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Oscillations and other rhythmic patterns of neuronal activity arise throughout
the central nervous system. Such oscillations have been implicated in the genera-
tion of sleep rhythms, epilepsy, parkinsonian tremor, sensory processing, and
learning. Oscillatory behavior also arises in such physiological processes as respi-
ration, movement, and secretion. 

Researchers have made tremendous efforts to understand the cellular mecha-
nisms responsible for these activity patterns. Numerous mathematical models
have been developed, often based on the Hodgkin–Huxley formalism. Some of
these models exhibit a rich mix of dynamic behaviors. (See, for example, the
review articles [2,3].) The behavior of even a single cell can be quite complicated;
an individual cell might fire, for example, repetitive action potentials or bursts of
action potentials separated by silent phases of nearly quiescent behavior.
Populations of cells can produce synchronized or partially synchronized oscilla-
tions, or spatially localized bumps of asynchronous activity. More complex popu-
lation rhythms are also possible. For example, activity might propagate through a
network in a wave-like manner or might show chaotic dynamics.

Mathematical modeling of neuronal networks has relied mainly on computa-
tional studies, with little mathematical analysis. This is so because realistic mod-
els typically consist of very large systems of nonlinear differential equations. As
pointed out above, even a single cell can have very complicated dynamics. In addi-
tion, the synaptic coupling between cells can be either excitatory or inhibitory, and
can include dynamics on multiple time scales. Because a neuronal system can
involve combinations of different types of cells and different types of coupling, it
is easy to understand why models for these systems lead to extremely challenging
mathematical problems.

To describe how mathematical modeling and analysis have been used to address
issues arising in neuroscience, we consider a concrete system: the basal ganglia
[1]. The basal ganglia lie deep inside the brain and comprise several nuclei thought
to play an important role in the control of movement. The basal ganglia have also
been implicated in cognition, motivation, and emotion. Dysfunction of the basal
ganglia is associated with movement disorders, such as Parkinson’s disease (PD) and Huntington’s disease.

Experiments have revealed complex firing patterns for neurons within the basal ganglia; moreover, patterns of neuronal activity, both spatial
and temporal, differ between normal and pathological states. During normal resting conditions, neurons in the basal ganglia typically discharge
in a tonic and irregular mode; little correlation is seen in the spiking patterns of different neurons. In parkinsonian states, these neurons display
higher degrees of rhythmic bursting activity. Experiments have also demonstrated that resting tremor is associated with synchronous activity
among neurons within the basal ganglia. Neither the origins of these firing patterns nor the specific neuronal mechanisms that cause them to
change in pathological states are understood. As experiments have continued to demonstrate the importance of temporal and spatial dynamics
for function and dysfunction of the basal ganglia, the need for realistic, biophysically based models has become increasingly clear.

Working closely with experimentalists, we constructed a mathematical model for neurons within the so-called indirect pathway of the basal
ganglia [5]. Our focus on the indirect pathway was motivated in part by experiments demonstrating a drastic increase in correlated activity with-
in the indirect pathway both in parkinsonian animal models and in human subjects with Parkinson’s disease. Experiments also indicate that the
pathological rhythms seen in PD may originate from abnormal interactions within the indirect pathway.

In computer simulations, our model exhibits a very rich set of dynamic behaviors. In particular, the network generates both correlated rhyth-
mic activity and irregular uncorrelated spiking, depending on the tuning of certain network features. Mathematical analysis of the model, based
on dynamical systems and, specifically, geometric singular perturbation methods, has elucidated mechanisms underlying these firing patterns.
This has led to hypotheses about an important puzzle: How can the depletion of the neurotransmitter dopamine, as occurs in parkinsonian states,
lead to an increase in correlated, burst-like activity?

We have extended our model to test hypotheses about the mechanisms underlying the effects of deep brain stimulation (DBS), a therapeutic
intervention for PD and other disorders featuring pathological tremors. In DBS, an electrode is surgically implanted in a carefully targeted area
of the brain, where it provides continuous delivery of high-frequency stimulation. DBS has come into wide use in the treatment of PD and other
neurological disorders, but the basic mechanisms responsible for its effectiveness remain mysterious.

Researchers continue to explore one fundamental issue: What is the primary effect of DBS on neuronal activity in and near the site where it
is applied? Various arguments support the idea that DBS primarily suppresses neuronal activity. According to one such argument, because the
clinical effects of DBS are similar to those of ablative surgeries, in which areas of the brain are actually removed, the mechanisms underlying
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deep brain stimulation, it is being used in the treatment of
Parkinson’s disease and other disorders characterized by
tremors. In DBS, an electrode implanted in the brain delivers
continuous high-frequency stimulation.
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these treatments must be similar as well. Several recent experimental papers, however, suggest that DBS actually enhances neuronal activity.
This seems contradictory: Given that PD is associated with increased firing of the basal ganglia output nuclei, how could DBS ameliorate motor
symptoms of PD by further increasing this firing? In [4], we demonstrate, with a computational model, why these findings are not contradicto-
ry, but rather a natural consequence of interactions between the intrinsic and synaptic properties of the cells involved. A key aspect of the mech-
anism that we analyze is the regularization of pathologically rhythmic activity, an insight that could be achieved only through a consideration
of the dynamical features of network behavior.

The basal ganglia are one of many neuronal systems that offer tremendous opportunities for mathematicians to work closely with experimen-
talists on important problems. Mathematical modeling and analysis provide an effective way to formulate and test new hypotheses about mech-
anisms underlying observed firing patterns; however, close collaboration with experimentalists is crucially important to ensure that model devel-
opment is appropriately constrained by experimental data. Novel mathematical methods are also needed for the analysis of complex models of
neuronal systems. Such analysis is necessary if we are to develop an understanding of how experimentally observed firing patterns depend on
complex interactions between the intrinsic, synaptic, and network properties of the system. Much of the analysis done so far has considered
small networks with simple network architectures. Understanding how more complicated network topologies influence population rhythms rep-
resents one particularly important challenge that will need to be tackled as the mathematical study of neuronal networks advances.  
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