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Inpainting and the Fundamental
Problem of Image Processing
By Jianhong (Jackie) Shen

“Inpainting” is the art world’s term for what researchers in image processing call “image interpolation.” In image processing,
the fundamental problem is to answer the question “What do we mean by images?” Without knowing what images are, we could
not hope to reconstruct missing data—this is the connection between inpainting and the fundamental problem of image processing.

As part of a report on SIAM’s first conference on imaging, Guillermo Sapiro (SIAM News, Vol. 35, No. 4, May 2002) gave a
detailed account of the motivations and numerous applications of image inpainting. It was Sapiro’s group, in describing their first
third-order PDE-based inpainting model [1], who first borrowed the term “inpainting’’ from museum restoration artists. At UCLA,
we have taken a different approach, developing inpainting models based on the Bayesian rationale, where the answer to the key
question in imaging processing—that is, the identification of appropriate image priors—plays a critical role. Our approach is briefly
described here; most of the papers mentioned can be found on the Web site of UCLA’s image processing group (www.math.ucla.edu/
~imagers).

The Inpainting Problem

Let � denote a complete image domain, often a rectangular area on your computer screen, or more generally a finite Lipschitz
domain in 2� . Certain factors, such as object occlusion in visual fields and packet loss in wireless communication, result in a subset
G of � for which image data are missing or inaccessible.

The goal of inpainting is to recover the original ideal image u on the entire domain �, based only on the partial (and usually
distorted) observation u0|�\G.

Because most objects are not transparent, human observers experience the occlusion effect almost all the time. Still, we see the
world as perfectly ordered and integrated, rather than as a cluttered landscape of independent discrete pieces. This is nature’s answer
to the inpainting problem. Vision and cognitive scientists believe that human beings, without being aware of it, constantly and
cleverly apply the rules of Bayesian inferencing and decision making.

Ingredients of Bayesian Inpainting

In the Bayesian framework, inpainting is defined as maximizing the posterior probability p(u|u0, G). By Bayes’s formula,
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In most applications, the mechanism leading to information loss is independent of the image content, implying that p(u|G) = p(u).
Once u0 and G are given, p(u0|G) is simply a normalization constant. In essence, then, we are seeking to maximize the product

of the data model p(u0 | u, G) and the image prior model p(u). A typical data model in image processing involves blurring followed
by white noise pollution: u0|�\G = (Ku + n)|�\G. Here K is a blurring operator that is linear and  lowpass: K1 = 1; n is additive Gaussian
white noise.

Working with logarithm likelihood functions E = –1/β ln p, we want to minimize

   E[u | u0, G] = E[u0 | u, G] + E[u],

up to an additive constant. If β =  1/(kT), with k being the Boltzmann constant and T the absolute temperature, then p =  1/Z exp(–
β E) is formally the Gibbs formula from statistical mechanics that links the energy of an ensemble to its likelihood. (Here Z is the
partition function defining the free energy.)

With Gaussian noise the data model becomes
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where dx = dx1dx2 is the Lebesgue area element, �2 the variance, and |�\G| the Lebesgue measure. Essentially, the key to the
inpainting problem is to employ a suitable image prior p(u) or E[u]—which is the fundamental problem in image processing.
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Fundamental Problem of Image Processing

What are images, mathematically speaking? Engineers have worked in image processing for nearly a century without asking the
question. Why should mathematicians care about it now? In our opinion, the value of asking and answering this fundamental
question is no different from that of laying down the Hilbert space foundation for quantum mechanics. Without a satisfactory
answer, it may never be possible for image processing to become a genuine new branch of mathematics.

A general problem in image processing can be modeled as an input–output system [5]:

                                                                          0 Image Processor ,U U� ��

where the input U0 could be a single image or an observed image sequence; � is a linear or nonlinear image processor, such as
restoration and compression; and U is the image feature to be determined. In the inpainting case, for example, U0 = (u0, G) and
U = u. Knowing the class of objects U0 and U (or the definition and range domains of �) is thus crucial for effective mathematical
modeling, analysis, and computation of �.

Three major approaches have been taken to the fundamental problem:

Physical simulation. Images are generated via simulation of the underlying physical, chemical, or biological processes. Well-known examples
include images of fluid flows obtained by solving the Navier–Stokes equations, skin patterning generated by Turing’s celebrated diffusion–
reaction model, and self-similar patterns of leaves or natural landscapes simulated by iterated function systems. This approach to image formation
is most frequently applied in computer gra-phics.

Random fields. Images  are modeled as samples drawn from certain random fields. The primary goal of random field modeling is to understand
the probability distribution function p(u), especially when � is a matrix of digital pixels. Classic models are inspired mainly by Gibbs fields in
statistical mechanics, in which local energy constraints are imposed in the same way as in Ising crystals [7]. Random fields can also be learned
from an image database through such techniques as filtering and nonpara-metric estimation by the maximum entropy principle [11].

Function spaces. In this deterministic approach, appropriate function spaces are used to calibrate image regularities, measured in some energy
E[u]. Classic Fourier and spectral methods assume that images are drawn from L2(�) and that � � 2 2ˆ ,
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E u u u� � where û  is the Fourier

transform. Linear filtering theory assumes that images belong to the Sobolev space W1,2(�) and that their visual contents are measured by
� � 2 .

L
E u u� �  To acknowledge the importance of edges in human visual perception [8], Rudin, Osher, and Fatemi proposed the bounded
variation (BV) image model;  E[u] = ∫� Duis the total variation Radon measure [10]. BV or more general Besov images have been extensively
studied in wavelet theory as well. To explicitly single out edges, Mumford and Shah [9] proposed the well-known free boundary model for
piecewise-smooth images:
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where Γ denotes the jump set and H
1
 the one-dimensional Hausdorff measure, which is often replaced by length Γ in computation.

Geometric Image Models in Inpainting

We conclude with a discussion of inpainting models built on geometric image models, such as BV and Mumford–Shah images.
Our first inpainting model is based on BV images [3]. The complete inpainting model is to minimize
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The noise variance � 2 can be stat-istically estimated, and there is only one tunable constant, �. Define

� � � �\2

1
1 ,

\G Gx x
G 8

� �
� �

the so-called inpainting mask. The model then becomes
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which is very similar to the original Rudin–Osher–Fatemi restoration model, differing
only in that the Lagrange multiplier � is replaced by a fidelity function �G(x). Figure
1shows typical output from this model.

Existence is guaranteed, but uniqueness is not [2], which should not be seen as a flaw
because it models the uncertainty in Bayesian decision processes. Numerically, the
model is solved by computational PDEs. The formal first variation of Etv[u] leads
to
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where K* denotes the adjoint. This degenerate nonlinear elliptic-type equation is then
solved by viscosity approximation and linearization techniques.

The BV image model is geometry-motivated in that the first-order information, i.e.,
the length, is incorporated, as manifest in the co-area formula

� �

� �

Per :

length .

Du u d

u d

d

8 �d

d

�d

� �� � �

� � �

� �

�

Here the second equality is for regular functions only—a clear demonstration that total
variation is a clever way to sum up the lengths of all level sets.

The next inpainting model, based on Mumford and Shah’s object-edge model (see
Figure 2), seeks to minimize the inpainting energy

Ems[u, Γ|u0, G] =
E[u|Γ] + E[Γ] + E[u0|u, G],

where all the terms are as discussed earlier. This free boundary model has a nice Γ-
convergence approxi-
mation, in which Γ, usu-
ally a computational
headache, is approxi-
mated by a signature
function z(x) on �. z is
1 almost everywhere,
except along a narrow
band of Γ, where it
drops sharply (depend-
ing on a small control
parameter �) to 0.
Esedoglu and Shen [6]
have shown that
inpainting provides a perfect market for Γ-convergence approximation: Unlike segmentation, inpainting seeks only  the ideal image
u, not Γ or z. Γ-convergence approximation substantially lessens the computational burden by reducing the original free boundary
Euler–Lagrange equations to a coupled system of two well-behaved elliptic equations [6].

Both BV and Mumford–Shah images consider only the first-order geometry of level sets or edges, and are often sufficient for
classic tasks like restoration and segmentation. For inpainting, we have demonstrated that high-order geometric information like
curvature is necessary to avoid visual defects. The key tool is Euler’s elastica curve model
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where � denotes the curvature of a curve �. Originally studied by Euler in 1744 to model a one-dimensional elastic rod and later
employed by Birkhoff and de Boor as a nonlinear spline model, it was first introduced into computer vision by Mumford. By formally
imposing e[� ]on all the level sets, we obtain the so-called elastica image model [2]:

Figure 1. Bounded variation inpainting.
Top, a blurry image with 60 packets ran-
domly lost during the transmission pro-
cess; bottom, after deblurring and error
concealment by TV inpainting.

Figure 2. Mumford–Shah inpainting for disoccluding two disks occluded by a ring. Left, noisy image to be
inpainted; center, inpainting output u; right, inpainting output z.
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Similarly, by replacing the length energy in the Mumford–Shah image model by e[Γ], we obtained the Mumford–Shah–Euler
image model [2]. Except for some progress from the De Giorgi school, theoretical knowledge of these two models is still quite
limited. The associated formal Euler–Lagrange PDEs do come with the desired properties, such as nonlinear transport and
curvature-driven diffusion, which are essential for inpainting from the PDE point of view [4]. Numerical results based on nonlinear
PDEs and high-order Γ-convergence approximation also confirm their advantages for faithful inpainting.
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