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The first attempt at a consensus estimate of the equilibrium sensitivity of climate to changes in atmospheric carbon dioxide concentrations appeared 
in 1979, in the U.S. National Research Council report of J.G. Charney and associates. The result was the now famous range for an increase of 
1.5–4.5 K in global temperatures, given a doubling of CO2 concentrations.

Earth’s climate, however, never was and is unlikely ever to be in equilibrium. The Intergovernmental Panel on Climate Change, therefore, in addi-
tion to estimates of equilibrium sensitivity, focused on estimates of climate change in the 21st century. The latter estimates of temperature increase in 
the coming 100 years still range over several degrees Celsius. This difficulty in narrowing the range of estimates is clearly connected to the complex-
ity of the climate system, the nonlinearity of the processes involved, and the obstacles to a faithful representation of these processes and feedbacks in 
global climate models, as described in [4].

My talk at ICIAM 2011 reflected joint work with Mickaël D. Chekroun and Dmitri Kondrashov (UCLA), Eric Simonnet (Institut Non Linéaire de 
Nice), Shouhong Wang (Indiana University), and Ilya Zaliapin (University of Nevada, Reno). The main objective of our work is to understand and 
explain, at a fundamental level, the causes and manifestations of climate sensitivity. This work is based on a weaving together of recent results from 
three mathematical disciplines: the ergodic theory of dynamical systems, stochastic processes, and the response theory of nonequilibrium dynamical 
systems. The cornerstone is the theory of random dynamical systems, which allows us to probe the detailed geometric structure of the random attrac-
tors associated with nonlinear, stochastically perturbed systems. These attractors extend the concept of strange attractors from autonomous dynamical 
systems to non-autonomous and stochastic systems.

In fact, the theory of differentiable dynamical systems—as we know and love it from the work of G.D. Birkhoff, J. Hadamard, H. Poincaré, and, 
more recently, E.N. Lorenz, D. Ruelle, and S. Smale, among many others—applies to autonomous systems, in which neither the forcing nor the coef-
ficients depend explicitly on time. This theory is well suited for the study of physical, chemical, biological, or social systems that are closed, i.e., can 
be completely isolated from their surroundings. Such is certainly not the case of the earth’s climate system, which receives energy from the sun and 

returns it to interplanetary space. Moreover, depending 
on the time scale of interest, one often wishes to study 
only part of the climate system. Thus, in numerical 
weather prediction out to a mere few days, one tends 
to neglect the intrinsic variability of the oceans and 
concentrates on the atmosphere, with sea surface tem-
peratures prescribed as a boundary condition; the sea 
surface temperature field can either be kept constant 
in time or allowed to vary in some prescribed manner, 
e.g., according to a diurnal cycle. The same can be said 
about various coefficients that enter the atmosphere’s 
governing partial differential equations.

The theoretical underpinnings of the study of the 
dynamical behavior of open systems—which are in 
contact with their surroundings and thus may exhibit 
time dependence in their forcing or coefficients—were 
laid within the last couple of decades by L. Arnold, 
G. Sell, and L.-S. Young, among many others. In the 
presence of dissipation, one still expects convergence 
of the phase-space flow to some lower-dimensional 
object. But this object, termed a pullback attractor 
in the deterministic context and a random attractor 
in the stochastic one, is now itself time dependent. 
To see this attractor at time t, we need to pull back 
to a time s<<t and let the phase space flow onto 
the attractor. The theory requires s→–∞, but 
the numerical practice shows that the requisite 
duration t–s of “pulling back” depends on the 
system’s degree of dissipativity and can often be 
fairly short.

At ICIAM, to illustrate our results so far, I 
described high-resolution numerical studies of 

Toward a Mathematical Theory 
of Climate Sensitivity

ICIAM 2011

Figure 1. Snapshots of the random attractor of a classic Lorenz model.



several “toy” models, for which we obtained good 
approximations of their global pullback or random 
attractors, as well as of the time-dependent invari-
ant measures supported by these attractors. The 
latter measures were shown to be random Sinai–
Ruelle–Bowen measures; it is these measures that 
have an intuitive, physical interpretation: They are 
obtained essentially by “flowing” the entire phase 
space onto the attractor.

The first of the models we studied is a stochastical-
ly forced version of the classic Lorenz model (1963). 
Several snapshots of its random attractor are shown in 
Figure 1; a short video clip of the attractor’s evolution 
in time can be found in the supplementary material of 
Chekroun et al. [1]. The second one is a low-dimen-
sional, nonlinear stochastic model of the El Niño– 
Southern Oscillation; Figure 2 shows successive 
snapshots of its random attractor, over a full ENSO 
cycle. While highly idealized, both these models are 
of fundamental interest for climate dynamics and 
provide insight into its predictability. More on the 
predictability of a randomly driven ENSO model and 
of ENSO itself can be found in [2].

Finally, I provided an outlook on response 
theory as applied to random dynamical systems, 
rather than in the more familiar context of sta-
tistical mechanics near equilibrium. This theory 
provides the response function R(t) of a chaotic 
system to time-dependent forcing, as well as its 
Fourier transform, the susceptibility function (x). 
In fact, climate change involves not just changes 
in the mean, but also in its variability [3]. Thus, 
the susceptibility function will allow us to get a 
handle on mechanisms of high sensitivity in the response of climate variability to deterministic, anthropogenic forcing—such as increases 
in aerosols and greenhouse gases—as well as to random, natural forcing, such as volcanic eruptions.
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Figure 2. Successive snapshots of the random attractor of the El Niño–Southern Oscillation model.


