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Power grids, populations, large companies, banking systems, and other collections of numerous and highly interconnected elem-ents are subject to 
what George Papanicolaou of Stanford University calls “systemic risk.” As he explained in an invited talk at the 2012 SIAM Annual Meeting, each 
such system is susceptible to a type of “contagion” that, though triggered by seemingly unimportant events, is capable of destroying the whole if 
allowed to spread unchecked.

Early in the talk, Papanicolaou showed a schematic diagram of the global 
financial network (see Figure 1). Of course, every country has a financial market 
of some magnitude, and every such market trades (or can trade) with any other. 
Many markets and channels, however, are either too small or too faint to show up 
in a roughly quantitative diagram.

It is easy to imagine a similar diagram in which the spheres would represent 
major international banks, and the thickness of the connecting edges would repre-
sent the level of (net) indebtedness of one to another. In that case the edges would 
be directed, and the diagram could be used to assess the risk that the insolvency of 
even a few of the lesser institutions might spread throughout the global banking 
system. If the data were sufficiently reliable and up to date, it could even identify 
the banks best reinforced against the spread of insolvency.  

Modeling Systemic Risk
Though the modeling of such systems is in its infancy, Papanicolaou argues that 

certain existing models, developed for other purposes and subsequently analyzed 
in depth, shed welcome light on the manner in which local and global risks relate 
to one another. His exhibit A is an outgrowth of the dynamic Curie–Weiss model, 
developed long ago for the study of phase transitions in materials and studied in 
detail during the 1980s. At the heart of the model is a “mean-field interaction” 
between a (potentially large) number of otherwise independent (scalar) state vari-
ables and their arithmetic mean. Considerable work has been done in recent years 
on mean-field models, in large part because they are particularly amenable to in-depth analysis.

The model Papanicolaou presented consists of N linked stochastic differential equations involving a potential function V of a single real variable 
having just two distinct potential wells. A typical but by no means unique choice would be V(y) = ¼y4– ½y2. The equations are

                                                                dxj(t) = –hV´(xj(t)) dt + q(x(t) –xj(t)) dt + sdwj(t);  j = 1, . . . , N,

where x = (1/N )S N
j=1xj is the arithmetic mean of the individual xj’s and the {wj(t)}

N
j=1 are independent Brownian motions of “strength” s > 0. If q 

= s = 0, the equations reduce to the familiar dx/dt = –h grad V(x), in which h determines the relaxation time needed to restore equilibrium after 
a disturbance. If s = 0, the quantities xj (t) remain indefinitely in whichever potential well they started; one of the wells represents the normal 
(solvent, flourishing) state, the other the failed (insolvent, extinct) state. Alternatively, if q = 0, the motions are independent. Only if q > 0 and 

s > 0 are there tendencies toward both herd behavior (Papanicolaou 
calls it cooperation) and randomness, permitting the quantities xj (t) to 
both escape from and return to a particular potential well. The sche-
matic diagram shown in Figure 2 depicts the influences on a single 
system component xj (t).

It is known that the empirical risk density XN (t) := (1/N) S N
j=1dxj (t)

(·) converges weakly, in probability, as N®¥, to the solution u(t,·) 
of a suitable nonlinear Fokker–Planck equation. Loosely speaking, u 
can be regarded as the probability density of a random variable X¥(t) 
representing the centroid of an infinite population of points on a line. 
It can then be shown that, given h and q, there exists a critical value sc 
such that u exhibits one stable equilibrium if s ³ sc and two if s < sc. 
Furthermore, if h is small, u can have two stable equilibria only if the 
herding instinct dominates noise to the extent that 3s2 < 2q.

For V( y) = ¼y 4 – ½y 2, additional concrete results can be 
obtained by linearizing the differential equations about xj(0) = –1 "j,
the N + 1 linearized variables being dxj and dx. If they all vanish at t = 
0, then dxj(t) and dx(t) are Gaussian processes of zero mean and readily 

Understanding Systemic Risk in Financial Markets

Figure 1. The global financial market in 2005. The sizes of the 
spheres represent the magnitudes of the corresponding national 
financial markets, the thicknesses of the connecting edges the 
volume of traffic between them. From “Rethinking the Financial 
Network,” a speech given by Andrew G. Haldane, executive direc-
tor for financial stability, Bank of England, to the Financial Student 
Association, Amsterdam, April 2009. 

Figure 2. System failure occurs when x(t) migrates from the original poten-
tial well (left) to the well on the right.



calculable variance, provided that the ratios s2/N and s2/2(q + 2h) remain small enough for the linearizations to remain valid. All this reveals that 
(i) a stronger herding instinct (larger q) leads each herd member to believe that it can survive more violent shocks (larger s), and (ii) the effects 
of their own actions on the overall system are invisible to other herd members.

Under additional hypotheses, it is possible to estimate (in closed form) the risk that the system will fail in the precise sense that x(t) transitions from 
the healthy potential well to the unhealthy one. The resulting expression justifies the conclusions that (i) a large system is more stable than a small 
one; (ii) sooner or later, the dread transition will take place; (iii) any increase in the intrinsic stabilization parameter h reduces the risk of systemic 
transition; and (iv) a stronger herding instinct (larger q, with s2/q held fixed) increases systemic risk.

High-speed Trading
Having pretty well exhausted the potential of his modified Curie–Weiss model, Papanicolaou turned his attention to empirical 

studies of the real or imagined effects of “algorithmic trading” on market performance. Estimating that some 70% of all equities trading is cur-
rently algorithmic, he observed that over the last 10–15 years, the automation of exchanges, and the increasing use of high-speed, computer-driven 
algorithmic trading schemes—capable of assessing and electronically executing trades in mere fractions of a second—has spurred the development 
of new strategies that “execute trades based on complex and sophisticated trading signals.” Focusing on just three macroscopic properties of fin- 
ancial markets—their liquidity, their volatility, and their diversity—he summarized efforts to understand their combined effects on systemic risk.

The volatility of market indices is a familiar quantity, usually measured by the variance of day-to-day price increments. Liquidity is a more 
elusive quantity, in-asmuch as it refers to the amount of cash or cash equivalents (aka liquid assets) available to traders for the purpose of mak-
ing purchases, and is not directly observable. It is necessary, therefore, to develop “proxies” for liquidity, perhaps the most obvious being the com-
missions paid to brokers (who are not traders) for executing individual trades. The commissions reduce market liquidity by decreasing the amount 
of money available for additional trades. There is little doubt that the advent of electronic trading has decreased brokers’ commissions dramatically.  

The bid/ask spread on traded assets is another 
natural measure of liquidity: When the price would-be 
buyers are willing pay for a given asset differs little 
from the price would-be sellers are willing to accept, 
the volume of trade in that asset tends to increase, 
much as it would if traders had extra money to spend. 
Traders thus consider markets to be particularly liquid 
when the bid/ask spreads are unusually small. All told, 
Papanicolaou presented six measures of market liquidi-
ty, all of which tend to support the theses that volatility 
and liquidity are strongly and positively correlated, and 
that algorithmic trading has increased market liquidity 
in recent years.

With a particularly intriguing slide (see Figure 3), 
Papanicolaou compared the volatility of the S&P 500 
index (as measured by the published VIX statistic) for 
the years from 1992 to 2008 with the number of sig-
nificant eigenvalues of the empirical covariance matrix 
of the 500 individual stock price series. Each such 
eigenvector represents a group of issues that tend to 
move together, independently of other groups, making 
it possible to construct “diversified” portfolios—con-
sisting of a single issue from each of several indepen-
dent groups—that combine low risk with high reward. 
During the 1990s, when the VIX was consistently low, 
there were seldom fewer than forty such independently 
moving groups. But following the dot-com crisis of 
March 2000, and again during the financial crisis that 
began in 2008, the number of such groups dipped into 
the low single digits even as volatility soared, making low-risk/high-reward portfolios all but impossible to construct.

Papanicolaou concluded with the observation that investors are generally suspicious of reduced transaction costs and increased liquidity. Many 
would favor a “Tobin tax,” which would impede the flow of transactions by taxing them. Europeans, he said, are generally in favor of such measures, 
while the “free market” ideologues in Washington and on Wall Street are unalterably opposed. With or without such a tax, difficult questions will 
remain concerning the command and control of systemic risk. Who, Papanicolaou wondered, will perform the basic research necessary to answer 
such questions? Traders aren’t interested—they’re too busy making money. The banks aren’t interested—they get bailed out whenever they fall prey 
to risk of any kind. The regulators express interest but lack the necessary resources and know-how. Only academics, in his opinion, possess both the 
will and the skill to answer such questions.

James Case writes from Baltimore, Maryland

Figure 3. The number of independently migrating asset groups (eigenvectors of the price-
series correlation matrix) is inversely related to the volatility of the market, as measured by the 
published VIX statistic.


