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Geometry, Partial Differential Equations,
and the Brain

By Guillermo Sapiro

Brain research in general, and brain imaging in particular, pose abundant mathematical and compu-
tational challenges, many of which can be addressed with tools from geometry and geometric partial
differential equations. With the potential for applications ranging from the understanding of normal
development to the study of diseases like Alzheimer’s, brain imaging analysis is a vivid example of
mathematics at work.

Let’s start with the example of one of the earliest and still most challenging tasks in brain imaging:
the labeling of different tissues in data obtained by magnetic resonance imaging. The initial goal is to
classify, from 3D volumetric data, gray matter, white matter, and cerebrospinal fluid. The challenges
arise from the relative noisiness of the data and the very highly convoluted and deeply folded nature
of gray matter. The low resolution of MRI is also a bottleneck: The resolution of most MRI data is 1-2
mm, while gray matter, on average, varies in thickness between 2 and 4 mm. (High-strength magnetic
fields, such as those employed at the Center for Magnetic Resonance at the University of Minnesota,
are starting to produce better resolution.)

Combining techniques from Bayesian theory, computational topology, and geometric PDEs, P. Teo,
B. Wandell, and I have developed a labeling technique that exploits anatomical knowledge of the cor- Figure 1. Automatically computed net-
tex and provides topologically correct results in very reasonable computational times, while comput- o'k of sulcal fundi (color-coded
. .. G . . . according to the geodesic depth of the
ing critical connectivity information as well. The software package we developed is currently inuse by  ,;rves.
numerous brain research groups. Wandell’s group, for instance, has used it in studies of learning dis-
abilities, plasticity and development, color, and general mappings of the visual field (see http://white.stanford.edu/wandell.html).

Segmentation of the cortex is often an important step in computing anatomical deformations; examples can be found at
http://www.loni.ucla.edu/~thompson/thompson.html and in work on computational anatomy under way at Washington University, Brown
University, Johns Hopkins University, and Georgia Institute of Technology, to name just a few. Such computations are based on geometric PDEs
and require boundary conditions. The boundary conditions are often provided by sulcal fundi, 3D curves that lie in the depths of the cortex and
that are also of intrinsic importance to brain research.

We recently developed a geometric algorithm that automatically extracts sulcal fundi from MRI data and represents them as spline curves
lying on the extracted mesh representing the cortical surface. Given the cortical surface, perhaps extracted by the labeling technique described
above, we begin by using fast Hamilton-Jacobi solvers to compute a geometric depth measure for each triangle on the cortical surface mesh;
based on this information, we extract sulcal regions by checking for connected regions exceeding a specified depth threshold. Using a moving
least-squares technique, we then identify endpoints for each region; we delineate the fundus by thinning the connected region while keeping the
endpoints fixed. The curves thus defined are regularized with weighted splines on the surface mesh (that is, a geometric PDE is solved on the
surface), to yield high-quality representations of the sulcal fundi.

This framework, which has been extensively validated, exemplifies the need for strong interdisciplinary teams in brain imaging. Among the
developers are C.Y. Kao (a mathematician who spent two years at the Institute for Mathematics and its Applications and the VA Hospital in
Minnesota), M. Hofer (a geometer), myself (from electrical and computer engineering), and J. Stern, K. Rehm, and D. Rottenberg, all from the
VA Hopital.

Figure 1 shows an automatically computed network of sulcal fundi, color-coded according to the curves’ geodesic depth. Further study of this
complicated network is an exciting open research area that calls for a lot of applied mathematics.

Geometry and geometric PDEs have been used for many other tasks in brain imaging, including enhanced signal detection in functional MRI
via adaptive anisotropic spatial regularization with metrics adapted to the fMRI signal; again, progress in this area depends on interdisciplinary
collaboration (the members of the team responsible for this work—from engineering, MRI, and brain research—include A. Sole, S.C. Ngan, X.
Hu, A. Lopez, and myself). The usefulness of such tools, which form part of the ITK initiative (the National Library of Medicine Insight
Segmentation and Registration Toolkit; www.itk.org), is not limited to the cortex or gray matter; they have also found applications in the white
matter, and in particular in the new modality of diffusion tensor imaging. Groups at INRIA, Brigham and Women's Hospital, in Boston, and the
University of Florida, to name just a few, have developed extraordinary geometric and PDE-based tools for DTI data, and especially for study-
ing connectivity in the brain. An example is the use of tools from Riemannian geometry and the geometry of manifolds of probability distribu-
tions, as developed at INRIA-Sophia Antipolis.

Brain imaging encourages innovative use of mathematics and at the same time opens novel mathematical questions. This has been reflected
in numerous research projects, not only in geometry and PDEs, but also in such areas as statistics (as in work of J. Taylor and collaborators). In
an instance of the intersection of current work in brain imaging with the most modern mathematics, F. Memoli (Stanford), P. Thompson
(UCLA), and I recently began to investigate the use of locally minimizing Lipschitz extensions and infinite Laplacians for brain warping; our
inspiration has been theoretical and computational results from G. Aronsson, V. Caselles, J.M. Morel, L.C. Evans, R. Jensen, A. Oberman, and




many others. An example is shown in Figure 2, in which shading encodes
the amount of geodesic deformation, that is, the local geodesic Lipschitz
constant, as obtained while warping between two left hemispheres.
Relatively little deformation (dark areas) is required to match features on
the flat interhemispheric surface. This is consistent with the lower vari-
ability of the gyral pattern in the cingulate and medial frontal cortices. By
contrast, significant expansion is required to match the posterior occipital
cortices, especially at the poles, which are the target of many functional
imaging studies of vision.

The examples mentioned here, a small subset of those available, are
offered to give readers a sense of the importance of geometry and PDEs
in brain research. Many interdisciplinary groups are actively working in
the area, and the future for such collaborations is both promising and chal-
lenging. Advances in analysis and development are needed to keep pace
with fascinating rapid advances in acquisition technology (in MRI as well
as in such areas as cryo-microscopy; see http://electron.nci.nih.gov/).

Guillermo Sapiro is a professor in the Department of Electrical and
Computer Engineering at the University of Minnesota.
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Figure 2. Geodesic deformation, with dark blue indicating relatively
small amounts of deformation.



