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Ensemble Kalman Filters Bring
Weather Models Up to Date
By Dana Mackenzie

‘Twas the morning after Christmas, and in Santa’s wake an unforeseen
visitor descended upon Europe. On December 26, 1999, a storm called
Lothar barrelled out of the North Atlantic with hurricane-force winds. In
Versailles, at the French royal palace, gusts of more than 100 miles per
hour toppled ten thousand trees, including a Corsican pine that had been
planted by Napoleon. Across Europe, three and a half million people lost
electricity, some for as long as 20 days. More than 100 people and 400
million trees died as a result of the storm, which finally dissipated over
Poland.

The storm caught most European weather services with their pants
down. Britain, Germany, and Switzerland predicted Lothar only 18 hours
before landfall. The French weather service, Météo-France, did better,
issuing storm warnings 30 hours in advance—but even they reduced the
forecasted wind speeds from 90 mph to 70 mph because their computer
models were so far out of line with the British ones.

Why did European weather forecasters, for the most part, strike out on
the storm of the century? Would better satellites or more powerful
computers have helped? Surprisingly, the answer seems to be no. The
most critical weakness of the weather models came in a little-known area
called “data assimilation.” As meteorologist Per Unden, of the Swedish
Meteorological and Hydrological Institute, wrote a month later, “The
forecast problems [were] most likely due to data assimilation difficulties only.”

Data assimilation is the glue that binds raw data with the physics-based equations that go into computer weather models.
These equations, like all differential equations, require “initial values” to be fed into them. If you tell them the temperature,
velocity, and pressure of the air in every cubic inch of the Earth’s atmosphere, the equations can predict how that state will
evolve. The problem is that nobody knows the correct initial conditions. Observations from balloons, buoys, and satellites
provide some information—but only for specific places and times. And instruments can always break or malfunction. The
weather service’s own previous forecasts also offer an abundance of information, but some of it will be outdated or incorrect.

“If either the forecast or the measurement is terrible, we should ignore it,” says Dennis McLaughlin of the Massachusetts
Institute of Technology. “But in most cases, each contains some information.” The trick is to blend the two sources,
integrating new data into the model without tossing out the still-valuable information embodied in the old predictions.
Atmospheric and oceanic scientists are constantly looking for better ways to do this. Some of the most promising schemes
are actually new variations on an old idea: Kalman filters, a data assimilation method that has been used for years in inertial
guidance systems for airplanes and spacecraft. Perhaps their most famous application to date was guiding the Apollo
spacecraft to the Moon.

From Yesterday’s Rocket Science to Today’s Weather

Though one is notoriously precise and the other notoriously imprecise, rocket science and weather science actually have
a lot in common. Rocket engineers have to reconcile a spacecraft’s current sensor readings with differential equations that
tell them where it ought to be, based on their (probably imperfect) knowledge of its past. When the designers of Apollo
needed a way to blend these two sources of information, they found it in Kalman filters.

The idea behind Kalman filters can be traced back to a simple calculus problem. If you have two measurements, x1 and
x2, of an unknown variable x, what combination of x1 and x2 gives you the best estimate of x? The answer depends on how
much uncertainty you expect in each of the measurements. Statisticians usually measure uncertainty with the variances, σ2
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Radar image obtained during the storm Lothar, which,
with no warning to speak of, wreaked havoc on Europe in
December 1999, causing more than a hundred deaths,
destroying some 400 million trees, and leaving millions
without water or electricity.
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This equation is per-
fectly consistent
with McLaughlin’s
comments: If one of
the variances (σ2

2,
say) is infinite, then
you should use the
other variable (x1) as
your estimate. But if
both variances are
finite, the formula
tells you the correct
weights to assign
them.

In a Kalman filter,
the first measure-
ment, x1, comes from
sensor data, and the
second “measure-
ment,” x2, is really
not a measurement
at all: It is your last
forecast of the
spacecraft’s trajec-
tory, or the state of
the atmosphere. In
real applications,
these measurements
are not numbers, but
vectors. In the case
of the Apollo space-
craft, the vectors
had a few tens of
components. The
state of the atmo-
sphere, on the other
hand, is represented
by a vector with tens
of millions of com-
ponents. In the top-
of-the-line model of
the European Cen-
ter for Medium-
Range Weather
F o r e c a s t s
(ECMWF), the at-
mosphere over Eu-
rope and the North
Atlantic is de-
scribed by six
pieces of data at
each point in a
500 × 500 × 50
grid, or 75 million
numbers in all.

For forecasts of a
vector quantity, the
scalar variances, σ2

1

and σ2
2, are replaced

by two covariance
matrices, which

Ensemble Initial Conditions 24 December 1999

Lothar (T+42 hours)

Slight changes in initial data result in dramatically different forecasts. Top, weather forecasters’ best estimate of
atmospheric conditions (contours represent isobars of pressure) on December 24 (“Analysis”), along with 50 slight
perturbations. Bottom, the ECMWF model’s best-guess forecast (“Deterministic prediction”), along with the 50
ensemble members and a map of the conditions actually observed (“Verification”), 42 hours later; shading indicates
low pressure. Ensemble methods, as results like these show, can detect in advance the possibility of weather that
differs markedly from the best-guess forecast. Courtesy of the European Center for Medium-Range Weather
Forecasts.
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represent the uncertainty in the measurements and the uncertainty in the forecasting model, respectively. (They also take into
account any correlations between uncertainties. If, for example, the temperature in my town is higher than expected, then the
temperature 10 miles down the road is likely to be higher than forecast as well—the two errors are positively correlated.) As the
pioneering control theorist Rudolph Kalman discovered in 1960, when the weights attached to the data and the previous forecast
are chosen to minimize the variance of the new forecast, they automatically optimize the weights attached to all previous data as
well. Mathematically, Kalman’s procedure is a standard least-squares estimate, but computed in a unique, sequential way. When
new data arrives, the rocket controller (or weather forecaster) does not need to haul out all the old sensor data in order to update
the rocket’s trajectory (or the weather forecast). All that’s needed is the most recent forecast, which has the previous sensor data
built into it.

Kalman filters are about as sweet a method as you can find in applied mathematics. They are provably optimal if the differential
equations describing the system are linear, and their sequential structure makes them ideal for real-time computation. But they did
not catch on right away in meteorology. The first meteorologist to advocate them was Michael Ghil of the University of Califor-
nia at Los Angeles, in a lecture at an ECMWF workshop in 1980. “I was basically laughed off the stage,” Ghil says, perhaps with
a touch of exaggeration. “But now you have 200 or 300 people working on them.”

When adapting Kalman filters to weather forecasting, meteorologists faced two immense problems, according to Ghil: “Size and
nonlinearity.” The size problem needs little explanation. If the state vector has 75 million components, then the covariance matrices
are 75-million-by-75-million arrays—too much data for even the most powerful supercom-puter to cope with in real time.

Nonlinearity is more subtle but equally deadly. To make the Kalman filter work, the user needs a statistical model for the
observational errors and for the errors in the computer mo-del (which “propagate” the obser-vational errors through time). It is easy
to believe that measurement errors will have a Gaussian distribution—that is, they will follow a bell-shaped curve, with most of
the errors close to zero and only a smattering of larger errors (the tails of the curve). But the errors propagated by the model will
follow a bell-shaped curve only if the differential equations are linear—if, in other words, small chan-ges to the initial conditions
produce only small effects. But this is emphatically not the case in the real atmosphere or ocean, where propagated errors can follow
a very different distribution, with, for example, two humps instead of one.

Nothing could illustrate this point better than the storm Lothar. When 50 different versions of the December 24 weather map—
virtually indistinguishable to the naked eye—are plugged into the ECMWF weather model, about half of them forecast no storm
on December 26 (see illustration on this page). (Among those forecasting no storm was ECMWF’s best estimate of the atmosphere’s
state on December 24.) About 40% of them forecast a whopper of a storm. Between the two groups there is almost no middle ground.
Clearly, the atmosphere on December 24 was near a tipping point—it could have gone either of two ways, and it tipped toward a
history-making storm. Perhaps something as small as the turbulence of Santa’s sleigh made the difference.

A simple, though somewhat time-consuming, solution is to run 50 versions of every forecast, watching for possible outcomes
that are quite different from the favored prediction. This approach is called “ensemble forecasting,” and most weather services are
experimenting with it. But it is not really the most principled approach, because it doesn’t change the data assimilation system itself.
More radical is a solution called an ensemble Kalman filter—which may also solve the size problem that has kept Kalman filters
from becoming standard.

The Power of the Ensemble

Ten years ago, Barry Cipra reported in SIAM News (August 1993) that, according to control theorists, the Kalman filter “doesn’t
handle any serious nonlin-earity” and the proposed remedies were “just too complicated.” Cipra then added, prophetically: “But
if history teaches any lesson, it’s that everything could change with the appearance of one or two new papers.”

The paper he foresaw in his crystal ball may have appeared the very next year, published in the Journal of Geophysical Research
by a Norwegian oceanographer, Geir Evensen. (A Canadian meteorologist named Peter Houtekamer was not far behind him.)
Evensen’s idea was to use an ensemble to update not only the forecast, but also the covariance matrices. The advantage, Evensen
wrote in a more recent paper, was this: “Instead of storing a full covariance matrix, we can represent the same error statistics using
an appropriate ensemble of model states.” That is, if the ensemble has 50 forecasts, then all the essential information in the 75-
million-by-75-million covariance matrix can be obtained from a 50-by-50 matrix, the covariances between the ensemble members.

If this sounds a little too good to be true, bear in mind that the ensemble only approximates the error statistics. Evensen’s
“appropriate” glosses over the possibility that no small ensemble provides a good enough approximation. However, Evensen did
prove rigorously that his filter gets closer to the standard Kalman filter as the ensemble gets larger. The practical question is, how
big is big enough? Does a 50-member ensemble contain enough information from the full covariance matrix to provide a good
forecast?

The answer will come only through operating experience. So far, according to Houtekamer, tests of simpler model systems at
the Meteorological Service of Canada (MSC) have been encouraging. Next year, the MSC will become the first national weather
service to use ensemble Kalman filters in actual forecasts. “At first it will be invisible,” says Houtekamer, “except that forecasts
from day 3 to day 10 may become a bit better.” But the real value of the technique should lie in more realistic estimates of forecasting
errors, and better early warning of low-probability events like Lothar. As for other countries, Houtekamer says, “As soon as we have
a convincing demonstration here, the (U.S.) National Weather Service will probably do the same.”

Meanwhile, meteorologists and oceanographers continue to explore other ways of simplifying and improving Kalman filters.
Some are looking for ways to cut the number of variables that describe the state of the atmosphere down from millions to just a
few that really matter. “Most people believe the ocean and the atmosphere are governed by a much smaller subset of variables,”
says Bob Miller, an oceanographer at Oregon State University. “There might be a curved surface in a million-dimensional space
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that carries the essential behavior. If we could lay our hands on that, we would be ahead of the game.”
As an example, Miller cites the Kuroshio, a Gulf Stream-like current that flows off the coast of Japan. The Kuroshio switches

back and forth between two distinct modes, each of which is stable for years at a time. In one mode, the current hugs the coast; in
the other, it veers off the coast and comes back, creating a large offshore eddy. “This is typical nonlinear behavior,” Miller says.
“There are two distinct equilibrium points. Once you draw that picture qualitatively, then mathematical theorems tell you that this
is a fundamentally two-dimensional system.”

In this much simpler system, oceanographers could easily apply a standard Kalman filter. Miller argues, though, that a better
choice would be a “nonlinear filter” based on maximizing the likelihood of a correct prediction rather than on minimizing the
variance. “If you go out in the evening with a shotgun and see two flocks of ducks, and you aim for the least-squares location, you
will go home hungry,” Miller says. The maximum-likelihood approach is to aim for one of the flocks instead.

For now, scientists are still searching for those two dimensions in a million-dimensional haystack. It is probably too early to
predict whether ensemble filters or dimension-reducing methods will win in the end; perhaps each one will find its own niche. But
either way, to (mis)quote an old Star Trek episode: “Resistance is futile. Your data will be assimilated.”

Dana Mackenzie writes from Santa Cruz, California.


