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New Perspectives for Spectral and
High-Order Methods

With the next in a series of conferences on spectral and high-order methods scheduled for June 2004 at Brown University, a group
of organizers and other proponents of these methods, with the help of Gail Pieper of Argonne National Laboratory, put together the
following snapshot of the field for readers of SIAM News.

Spectral methods are great fun,” observes Michel Deville, a professor at l’Ecole Polytechnique Fédérale de Lausanne,
Switzerland. “It’s always a numerical nirvana when—for the first time—one observes that adding one or two polynomials to a basis
makes the error for smooth problems drop by a factor of 50 or even 100.”

Spectral methods have not always come in for such high praise. Although originating in early-20th-century work of Galerkin
and Lanczos, and put to limited use by meteorologists in the 1950s, spectral methods came into their own as a powerful tool for
scientific computing only with the advent of the fast Fourier transform. In the early 1970s, in a series of landmark papers, Steven
Orszag showed that spectral methods, and the closely related pseudospectral methods,
could be used to simulate incompressible turbulence with N 3 Fourier modes at a cost of
only O(N 3 log N) operations per timestep with zero numerical dispersion and dissipa-
tion. In a historic computation, Orszag and his colleague G.S. Patterson undertook the
first calculation of homogeneous isotropic turbulence at laboratory Reynolds numbers
with a 323 pseudospectral discretization. Today, computations using spectral methods
as large as 10243 are routine.

A Cube or the Whole Spectrum?

Spectral methods are named for the fact that the unknowns in the computation are the
coefficients of eigenfunctions of the differential operators in the governing equation.
The problem, in other words, is cast in terms of the spectrum of the unknown solution
field.

The unparalleled accuracy and efficiency of spectral methods clearly set them apart
from low-order finite difference and finite element techniques. Nevertheless, Deville
says, spectral methods were regarded with skepticism for a decade after Orszag’s initial
work. One of the major arguments against their use was that “people see the world
through a cube, or a sphere, or a cylinder, or the like.” That argument fell in the 1980s,

when A.T. Patera pub-
lished the first paper on
spectral elements. Spectral
elements combine the
rapid convergence rates of spectral methods with the geometric
flexibility of the classical finite element methods of applied mechan-
ics. Today, multidomain spectral methods are used to simulate a
variety of physical phenomena in complex domains, including pho-
tolithography, blood flow (Figure 1), and electromagnetic scattering
from aircraft (Figure 2).

Unstructured multidomain problems do require extra work, says
Paul Fischer, a computer scientist in the Mathematics and Computer
Science Division at Argonne National Laboratory. Fortunately, effi-
cient preconditioning techniques have been developed for spectral
methods, strongly enhancing their numerical performance. Precondi-
tioning techniques are pervasive in modern iterative methods for the
solution of large linear systems. Initially advocated for use in spectral
methods to treat complicated geometries, preconditioning techniques
are particularly effective in overcoming the ill-conditioning of high-
order methods, Fischer points out. Several preconditioning approaches
have been proposed, with the most promising based on domain
decomposition strategies developed by Olof Widlund and co-work-
ers.

Singularities present another challenge for researchers wishing to
use spectral methods. An important milestone in this area was reached

Figure 1. Vorticity contours in the cross-
section of a stenosed (narrowed) carotid
artery. The flow, laminar during the dias-
tolic phase (left), transitions to a turbulent
state during the systolic phase (right). The
calculation employed 2544 hexa-hedral
elements of order 7 and was carried out on
256 nodes of the TCS1 machine at the
Pittsburgh Supercomputer Center by S.
Lee, F. Loth, and P. Fischer.

Figure 2. Scattered field solution of Maxwell’s equations,
showing the Ex component of a horizontally polarized 600-
MHz plane-wave illuminating an aircraft head on, computed
in the time domain with the USEMe (unstructured spectral
element method) code developed by J. Hesthaven and T.
Warburton. The computation uses a body-conforming un-
structured grid with 250,000 fourth-order tetra-hedra.
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in the mid-1990s, when David Gottlieb and
Chi-Wang Shu showed that the Gibbs phe-
nomenon associated with Fourier recon-
struction of discontinuous functions could
be overcome with filters, which allow ex-
traction of the spectral information within
the otherwise oscillatory solution.

Figure 3 shows the results of such an
effort, a spectral calculation of two-dimen-
sional density contours of the Richtmyer–
Meshkov instability that occurs when a
shock passes through an interface, separat-
ing materials—typically gases—of differ-
ent densities. The instability deposits vorti-
ces on the perturbed interface, and the
resulting rollup of the interface enhances the mixing of the gases. As shown in the figure, the detail in postprocessed spectral results
can surpass that obtained with a fifth-order finite difference scheme, such as WENO.

Moving to a Higher Order

Researchers now recognize that the desirable properties of spectral methods can be achieved with many high-order formulations.
One such approach relies on modal bases. These hierarchical bases are made up of “bubbles,” approximations that vanish on the
element edges or faces. Modal bases, which researchers have been applying to solid mechanics problems for three decades, yield
excellent convergence rates for problems involving discontinuities, such as crack propagation. More recently, these methods have
been extended to fluid dy-namics.

In another approach, researchers have developed nodal bases for use with the triangles often employed to cover complicated
geometries. M. Taylor and B. Wingate, for example, obtain stable nodal bases by minimizing the determinant of the van der Monde
matrix; Jan Hesthaven and co-workers exploit the equivalence between Gaussian quadrature points and the distribution of freely
moving electrostatic charges.

A popular alternative to spectral methods is the p-version finite element method pioneered in the 1970s by
I. Babuška, J.T. Oden, B. Szabo, and others working in computational solid mechanics. Ernest Mund, a professor at l’Université
Catholique de Louvain, describes the method: “As in the classical FEM, one begins with a decomposition of the domain into
subdomains, or elements. Instead of using just linear basis functions within each element, however, p-FEM uses polynomials of
degree p to effect rapid convergence to smooth solutions.”

The p-FEM approach achieves the exponential convergence properties of spectral methods, but the computational complexity
is typically O(Ep6) for three-dimensional problems involving E elements. If the element types are restricted to tensor-product forms,
as in the case of the spectral element method, the p-version complexity can be improved to O(Ep4). For small values of p, however,
the constants in the complexity estimates can be quite important, and the O(Ep6) formulation is usually the most efficient.

A refinement added to many implementations of the p-version FEM also makes it possible to decrease the element size, h. This
option is desirable when singularities are present, which slows the spectral convergence rate. Refinement strategies for these hp
methods have been fully automated and optimized, guided by a rich theory developed by numerical analysts over the past three
decades.

As simulation becomes increasingly commonplace in science and engineering, high-order methods will be needed for the
solution of problems involving a broad range of spatial and temporal scales. High-order methods currently require considerable
programming overhead, Mund says. He believes, however, that greater sophistication in simulation software will ease this
difficulty.

A Glimpse at the Future of Spectral Methods

Climate modeling and weather forecasting have long been application areas for global spectral methods. With the development
of multidomain spectral methods, oceanography has emerged as another geophysical application. New spectral schemes have been
designed to cope with the complicated shapes of coastlines and river estuaries. In a recent paper, Mohamed Iskandarani and co-
workers show the utility of spectral discretizations, with the mesh in this case built of hexahedra and prisms, for such problems.
For reasons of data locality, spectral element methods are also gaining interest as an alternative to global spectral methods in climate
modeling. For example, the HOMME (High-Order Multiscale Modeling Environment) code of Richard Loft and Stephen Thomas
of NCAR is being developed as a dynamic core of future-generation community climate models.

The complex physics of non-Newtonian fluid flows presents many challenges to practitioners of spectral methods, including the
so-called high-Weissenberg-number problem. The Weissenberg number is a measure of the elasticity in a flow. For values larger
than 10–15, algorithms start to fail, and it is possible that convergence will never be achieved. Deville points out that the values
of the Weissenberg number easily reach 100 in industrial applications. Despite several recent attempts to overcome the convergence
problem, this remains an open area in which considerable research is still necessary. Clearly, advances are needed if simulations
of real-world situations are to be carried out. Improved modeling will be as important as improved numerical methods.

Undaunted by such challenges, Deville points to the progress already made. “Panta rei,” he says, citing the famous axiom of the

Figure 3. Density contour plots of Richtmyer–Meshkov instability as computed by
spectral (left) and WENO-5 (right) schemes at time 50 microseconds. The resolution of the
spectral scheme is 1024 Chebyshev polynomials and 512 trigonometric polynomials in
the x and y directions, respectively. Calculation by W.S. Don and D. Gottlieb.
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Greek philosopher Heraclitus; “all things flow.” Today, spectral methods cover not only complex fluid flows but also Maxwell’s
equations, image reconstruction, and quantum chemistry. “The range of applications of spectral methods,” Deville says, “has been
considerably enlarged in recent years, demonstrating the versatility of these methods and the broad scope of problems they can
tackle.”

Getting Started

In the 1977 SIAM monograph Numerical Analysis of Spectral Methods: Theory and Applications, Gottlieb and Orszag presented the first
unified description of the field, with an emphasis on numerical analysis and algorithmic considerations. Published almost a decade later (1987,
Springer-Verlag) was Spectral Methods in Fluid Dynamics, by C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Although more than
a dozen texts on the topic are now available, these two volumes continue to serve as primary references for practitioners of spectral methods.

Those wishing to implement spectral methods will find libraries and routines for high-order differentiation and integration, including the speclib
routines of Einar Rønquist, the pseudopack routines of Wai-Sun Don and Bruno Costa, and the USEMe code of Jan Hesthaven and Tim Warburton.
Perhaps the easiest place to start is Nick Trefethen’s book, Spectral Methods in Matlab (SIAM, 2000), which provides a set of codes and examples
for a variety of problems.

Another good source of information on spectral methods is the International Conference on Spectral and High-Order Methods, held every three
years. The next meeting, organized by the scientific computing group at Brown University, will be held June 21–25, 2004. Researchers interested
in delivering a paper or attending the lectures should visit the conference Web site: www.dam.brown.edu/icosahom2004.


