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A Tour of TSP Results
Makes for Optimal Community Lecture
By James Case

Opening the 2003 I.E. Block Community Lecture, “The Traveling Salesman Problem and Optimization on a Grand Scale,” Bill
Cook of Georgia Tech pointed out that actual traveling salesmen have rarely given much thought to routing problems—unfriendly
dogs and unpleasant accommodations rank higher on their lists of concerns. As evidence, he cited a variety of 19th- and 20th-
century guides and manuals for the business traveler, few of which devoted more than a passing remark to routing issues.

Among the first to recognize the problem’s potential import was Austrian mathematician Karl Menger, who called it “the
messenger problem” in 1930. Hassler Whitney referred to it as “the 48 states problem” in 1931 and 1932, and Merrill Flood ran
across it in 1937 while routing New Jersey school buses. Practitioners P.C. Mahalanobis in Bengal and R.J. Jessen in Iowa
encountered a purer form of the problem during the 1940s, while seeking to determine the least time-consuming order in which
a single team of soil testers (as opposed to multiple school buses) might visit (along with their bulky equipment) each of an assigned
list of testing sites. Routing considerations were particularly important to them because soil testing itself is not very time consuming,
meaning that testers spend most of their time on the road. Flood later worked extensively on the TSP—mainly at RAND in the
aftermath of World War II—but confessed to A.W. Tucker near the end of his life that he didn’t know who first bestowed the
“peppier name” on what he himself always thought of as “Whitney’s problem.”

The TSP continues to be of interest for a variety of reasons: It is among the easiest of the NP-complete problems to state, it has
important applications of its own, it often forms an identifiable part of other practical problems, and it serves as a convenient test
problem for general methods of discrete optimization.

The TSP is most easily stated in terms of the complete graph on N vertices. Given (for each 1 < i ≠ j < N ) the cost cij of
traversing the edge ij between vertices i and j, one can compute the cost of traversing any path Γ composed of adjacent edges by
adding up the costs cij for which ij ∈ Γ. Missing or non-navigable edges ij can be accommodated by writing cij = ∞. It then makes
sense to ask—as the TSP does—for the lowest-cost path Γ that visits each vertex exactly once before returning to its starting point.
Such a path will naturally consist of exactly N edges.

A TSP is called symmetric if cij = cji for each ij, and geometric if the cij’s are in constant proportion to the Euclidean distances
ρ(i,j) between points (vertices) i and j in the plane. In that case—though not in general—the cost matrix will satisfy the triangle
inequality  cij + cjk > cik, which simplifies the TSP slightly. Because the edges in an
optimal tour Γ* can never cross in a geometric TSP,* every optimal tour constitutes a
simple closed curve in the plane, and by virtue of the Jordan curve theorem must
surround a bounded subset thereof. One can therefore represent Γ* by shading the
bounded set, as is done for the optimal tour of 15,112 German cities shown in Figure
1.

An obvious application of TSP software is to the coin-collection problem faced by a
pay telephone owner. It is natural for anyone owning a substantial number of such
phones to seek an optimal (shortest-time) tour of their several locations. One-way
streets and traffic patterns that change with the time of day require that standard TSP
solvers be modified for the purpose. Another application was found by a baseball fan,
who designed an optimal tour of Major League Baseball’s 30 active ballparks. I am not
aware that the plan has been mo-dified for the 2003 season, during which the Montreal
franchise played a number of its home games in Puerto Rico.

More important applications arise in genome sequencing, genetic engineering, VLSI
fabrication, and space science, to name but a few. As an example of the latter, Cook
mentioned that a team of engineers from Hernandez Engineering in Houston and
Brigham Young University have experimented with the use of TSP software to optimize
the sequence of celestial objects to be imaged by two satellites in the proposed NASA
Starlight space interferometer program. Their goal was to minimize the fuel consumed
by the satellites (interferometers) as they train in unison on each in turn of the designated
celestial objects selected for observation on a given date. The “cities” in this application
are the celestial objects to be observed, while cij is the quantity of fuel required to retarget
a satellite from object i to object j. No modification of standard TSP software was required for this project.

Other applications require substantial modification. A team consisting of Cook, David Applegate, Sanjeeb Dash, and Andre
Rohe, for instance, recently received a significant cash prize for demonstrating that the winning solution in the 1996 Whizzkids

Figure 1. Jordan curve representation of
the optimal tour of 15,112 German cities.

*If edges ik and jl did cross, they would constitute the diagonals of a quadrilateral ijkl, and could profitably be replaced by a pair of opposite sides.
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competition was in fact optimal. The problem consists of finding the best collection of routes for four newsboys to deliver papers
to 120 customers.

An important milestone in TSP history was reached in 1954, when George Dantzig, Ray Fulkerson, and Selmer Johnson
described a method for solving TSPs, and demonstrated its power by solving a 49-city example. This was an impressive feat at the
time, given the computing power then available. Considering only the symmetric TSP, the researchers strung the cij’s out into a
(column) vector c of dimension N(N – 1)/2, and considered its inner product c´x with an indicator vector x of equal length. They
set the component of x corresponding to an edge ij equal to 1 if they wanted to include that edge in the current tour, and to 0 otherwise.
This associated every subset of the edge set with a vertex of the N(N – 1)/2-dimensional hypercube H, and allowed them to observe
that the set S of allowable tours corresponds to the intersection of v(H)—the vertex set of H—with a certain linear manifold M in
the Euclidean space containing H. It also allowed them to rephrase the TSP as follows:

                                                                   Minimize c´x subject to x ∈ S.                                                                              (1)

Indeed, they could replace the discrete feasible set S in the specification (1) with K = co(v(H) ∩ M)—where co(W) denotes the
convex hull of W—because the minimum value of a linear functional over a compact convex feasible set is always attained at an
extreme point of the latter.

They then relaxed the constraints on x to allow its components to assume values in the interior of the interval [0,1], as well as
at its endpoints, to arrive at the problem

                                                                   Minimize c´x subject to Ax < b,                                                                          (2)

where Ax < b is a system of linear equalities and inequalities satisfied by all x ∈ S, and observed that the solution of (2)—which
they were able to obtain with the help of the simplex method—furnishes a lower bound on the solution of (1). Indeed, (1) differs
from (2) only in specifying a more exclusive set of feasible vectors x. Finally, the researchers observed that if x^ ∉ K is a solution
of (2), then x^  can be separated from K by a hyperplane a´x = b and the inequality a´x < b can be appended to the system Ax < b
to yield a more exclusive version of (2), furnishing a necessarily tighter lower bound on the solution of (1). And solution of the
modified version of (2) gives a still tighter lower bound on the solution of (1), and so on. The hope is therefore that, by iterating
the foregoing procedure, researchers will eventually encounter a version of (2) whose solution does belong to K, and therefore
solves (1) as well as (2).

The problem for which Dantzig, Fulkerson, and Johnson carried all this out involved cities located in each of the lower 48 states,
plus Washington, DC, with distances obtained from a road atlas. They simplified the problem somewhat by removing Baltimore,
Wilmington, Philadelphia, Newark, New Jersey, New York, Hartford, Connecticut, and Providence, Rhode Island, from their map,
solving the reduced problem, and then inferring a solution to the original problem from the fact that the missing cities all lie along
the shortest path from Washington to Boston.

The three researchers thanked I. Glicksberg for suggesting the method by which they constructed the hyperplanes a´x = b
needed to generate the requisite sequence of type (2) problems. In his community lecture, Cook pointed out that any integer linear
program can be attacked in more or less the same way—given an adequate method for generating separating hyperplanes—and
remarked on the “breathtaking elegance” with which Ralph Gomory’s cutting-plane algorithms satisfy this need.

Cutting-plane methods, although they are effective for problems of small to moderate size and furnish demonstrably optimal
solutions on termination, seldom terminate within an acceptable time when applied to large problems. As a result, ongoing research
tends to focus on approximate methods capable of solving remarkably large TSPs to within a fraction of 1%. To demonstrate the
effectiveness of such methods, Cook exhibited a tour of 24,978 cities in Sweden that was 855,597 km long, and observed that the
software that generated it furnished the additional information that no tour can be shorter than 855,528 km. The TSP is therefore
solved to within an “optimality gap” of 0.008%. Methods that do this consist of two parts: an algorithm for generating low-cost
tours, and another for producing lower bounds on the cost of any tour.

The method Cook described for generating low-cost tours is an iterative one, beginning with an arbitrary tour and improving it
through a succession of “k-swaps.” A k-swap is performed by removing k edges from
the current tour and replacing them in all possible ways to find the cheapest
alternative. It is followed by another such swap, and then another, until either the
optimality gap is acceptably small or the allotted time has expired. Such methods were
first explored in 1973 by S. Lin and B.W. Kernighan, who employed only 2-swaps,
and improved in 2000 by K. Helsgaun, who advanced to 5-swaps. Such advancement
is complicated by the fact that the number of possible k-swaps grows rapidly with k,
being 1 when k = 2, 148 when k = 5, and 2,998,656 when k = 9. Cook and his
collaborators found the Sweden tour using 9-swaps.

The problem of finding acceptable lower bounds on the cost of any tour is most
easily addressed for geometric TSPs. If, for instance, the points 1,2,3,4,5 can be
surrounded by disjoint discs of radius r1, r2, r3, r4, r5 cm, respectively, as indicated in
Figure 2, then no tour of 1,2,3,4,5 can be shorter than 2r1 + 2r2 + 2r3 + 2r4 + 2r5

cm, because it is impossible to get from i to j without traveling ri + rj cm. Moreover,
the radii of the largest disjoint discs surrounding the points 1,2,3,4,5 in Figure 2 can

Figure 2. No tour of the cities 1,2,3,4,5 can
be shorter than 2r1 + 2r2 + 2r3 + 2r4 + 2r5 cm in
length.
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be found by solving the following LP:

Maximize   2r1 + 2r2  + 2r3 + 2r4 + 2r5

 subject to
ri + rj < ρ(i,j) � 1 < i ≠ j < 5

and ri > 0 � i.

This idea can be extended to groups of cities that seem likely (if not certain) to be
visited in succession by surrounding them with “moats” of width w, as indicated in
Figure 3. Every tour of those five cities has length at least 2(r1 + r2 + r3 + r4 + r5) + 2w,
and the optimal values of r1, r2, r3, r4, r5, and w can again be determined by solving an
appropriate LP.

It was by combining the foregoing insights with a number of more (pedestrian and)
familiar ones that Cook and his collaborators obtained their quite excellent lower
bound for tours of Sweden. Such pictures are most informative when colorized, and Cook combined a host of colored pictures with
a sampler of exciting results to create a community lecture that both informed and entertained.

Readers interested in exploring the topic further are encouraged to begin with Bill Cook’s Web site: www.math.princeton.edu/tsp.

James Case writes from Baltimore, Maryland.

Figure 3. The portion of any tour that
enters and exits the area enclosed by the
indicated moat, and that visits en route all
the cities within, must be at least
2(r1 + r2 + r3 + r4 + r5) + 2w cm in length.
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