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Discrete events come in different shapes and sizes. Earthquakes, hurricanes, and solar eclipses, occurring in necessarily finite numbers in a given 
time or place, certainly qualify. So do the arrival of planes at an airport, retirements of Supreme Court justices, and meteor showers in the night sky. 
Accurate records of such events have been kept for decades, centuries, or even (in a few cases) millennia. The events may be as random as the flood-
ing of the Mississippi, or as regular as the ticking of a clock. They may be as subject to human control as the arrival of airplanes, or as far beyond it 
as the appearance of Halley’s comet.

Because no single mathematical model—or type of model—can be expected to mimic all such phenomena, a variety of mathematical tools contrib-
ute to the analysis of discrete-event systems. A particularly interesting tool known as max-plus algebra permits a remarkably complete and concise 
treatment of certain problems in the design and control of such systems.  See the box for an introduction to max-plus algebra.

Applications to Transportation Systems
Many of the applications of max-plus algebra are 

to transportation networks, such as highway systems, 
bus routes, and railway schedules. Figure 1 depicts a 
simple railway network served by four distinct trains, 
two traversing the middle loop and a single train 
serving each of the other two loops. A well-designed 
schedule for such a network places trains in stations 
simultaneously, so that passengers can change from 
one to another simply by walking across the platform 
between them. Dutch train schedules have long been 
designed with this in mind.

In a simple model of the network shown in the fig-
ure, x

S
(k) denotes the instant at which the kth (simul-

taneous) departure from station S (either L or R) takes 
place; a

SS¢ denotes the transit time between stations S 
and S¢, and δ the time two trains must stand side by side while passengers switch from one to the other. Then, because no train can leave a station 
before the connecting train has arrived, and the two have tarried side by side for δ minutes,
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If time is not to be wasted, the inequalities must be replaced by equalities, which can be further reduced to the vector–matrix form

                                                                                           x(k+1) = A ⊗ x(k)

by writing x(k) = [x
L
(k), x

R
(k)]T and absorbing the transfer time δ into the matrix A = (a

SS¢) of transit times. The superscript T indicates matrix transposi-
tion. The preceding equation has the obvious solution x(k) = A⊗kx(0), where A⊗k = A ⊗ A ⊗ . . . ⊗ A to k factors. If x(0) is an eigenvector v of A, then 
x(k) = A⊗kv = λ⊗kv = kλ1+v, where 1 is a conformable vector of 1’s. Finally, the fact that

   
for any h implies that 4 is the eigenvalue of the transit-time matrix A corresponding to the depicted network and v = [1,0]T is a suitable (eigen)vector 
of original departure times.

In [1], Heidergott, Olsder, and van der Woude applied the foregoing technique to successively more detailed models of the Dutch passenger train 
network. The simplest of their models concerns deluxe intercity trains only. It consists of 19 lines serving 70 stations over 361 track segments repre-
sented by edges. There are 317 departure events, subject to 44 simultaneity constraints. A minimum of 112 trains is necessary to properly serve the 
network in question.

Along with the deluxe intercity trains, the Dutch passenger system employs two other types: Local trains cover shorter distances at low speed, 
stopping at every station; express trains travel faster and stop at fewer stations than the locals, but are slower and make more stops than the deluxe 
trains. A model including all three types would involve at least 440 trains and a transit-time matrix A with thousands of rows and columns. Existing 
numerical methods are expected to prove equal to the task, if and when the requisite data become available.

Max-Plus Algebra: From Discrete-event Systems 
to Continuous Optimal Control Problems

Figure 1. A simple railway network. The numbers along the tracks represent transit times, and 
the boxes labeled L and R represent stations.



Optimal Control Problems
Somewhat surprisingly, max-plus algebra has proved to be applicable to the solution of continuous-time, continuous-state optimal control problems 

of the form

The “etc.” refers to certain ancillary constraints on the state vectors x(t), the control vectors u(t), the terminal state x(T), and various combinations 
thereof. Pontryagin’s famous maximum principle characterizes the optimal pairs [x*(t), u*(t)], 0 ≤ t ≤ T for which the objective functional J assumes 
its maximum value, while the complete solution of an optimal problem requires the further specification of a closed-loop optimal control u*(x) that 
“synthesizes” the optimal pairs in the sense that u*(x*(t)) = u*(t).

In favorable circumstances, the optimal closed-loop control u*(x) can be obtained directly—without recourse to Pontryagin’s principle—by solving 
the Hamilton–Jacobi PDE

max
u
 {L(x,u) + < f (x,u),V

x
 >} = 0,

subject to boundary conditions imposed by the ancillary constraints, for the unknown value function V(x). Here <.,.> denotes the ordinary inner product 
of vectors in n, and V(ξ) is the number obtained by integrating J along the solution of x

. 
= f(x,u*(x)) for which x(0) = ξ.

Hamilton–Jacobi equations have inhabited the intersection of physics and the calculus of variations for generations. Until the middle of the 20th 
century, attention focused on classical (continuously differentiable) solutions. Since then, motivated by developments in fluid mechanics, the theory 
of viscosity solutions of PDEs has emerged. These need not be classical solutions, as discontinuities in the gradient of the solution—and sometimes 
in the solution itself—are ubiquitous. 

In practice, Hamilton–Jacobi equations can seldom be solved in closed form, unless f(x,u) is of the linear form Ax + Bu and L(x,u) assumes the 
quadratic form ½ < x, Qx > – ½ < u, Ru>. Here A, B, Q, and R denote real matrices; Q and R must be symmetric and positive semidefinite, and R must 
be positive definite. The characteristics of the Hamilton–Jacobi equation are then linear ODEs with constant coefficients, which can in principle be 
solved in closed form. Max-plus algebra has been used, in recent years, to expand the class of problems for which this direct method is effective. It is 
effective for both finite- and infinite-horizon problems.

In either case, it is fruitful to define vector spaces over 
max

, introduce the concept of semiconvexity for 
max

-valued functions of several real vari-
ables, and observe that various classes of such functions indeed form vector spaces over 

max
. The spaces of interest are typically complete, and a fairly 

comprehensive theory—including a duality theory—of “complete max-plus vector spaces” χ = (χ,⊕,⊗) has been developed.
For infinite-time-horizon problems, in which T = ∞, it is useful to define a family of operators on the space of semiconvex functions ϕ: n → 

max
 

as follows:

     
     

where Pτ x refers to the point subgroup associated with the ODE x
.
 = f(x, u*(x)). The collection of operators Pτ would form a group 

if u*(x) were, say, continuously differentiable, which is not generally the case in optimal control theory. Optimal closed-
loop controls are often mildly discontinuous, and optimal paths frequently merge. Thus, we restrict attention to the semigroup {Pτ}τ > 0

of operators on n. The related operators {Sτ}τ > 0
 on the max-plus vector space χ are of interest both because they inher-

it from {Pτ} the semigroup properties Sσ ° Sτ = Sσ+τ and S
0
 = I and because the value function V(x) that solves the Hamilton–Jacobi equation is a fixed 

point of each Sτ. Lastly, these operators can be shown to be “max-plus linear” in the sense that

                                                                                    S τ [a ⊗ ϕ ⊕ b ⊗ ψ] = a ⊗ Sτ [ϕ] ⊕ b ⊗ Sτ [ψ].

If max-plus vector spaces are in some sense spanned by bases, the operators Sτ can thus be associated with (presumably infinite) matrices likely to 
possess eigenvalues and eigenvectors.

The lack of additive inverses in max-plus algebra precludes the existence of anything as tractable as an orthonormal basis, but count- 
ably infinite bases—akin to Schauder bases in Banach spaces—have been found for the max-plus vector spaces of interest in control theory. Truncation 
of such bases produces finite-dimensional subspaces of max-plus function spaces, onto which the max-plus linear operators Sτ  can be projected. And 
because these projections correspond to finite max-plus matrices, they are fully susceptible to the eigenmethods developed for discrete-event systems!

All this and more is described in the monograph [2], which treats finite- as well as infinite-time-horizon control problems, along with a few differen-
tial games and H∞ 

estimation problems. The analysis is technical, as one might expect, particularly as it applies to the errors inherent in any truncation 
process. Yet the underlying ideas are well explained, and the book is commendably readable. It is carefully annotated, with a bibliography of more 
than a hundred items. Together with [1], it furnishes a welcome introduction to an exciting new branch of applied mathematics. 
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*Such apparent reversal of the subscripts 
i and j is standard in the max-plus literature.

Max-plus algebra is predicated on the 
observation that the binary operations ⊕ 
and ⊗, defined by x ⊕ y = max (x,y) and 
x ⊗ y = x + y, turn [–∞,∞) into a 
computer-friendly algebra. The ele-
ment e = –∞ serves as an “additive 
identity” in this algebra, because 
x ⊕ e = e ⊕ x = max (–∞, x) = x
in all cases;  ε = 0 serves as a “multi-
plicative identity” on (–∞,∞) for similar 
reasons. Indeed, the latter interval forms 
an abelian group under ⊗, and [–∞,∞) 
forms—because of the lack of additive 
inverses—an abelian semigroup under 
⊕. Finally, ⊗ is distributive over ⊕, and 
e ⊗ x = x ⊗ e = e = –∞ for all x. Thus, the 
set 

max
 = (

max 
,⊗,⊕, e, ε) consisting of 

[–∞,∞), together with the operations ⊕, 
⊗, and distinguished elements e, ε, forms 
an algebra that is almost a field. The term 
“semifield” is becoming popular.

Most applications of max-plus algebra 
involve matrices of elements of 

max
, 

which can be manipulated in much the 
same way as real or complex matrices. 
In particular, A⊕B and A⊗B are defined 
componentwise, as follows: [A⊕B]
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an n × m null matrix, which has e’s (aka 
negative infinities) in all positions, and 
an n × n identity matrix E, which differs 
from a null matrix only in that the e’s 
on the main diagonal are replaced by ε’s 
(aka zeros). 

Perhaps the most important result con-
cerning such matrices is an analogue of 
the Perron–Frobenius theorem of ordi-
nary linear algebra. It asserts that any 

square irreducible matrix A with ele-
ments in 

max
 has a unique eigenvalue λ 

that satisfies A ⊗ v = λ ⊗ v for some con-
formable eigenvector v with one or more 
finite elements also in 

max
. Moreover, λ 

is finite and can be computed by means 
of a simple formula.

To explain the eigenvalue formula—as 
well as the meaning of irreducibility in 
the max-plus context—it is necessary to 
describe the communication graph G(A) 
associated with an n × n matrix A. G(A) 
is a directed graph on the set N = {1, 2, 
. . . , n} of nodes in which an edge runs 
from i to j if and only if a

ji
 ≠ ε = 0.* A 

path of length m in G(A) is an ordered 
(m+1)-tuple of distinct nodes, each suc-
cessive pair of which is joined by an 
appropriately directed edge. A circuit is 
a path that closes on itself. A is called 
irreducible if and only if it is possible to 
reach any node of G(A) from any other 
node without traversing an edge in the 
wrong direction.

The quantity a
ji 
is called the weight 

of the edge from i to j, and the sum of 
the weights of all the edges in a path (or 
circuit) p in G(A) is called the weight of 
p. This is denoted |p|

w
; the length of p is 

|p|
1
. The average edge weight of a path 

(or circuit) p is then |p|
w 
/ |p|

1
. Finally, λ = 

λ(A) = maxγ |γ|
w 
/ |γ|

1
, where γ ranges over 

all circuits in G(A). Other important theo-
rems concern the numerical computation 
of eigenvalues and eigenvectors for large 
matrices.

A Max-Plus Algebra Primer


