
From SIAM News, Volume 44, Number 10, December 2011

By V. Caselles

Image inpainting, also known as “image completion” or “disocclusion,” is the recovery of missing or corrupted parts of an image in a given 
region O so that the reconstructed image looks natural (see Figure 1). It has become a standard tool in digital photography for image retouching 
(e.g., removal of scratches from old photographs), and intensive research is under way to convert image inpainting into a key tool for video 
and 3D cinema post-production (e.g., for object elimination or replacement). Besides its numerous applications to image and video editing, 
the problem is of theoretical interest in that its analysis involves an understanding of the self-similarity visible in the repetitive geometric and 
texture patterns that appear in almost any natural image.

Although it is impossible to do justice to all of the many research efforts under way, most inpainting methods in the literature can be divided into 
two groups: geometry- and texture-oriented methods. Techniques of the two types were introduced at almost the same time [13,21]; texture-oriented 
methods have proved better adapted to the production of natural-
looking images, although ideas from both have contributed to the 
production of state-of-the-art results.

This classification also represents the two main ideas underlying most 
work in image inpainting. With geometry-oriented methods, images can 
be modeled as functions with some degree of smoothness, expressed, for 
instance, in terms of the curvature of the level lines or the total variation 
of the image. Taking advantage of this structure, these methods interpo-
late the inpainting domain by continuing the geometric structure of the 
image (its level lines or edges), usually as the solution of a (geometric) 
variational problem or by means of a partial differential equation. Such a PDE can be derived from variational principles, as in [5,10,20,21], or inspired 
by phenomenological modeling [7,8]. The methods are local in the sense that the associated PDEs involve only interactions between neighboring 
pixels on the image grid. This implies that only the data around the boundary of the inpainting domain is used. These methods perform well in propa-
gating smooth level lines or gradients, but fail in the presence of texture.

Texture-oriented (also called exemplar-based) inpainting was initiated by Efros and Leung [13] in their work on texture synthesis using non-
parametric sampling techniques. This method exploits the self-similarity prior by directly sampling the desired texture to perform the synthesis. The 
value of each target pixel x Î O is copied from the center of a (square) patch in the sample image, chosen to match the available portion of the patch 
centered at x. Unlike geometry-oriented inpainting, exemplar-based approaches are non-local: To determine the value at x, the whole image might be 
scanned in the search for a matching patch. The self-similarity prior is one of the most influential ideas underlying recent progress in image process-
ing, especially in image denoising [9].

The synthesis of methods of these two types is a trend in current research. Variational analysis in particular is an appropriate tool for a unified 
treatment of local and non-local methods. As pointed out in [12], the problem of exemplar-based inpainting can be stated as that of finding a 
correspondence map G that assigns to each location x in the inpainting domain O a corresponding location G(x) Î Oc, the domain in which the 
image u is known. The unknown part of the image u|O is then synthesized using the correspondences G by u|O (x) = u(G(x)), x Î O. This basic 
idea has led to a set of powerful algorithms, some based on well-founded heuristics [11], others formulated variationally [4,12]. In the latter, 
the energy is usually highly non-convex and difficult to minimize [4]. Some authors, as in [19], have approached the problem of finding a cor-
respondence map by looking for a simpler optimization problem, formulated as probabilistic inference on a graphical model. One of the most 
effective optimization strategies relies on a relaxation of the problem, in which the unknown variables are the image (to be reconstructed) and 
the correspondence map, which appears as an auxiliary variable. The resulting algorithm can be regarded as an alternate optimization of the two 
variables. This is the approach pursued in [2,3,18,23, 25] in work combining the advantages of non-local variational models and an improved 
new algorithm that produces state-of-the-art results.

We can formulate the inpainting problem in a statistical mechanics framework, 
in which we maximize the self-similarity of the reconstructed image with a uniform 
prior for selecting equally similar patches, expressed as a maximization of the entropy 
[2,3,14]. This leads to a Gibbs energy functional for the similarity weights w(x, x¢) 
between points x Î O and points x¢ Î Oc. This general formulation covers inpainting 
as well as image reconstruction from a set of sparse samples, in which case annealing 
is recommended (letting the temperature go to 0 in the Gibbs energy) [14]. The cor-
respondence map formulation corresponds to the limit of the Gibbs energy when the 
temperature is allowed to go to 0. By choosing different similarity measures, we gen-
erate different functionals, which copy image intensities, gradients, or some combina-
tion of them. Features from geometry-based models can easily be incorporated, e.g., in 
the continuation of image gradients. Figure 2 illustrates the behavior of the algorithm.
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Figure 1. Inpainting problem. Left, the given image. Middle, the region O 
to be inpainted. For the inpainting problem, this region is provided  to the 
user, so that its computation is a separate problem. Right, inpainting result.

Figure 2. Left, the given image. Right, the inpainting result.



For the correspondence map, without the introduc-
tion of a particular regularization, the correspondences 
obtained exhibit piecewise-regular behavior; this is 
supported by our theoretical results [1]. This behavior 
is illustrated in Figure 3. The PatchMatch algorithm 
[6], which exploits the correlation between patches so 
that they can be found collectively, speeds up the com-
putation of optimal correspondences. The exponential 
behavior of the algorithm is presented in [1]. In some 
cases, there are no patches in the image that can be 
used to naturally continue the structures of the image 
beyond the boundary of the inpainting mask, as illustrated in Figure 4 (a 
wall in the Alhambra, Granada). It was by generating symmetric versions 
of the image that we were able to create the patches that permit the natural 
extension of the image.

The recent commercial interest in showing movies and sports or music 
events in 3D has motivated the development of post-production tools that 
assist in their acquisition or that eliminate unwanted objects, such as rigs 
or cables, that may be unavoidable during filming. In this context, stereo 
image inpainting [17] addresses the reconstruction of missing information 
in pairs of stereo images; the reconstructed parts of both images have 
to look like the projection of real 3D objects and must produce a depth-
consistent perception. The first step in the process is the estimation of the 
depth of the scene and its reconstruction in the regions to be inpainted. 
This permits the simultaneous and depth-coherent inpainting of stereo 
images where corresponding points in the two images are inpainted with the same color. Examples of stereo image inpainting are shown in Figures 
5 and 6.

A final interesting problem is that of inpainting in video sequences. The enormous variety of situations makes this problem both extremely difficult and 
extremely interesting. The automatic or semiautomatic choice of the inpainting region, and the development of techniques for imposing time coherence in 
the inpainted result and for creating illumination effects consistent with the surrounding parts of the image [15, 22] are just some of the difficulties that arise. 
Although we have made progress on this problem, a lot of work remains to be done if we are to provide an effective tool for the video and cinema post-
production industry.
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