luminance of
the scene be piecewise-constant functions that change in the same physical locations is made directly on the SAR and optical
images. This assumption is amply fulfilled in practice. When F1 and F2 are the identity operators, the output of the fusion procedure
described in the previous section is two images (corresponding to the original SAR and the original optical image, respectively)
of the same type but (we hope) of higher quality than those used as data. In other words, we essentially perform a fusion of data
without jointly inverting equations (1), which, in fact, reduce in this case to trivial equations.

Specifically, given two real-valued functions defined on � � R
2, we obtain the fused images s1

+, s2
+ as the minimizer of the

following nonlinear optimization problem:

                                                                        
1 2,

minimize
s s {||| S1(s1) – S2(s2)|||

2 + G(s1,s2)},                                                         (5)

where the penalty term G(s1, s2) is chosen as follows:

                                                                                           G(s1, s2) = 	1|||s1 – u1|||
2 + 	2|||s2 – u2|||

2,                                                                           (6)

and the parameters 	i, i = 1,2, are suitable positive penalty constants. In this case Si(si) = S�1,�2
(||
�si||), i = 1,2, where ||.|| is the

Euclidean norm in R2 and S�1,�2
(.) is a smoothed version of a suitable step function depending on the parameters �1,�2. In particular,

the function S�1,�2
 is such that we have �1 < �2, S�1,�2

 (�) = 0 for � < �1 and S�1, �2
 (�) = 1 for � > �2; moreover, we require S�1,�2 to

be differentiable and monotone. Finally ~si,  i = 1,2, is a smooth approximation with steep gradients of the piecewise-constant
functions si, i = 1,2. That is, Si(si), i = 1,2, is an approximation of the characteristic function of the support of 
si, i = 1,2.

If s1
+, s2

+ is the solution of the optimization problem (5), (6), then s1
+ is the “fused image” that replaces the measured SAR image

u1 and, similarly, s2
+ is the “fused image” that replaces the measured optical image u2. Because F1 = F2 = identity operator, the data

constraint is already contained in the penalty term (6)
and the constraint (4) is omitted in this case. The
behavior of the fusion procedure described earlier
depends on the values of the parameters �i,	i, i = 1,2.
Careful calibration of these parameters is necessary,
depending on the characteristics of the images to be
treated.

In Figure 1 we present numerical results obtained
from real SAR and optical images of an agricultural/
forest/peri-urban landscape, north of Paris, that in-
cludes a part of the Roissy Charles de Gaulle airport.
The optical and SAR data used for the experiment are
SPOT and ERS data, respectively. The data were
provided by SPOT Image, a partner in this project.
Each image contains 190 
 190 pixels and is mono-
channel, with 20-meter resolution, orthorectified with
a Digital Elevation Model (DEM) of the observed
scene. In this case problem (5), (6), when discretized
using the pixel structure of the images, has
2 
 190 
 190 = 72,200 independent variables and
has been solved with the optimization software pack-
age LANCELOT (see [2]).

Inspection of Figure 1 shows that the information
contained in the fused images is of higher quality than
that provided by the original images; the improved
quality can be seen, for example, in the straight lines
contained in the images.

An Image Fusion Approach to An Inverse
Scattering Problem

The data fusion approach described in the print
version of this article was also used in a second prob-

Figure 1. Original SAR (a) and optical (b) images, and fused SAR (c) and optical
(d) images. The unit in the x and y direction is given by the corresponding pixel
size (1 pixel = 20m x 20m). The white areas represent high values (gray level =
255) and the black areas low values (gray level = 0) of the pixel variable.
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lem: the numerical inversion of electromagnetic scattering data at different frequencies
(see [3]) collected at a scene in a laboratory experiment. This multifrequency inverse
scattering problem can be formulated more precisely as follows: Reconstruct the
refraction index of a cylindrically symmetric (along the z-axis) inhomogeneity from
some knowledge of the scattered electromagnetic waves arising from the interaction of
the inhomogeneity with known incident electromagnetic waves (see Figure 2).

The incident electromagnetic waves are time-harmonic plane waves linearly polar-
ized along the axis of symmetry of the cylindrical inhomogeneity. We assume that the
cross section of a cylinder containing the inhomogeneity can be chosen to be a compact
set of the plane. In that case the electromagnetic scattering problem can be reduced to
a problem in two dimensions for a scalar field (see [3], [6]). That is, the observed scene (i.e., the cross section of a rectangular
cylinder containing the inhomogeneity) is a compact region of the plane and contains one or several subregions that, in turn, contain
the (cross section of the) inhomogeneities used as scatterers when a known incident electromagnetic field of the type described
above hits the inhomogeneities. We assume that the refraction indices of the observed scene are unknown functions of the frequency
f of the electromagnetic waves used in the scattering experiments. From knowledge of the incoming electromagnetic fields and of
the corresponding scattering data (i.e., the electric far fields) at different frequencies, we want to reconstruct the refraction indices
of the scene at the frequencies used in the experiments.

The scattered data collected at each frequency form a data set. These data sets can be inverted either one by one or jointly, in a
data fusion procedure. The basic underlying assumption in the fusion procedure is that the refraction indices of the scene at the
different frequencies are piecewise-constant functions and that their gradients have the same support.

For i = 1,2 we define mki(y) = 1 – nki(y), where nki(y) is the refraction index of the scene considered as a function of the location
in the scene y � R2 and of the wave number ki (corresponding to the frequency f = fi considered), and the data uki are the scattered
electric far fields generated when the inhomogeneity is hit by the incoming electromagnetic plane wave ui

ki. For i = 1,2 in the Born
approximation, the operator Fki, which models the measurement process, is expressed by a Fredholm integral operator of the first
kind. That is, the equations (1) are of the form:

                                                                                                                                                                                                    (7)

where {  is the imaginary unit, x̂ = x̂ /||x||, x � 0 and α̂ , with || α̂ || = 1, is the direction in which the plane wave  ui
ki
 propagates.

����� is the Euclidean scalar product.
Comparing equations (1) with equations (7), for i = 1,2, we identify the two unknowns mi with the quantities mki = 1 – nki, the

data ui with the electric far fields uki( x̂ , α̂ ), and the operators Fi with the integral operators defined on the right-hand side of formula
(7).

With these correspondences in mind, we solved the constrained optimization problem (3), (4), taking Si(mki) = S�1
, �2

(||
     ~mki||), i = 1,2  (where  ~mki, i = 1,2, is a smooth approximation of mki, i = 1,2) as structure operators and choosing the penalty
term G(.,.) in (3) as follows:

                                                                   G(mk1,mk2) = 	1||mk1 – m*
k1||

2 + 	2 ||mk2 – m*
k2||

2.                                                       (8)

In (8) 	i, i = 1,2, are suitable positive penalty parameters and m*
ki, i = 1,2, are two approximations of the unknowns obtained

in the separate solution of the two equations (7) for k = k1 and k = k2, respectively—that is, the solution of two distinct single-
frequency inverse scattering problems by the procedure presented in [6]. The integral equations (7) are ill-posed.

The fusion procedure proposed has been tested on experimental data provided by the Institut Fresnel, CNRS, Marseille, France.
We used the software package LANCELOT (see [2]) to obtain the numerical results presented in Figure 3, with k = 83.83m–1 and
k2 = 167.67m–1 as wave numbers in the fusion problem. The inhomogeneity is a metallic “U”-shaped target, made from a
0.08m 
 0.05m rectangle with a rectangular (0.075m 
 0.04m) cavity. Because the target is metallic, we are outside the region
of validity of the Born approximation. Nevertheless, the inversion procedure described in this article seems to work reasonably well.
The obstacle is contained in an r 
 r square (r = 0.1m), and the unknowns mk1, mk2 are approximated by piecewise-constant
functions on the uniform rectangular grid in which r = 0.1m and in which there are N = 64 rectangular grid elements in each
coordinate direction. The resulting optimization problem has 4 
 64 
 64 = 16,384 independent variables.

In Figure 3, m+
k1,m

+
k2 represent the “fused” images, i.e., the minimizer that is the solution to the optimization problem that models

the fusion procedure.
The numerical results obtained with the proposed fusion procedure show accurate reconstructions of the inhomogeneity. The

presence of nontrivial simulators Fi, i = 1,2, in the fusion problem (3), (4) and their ill-posedness make difficult the use of large
numbers of independent variables in the discretized problem.

Figure 2. The inverse scattering problem.
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Conclusions

The fusion procedures described in this
article have proved to be computationally
efficient and to yield good results. Because
the number of independent variables in the
discretized problems can be large, some
particular structure—sparsity, for ex-
ample—must be exploited in the discretized
version of the optimization problem.

In the case of images with large numbers
of independent variables, one possible idea
is to attack the numerical fusion problem
by a domain decomposition approach simi-
lar to that usually employed in the numeri-
cal treatment of PDEs to exploit the com-
putational power of parallel machines (see
8). A second approach is to sparsify, when
possible, the discretized version of equa-
tions (1) with, for example, wavelets.

We conclude by mentioning two prob-
lems now under investigation in the fusion community: (i) identification of fusion procedures of practical value when huge numbers
of images of the same scene must be fused, and (ii) definition in mathematical terms of the “higher quality” sought in fused images
as compared with the original images used in the fusion procedure.
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Figure 3. (a) The real part of m*k1
, (b) the imaginary part of m*k1

, (c) the real part of m*k2
, (d)

the imaginary part of m*k2
, (e) the real part of m+

k1
, (f) the imaginary part of  m+

k1
, (g) the real

part of m+
k2

, (h) the imaginary part of m+
k2

. The real parts  range from –103.35 to 0, and the
imaginary parts from –152.66 to 0, on a linear gray-scale that associates black with lower
numbers and white with higher numbers. Units in the x and y directions are meters.


