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The worst case approach to UQ

“The gods to-day stand friendly, that we may,
Lovers of peace, lead on our days to age!
But, since the affairs of men rests still uncertain,
Let’s reason with the worst that may befall.”

Julius Caesar, Act 5, Scene 1
William Shakespeare (1564 –1616)



You want to certify that

Problem

and



You want to certify that

Problem

and

You only know



Worst and best case
optimal bounds P[G(X) ≥ a]
given available information.

Compute
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Our proof relies on
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Further Reduction of optimization variables



McDiarmid inequality’s

Another example: Optimal concentration inequality 
H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns, and M. Ortiz. 
Optimal Uncertainty Quantification. SIAM Review, 55(2):271–345, 2013.



Reduction of optimization variables

Theorem



Theorem m = 2

C = {(1, 1)}
hC(s) = a− (1− s1)D1 − (1− s2)D2

Explicit Solution m=2



Theorem m = 2

Corollary

Explicit Solution m=2



μ

f

A

Each piece of information is a constraint
on an optimization problem.

Optimization concepts (binding, active) transfer to 
UQ concepts

Non binding
constraint

Binding but non
active constraint

Active constraint

Extremizer/
Worst case scenario



Optimal Hoeffding= Optimal McDiarmid for m=2



Theorem m = 3
Explicit Solution m=3



F min( Yield Strain 
- Axial Strain )

Ground 
Acceleration

We want to certify that

Seismic Safety Assessment of a Truss Structure
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Filtered White Noise Model

White noise

Ground 
acceleration

Filter
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N. Lama, J. Wilsona, and G. Hutchinsona. 
Generation of synthetic earthquake accelograms
using seismological modeling: a review. Journal of 
Earthquake Engineering, 4(3):321–354, 2000.



Vulnerability Curves (vs earthquake magnitude)



Identification of the weakest elements

H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns, 
and M. Ortiz. Optimal Uncertainty Quantification. 
SIAM Review, 55(2):271–345, 2013.



Caltech Small Particle Hypervelocity Impact Range

G

Projectile velocity

Plate thickness

Plate Obliquity

Perforation area

We want to certify that

Problem



What do we know?

Projectile velocity

Plate thickness

Plate Obliquity

Thickness, obliquity, velocity: independent random variables

Mean perforation area: in between 5.5 and 7.5 mm^2

Bounds on the sensitivity of the response function w.r. to each variable



We only know

Worst case bound

Reduction calculus



What if we know the response function?

Deterministic surrogate model for the perforation area (in mm^2)



Optimal bound on the probability of non perforation

The measure of probability can be reduced to the tensorization of
2 Dirac masses on thickness, obliquity and velocity

Application of the reduction calculus



The optimization variables can be reduced to the tensorization
of 2 Dirac masses on thickness, obliquity and velocity

Support Points at iteration 0



Numerical optimization

Support Points at iteration 150



Numerical optimization

Support Points at iteration 200



Velocity and obliquity marginals each collapse to a single Dirac mass. The plate 
thickness marginal collapses to have support on the extremes of its range.

Iteration
1000

Probability non-perforation maximized by  distribution supported on minimal, not 
maximal, impact obliquity. Dirac on velocity  at a non extreme value.



Important observations

Extremizers are singular

They identify key players
i.e. vulnerabilities of the physical system

Extremizers are attractors



Initialization with 3 support points per marginal

Support Points at iteration 0



Initialization with 3 support points per marginal

Support Points at iteration 500



Initialization with 3 support points per marginal

Support Points at iteration 1000



Initialization with 3 support points per marginal

Support Points at iteration 2155



Initialization with 5 support points per marginal

Support Points at iteration 0



Initialization with 5 support points per marginal

Support Points at iteration 1000



Initialization with 5 support points per marginal

Support Points at iteration 3000



Initialization with 5 support points per marginal

Support Points at iteration 7100



Unknown response function G + Legacy data

Constraint on the mean perf. area

Modified Lipschitz continuity constraints on response function

Objective

Constraints on input variables



Legacy Data 

32 data points
(steel-on-aluminium shots 
A48–A81) from summer 2010 
at Caltech’s SPHIR facility:

These constrain the value 
of G at 32 points 

T. J. Sullivan, M. McKerns, D. Meyer, F. Theil, 
H. Owhadi, and M. Ortiz. Optimal uncertainty 
quantification for legacy data observations of 
Lipschitz functions. ESAIM Math. Model. Numer. 
Anal., 47(6):1657–1689, 2013.



The numerical results demonstrate agreement with the Markov bound

Only 2 data points out of 32 carry information about the optimal bound



Legacy Data

32 data points
(steel-on-aluminium shots 
A48–A81) from summer 2010 
at Caltech’s SPHIR facility:

Only A54 and A67 carry information

The other 30 data points carry no
information about least upper bound
and could have be ignored.

T. J. Sullivan, M. McKerns, D. Meyer, F. Theil, 
H. Owhadi, and M. Ortiz. Optimal uncertainty 
quantification for legacy data observations of 
Lipschitz functions. ESAIM Math. Model. Numer. 
Anal., 47(6):1657–1689, 2013.



What if we have model uncertainty?

What do we want?

What do we know?



PSAAP numerical model
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59 data/experimental points

G

Plate thickness Perforation area
Projectile velocity

Plate Obliquity=0

v
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Confidence sausage around the model

(h, v)

Perforation
Area

F

Cy



Admissible set

What we compute

Confidence sausage







v

F

4.5 km/s 7 km/s
0mm2

30mm2



The extremizers led to the identification of a bug in an old model



Caltech PSAAP Center UQ analysis
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Reduced numerical optimization problems solved using

• mystic: http://trac.mystic.cacr.caltech.edu/project/mystic
– a highly-configurable optimization framework 

• pathos: http://trac.mystic.cacr.caltech.edu/project/pathos
– a distributed parallel graph execution framework providing a high-

level programmatic interface to heterogeneous computing

Mike McKerns



Important observations

In presence of incomplete information on the distribution of 
input variables the dependence of the least upper bound on 
the accuracy of the model is very weak

We need to extract as much information as possible from the 
sample/experimental data on the underlying distributions

How do  we reason with the worst in presence of data 
sampled from an unknown distribution?



Quantity of Interest

You observe

You know μ† ∈ A

Problem:

θ(d)



Player I Player II

Chooses θ

Mean squared error

Confidence error

Max Min



Game theory and statistical decision theory

John Von Neumann Abraham Wald
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Player I

Player II

3

1

-2

-2

Deterministic zero sum game

Player I’s payoff

Player I & II both have a blue and a red marble
At the same time, they show each other a marble

How should I & II play the game?



Pure strategy solution

3

1

-2

-2
II should play blue and loose 1 in the worst case

I should play red and loose 2 in the worst case



Mixed strategy (repeated game) solution

3

1

-2

-2
II should play red with probability 3/8 and win 1/8 on average

I should play red with probability 3/8 and loose 1/8 on average



3

1

-2

-2 Player I’s payoff

J. Von Neumann



Max Min

Optimal bound on the statistical error
max
μ∈A

E(μ, θ)

Optimal statistical estimators
min
θ

max
μ∈A

E(μ, θ)

Pure strategy solution for Player II



Max Min

Mixed strategy (repeated game) solution for Player II

Mixed strategy (repeated game) solution for Player I



Theorem

Can we have equality?



Theorem

The best mixed strategy for I and II 
= worst prior for II

A. Dvoretzky, A. Wald, and J. Wolfowitz. Elimination of randomization in certain
statistical decision procedures and zero-sum two-person games. Ann. Math.
Statist., 22(1):1–21, 1951.

The best estimator is not random if the loss function is strictly convex



Non Bayesian

Bayesian

Complete class theorem

Risk

Prior

Estimator
Non cooperative 
Minmax loss/error

cooperative 
Bayesian loss/error

Over-estimate risk

Under-estimate risk
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H. Owhadi and C. Scovel. Towards Machine Wald. Handbook for Uncertainty
Quantication, 2016. arXiv:1508.02449.

If we want to make decision theory practical for UQ we need to introduce 
computational complexity constraints

Impact in econometrics and social sciences

R. Leonard. Von Neumann, Morgenstern, and the Creation of Game Theory: From
Chess to Social Science, 1900–1960. Cambridge University Press, 2010.

O. Morgenstern. Abraham Wald, 1902-1950. Econometrica: Journal of the Econo-
metric Society, pages 361–367, 1951.

G. Tintner. Abraham Wald’s contributions to econometrics. Ann. Math. Statistics,
23:21–28, 1952.

How do we do that?

Is there a natural relation between game theory, 
computational complexity and numerical approximations? 



Ax = b

Φx = y

A: Known n× n symmetric
positive definite matrix

b: Unknown element of Rn

Approximate solution x of

Based on the information that

Φ: Known m× n
rank m matrix (m < n)

y: Known element of Rm

A simple approximation problem





A
Max Min

A





Deterministic zero sum game

3

1

-2

-2
Player I’s payoff

How should I and II play the game?



Pure strategy (classical numerical analysis) solution

3

1

-2

-2
II should play blue and loose 1 in the worst case

I should play red and loose 2 in the worst case



Mixed strategy (repeated game) solution

3

1

-2

-2
II should play red with probability 3/8 and win 1/8 on average

I should play red with probability 3/8 and loose 1/8 on average



3

1

-2

-2 Player I’s payoff

J. Von Neumann



Game theoretic formulation
Ax = b

Max Min

Abraham Wald

Continuous game but as in decision theory under 
compactness it can be approximated by a finite game



Best strategy: lift minimax to measures
Ax = b

Max Min

The best strategy for I is to play at random
Player II’s best strategy live 

in the Bayesian class of estimators 



Player II’s mixed strategy

Ax = b AX = ξ
ξ ∼ N (0, Q)

Player II’s bet



Player II’s mixed strategy

Ax = b AX = ξ
ξ ∼ N (0, Q)

Theorem

Owhadi 2015, Multi-grid with rough coefficients and Multiresolution PDE decomposition 
from Hierarchical Information Games, arXiv:1503.03467, SIAM Review (to appear)



Main Question

Can we turn the process of discovery of a scalable 
numerical  method into a UQ problem and, to some 
degree, solve it as such in an automated fashion?

Can we use a computer, not only to implement a 
numerical method but also to find the method itself?



− div(a∇u) = g, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1)

Ω ⊂ Rd ∂Ω is piec. Lip.

a unif. ell.
ai,j ∈ L∞(Ω)

Example: Find a method for solving (1) 
as fast as possible to a given accuracy

log10(a)



Multigrid Methods

Multiresolution/Wavelet based methods
[Brewster and Beylkin, 1995, Beylkin and Coult, 1998, Averbuch et al., 1998]

Multigrid: [Fedorenko, 1961, Brandt, 1973, Hackbusch, 1978]

• Linear complexity with smooth coefficients

Severely affected by lack of smoothnessProblem



[Mandel et al., 1999,Wan-Chan-Smith, 1999,
Xu and Zikatanov, 2004, Xu and Zhu, 2008], [Ruge-Stüben, 1987]

Robust/Algebraic multigrid

• Some degree of robustness but problem 
remains open with rough coefficients

Why?
Don’t know how to bridge scales with rough 
coefficients!

Interpolation operators are unknown

[Vassilevski - Wang, 1997, 1998]

Stabilized Hierarchical bases, Multilevel preconditioners

[Panayot - Vassilevski, 1997]

[Chow - Vassilevski, 2003]

[Panayot - 2010]

[Aksoylu- Holst, 2010]



Low Rank Matrix Decomposition methods
Fast Multipole Method: [Greengard and Rokhlin, 1987]

Hierarchical Matrix Method: [Hackbusch et al., 2002]

[Bebendorf, 2008]:

N ln2d+8N complexity
To achieve grid-size accuracy in L2-norm



Their process of discovery is based on intuition, 
brilliant insight, and guesswork

Common theme between these methods 

Can we turn this process of discovery into an algorithm?



YESAnswer:

Identify game
Find optimal 
strategy

N ln3dN complexity
Resulting method:

Compute fast

This is a theorem

Compute with 
partial information

Play adversarial 
Information game

To achieve grid-size accuracy in H1-norm
Subsequent solves: N lnd+1N complexity

Owhadi 2015, Multi-grid with rough coefficients and Multiresolution PDE decomposition 
from Hierarchical Information Games, arXiv:1503.03467, SIAM Review (to appear)



Resulting method:

H1
0 (Ω) = W(1) ⊕aW(2) ⊕a · · ·⊕aW(k) ⊕a · · ·

(
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

For v ∈W(k)

C1
2k
≤ kvka

k div(a∇v)kL2(Ω)
≤ C2

2k

Theorem

< ψ,χ >a:=
R
Ω
(∇ψ)Ta∇χ = 0 for (ψ,χ) ∈W(i) ×W(j), i 6= j

kvk2a :=< v, v >a=
R
Ω
(∇v)T a∇v

Looks like an eigenspace decomposition



w(k) = F.E. sol. of PDE in W(k)

Can be computed independently

u = w(1) + w(2) + · · ·+ w(k) + · · ·

u
=

w(1) w(2) w(3)

w(4) w(5) w(6)

8× 10−3

1.5× 10−3 4× 10−4 4× 10−5

0.030.14

+

+

+

+

Multiresolution decomposition of solution space



Quacks like an eigenspace decomposition

w(k) = F.E. sol. of PDE in W(k)

Can be computed independently

B(k): Stiffness matrix of PDE in W(k)

Theorem λmax(B
(k))

λmin(B(k))
≤ C

Just relax in W(k) to find w(k)

u = w(1) + w(2) + · · ·+ w(k) + · · ·



Swims like an eigenspace decomposition

μ(x)∂2t u− div(a∇u) = g(x, t)

Application to time dependent problems

μ(x)∂tu− div(a∇u) = g(x, t)

[Owhadi-Zhang 2016, From gamblets to near FFT-complexity
solvers for wave and parabolic PDEs with rough coefficients]

Hyperbolic and parabolic PDEs with rough coefficients
can be solved in O(N ln3dN) (near FFT) complexity

u
=

w(1) w(2) w(3)

w(4) w(5) w(6)

8× 10−3

1.5× 10−3 4× 10−4 4× 10−5

0.030.14

+

+

+

+



Doesn’t  have the complexity of an eigenspace decomposition

Theorem

Can be performed and stored in

V: F.E. space of H1
0 (Ω) of dim. N

V = W(1) ⊕aW(2) ⊕a · · ·⊕aW(k)

The decomposition

O(N ln3dN) operations



ψ
(1)
i χ

(2)
i χ

(3)
i

χ
(4)
i χ

(5)
i

χ
(6)
i

Basis functions look like and behave like wavelets:
Localized and can be used to compress the operator

and locally analyze the solution space



u

H−1(Ω)H1
0 (Ω)

um gm

div(a∇·)

g

Inverse Problem

Reduced operator

∈ RmRm
Numerical implementation requires
computation with partial information.

um ∈ Rm u ∈ H1
0 (Ω)Missing information

φ1, . . . ,φm ∈ L2(Ω)

um = (
Ω
φ1u, . . . , Ω φmu)



Discovery process (
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

φ1, . . . ,φm ∈ L2(Ω)

u− u∗
a

Player I Player II
Chooses
g ∈ L2(Ω) Sees

Ω
uφ1, . . . , Ω uφm

Chooses u∗ ∈ L2(Ω)kgkL2(Ω) ≤ 1

Max Min

Identify underlying 
information game

Measurement functions:

kfk2a :=
R
Ω
(∇f)T a∇f



Player I

Player II

3

1

-2

-2

Deterministic zero sum game

Player I’s payoff

Player I & II both have a blue and a red marble
At the same time, they show each other a marble

How should I & II play the (repeated) game?



Game theory

John Von Neumann

John Nash

Player I

Player II

3

1

-2

-2

= 3pq + (1− p)(1− q)− 2p(1− q)− 2q(1− p)
=1− 3q + p(8q − 3) =− 1

8 for q = 3
8

q 1− q

p

1− p

Optimal strategies 
are mixed strategies

Optimal way to
play is at random



Abraham Wald

The best strategy for A is to play at random
Player B’s best strategy live 

in the Bayesian class of estimators 

Player A Player B
Chooses
g ∈ L2(Ω) Sees

R
Ω
uφ1, . . . ,

R
Ω
uφm

Chooses u∗ ∈ L2(Ω)kgkL2(Ω) ≤ 1

Continuous game but as in decision theory
under compactness it can be approximated
by a finite game

°°u− u∗°°
a



Player II’s class of mixed strategies

(
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

(
− div(a∇v) = ξ in Ω,

v = 0 on ∂Ω,

ξ: Random field

u∗(x) := E
£
v(x)

¯̄ R
Ω
v(y)φi(y) dy =

R
Ω
u(y)φi(y) dy,∀i

¤Player II’s bet

g ∈ L2(Ω)

Pretend that player I  is choosing g at random

min max problem
over distribution of ξ

Player II’s optimal strategy?



Theorem

ψi(x) := Eξ∼N (0,Γ)
h
v(x)

¯̄̄ R
Ω
v(y)φj(y) dy = δi,j , j ∈ {1, . . . ,m}

i
ψi: Elementary gambles/bets

ψi
Gamblets

Elementary gambles form deterministic 
basis functions for  player B’s bet

u∗(x) =
Pm

i=1 ψi(x)
R
Ω
u(y)φi(y) dy

ξ ∼ N (0,Γ)Computational efficiency



Depend onWhat are these gamblets?

Example

Γ(x, y) = δ(x− y)
φi(x) = δ(x− xi)

Ω

xi

x1

xm

a = Id ψi: Polyharmonic splines
[Harder-Desmarais, 1972][Duchon 1976, 1977,1978]

ai,j ∈ L∞(Ω) ψi: Rough Polyharmonic splines
[Owhadi-Zhang-Berlyand 2013]

• Γ: Covariance function of ξ (Player B’s decision)

• (φi)
m
i=1: Measurements functions (rules of the game)



What is Player II’s best choice for

Γ(x, y) = E
£
ξ(x)ξ(y)

¤
What is Player II’s best strategy?

Γ = L
L = − div(a∇·)

R
Ω
ξ(x)f(x) dx ∼ N (0, kfk2a)

kfk2a :=
R
Ω
(∇f)Ta∇f

Why? See algebraic generalization

?



Theorem

u∗(x) is the F.E. solution of (1) in span{L−1φi|i = 1, . . . ,m}
ku− u∗ka = infψ∈span{L−1φi:i∈{1,...,m}} ku− ψka

If Γ = L then

The recovery is optimal (Galerkin projection)

L = − div(a∇·)(
− div(a∇u) = g, x ∈ Ω,

u = 0, x ∈ ∂Ω,(1)



Theorem ψi: Unique minimizer of(
Minimize kψka
Subject to ψ ∈ H1

0 (Ω) and
R
Ω
φjψ = δi,j , j = 1, . . . ,m

Pm
i=1 wiψi minimizes kψka

over all ψ such that
R
Ω
φjψ = wj for j = 1, . . . ,m

Theorem
Optimal variational properties

Variational characterization



Selection of measurement functions

Theorem ku− u∗ka ≤ H
λmin(a)

kgkL2(Ω)

φi = 1τi τi

Ω

diam(τi) ≤ H

τj

Indicator functions of aExample

Partition of Ω of resolution H



Elementary gamble

ψi

(
− div(a∇u) = g, x ∈ Ω,

u = 0, x ∈ ∂Ω,(1)

Your best bet on the value of u

τi

Ωτj

1
0
0
0
0

0
0
0
0

0
0
0
0

0

0
0

given the information thatR
τi
u = 1 and

R
τj
u = 0 for j 6= i



Exponential decay of gamblets

TheoremR
Ω∩(B(τi,r))c(∇ψi)

Ta∇ψi ≤ e−
r
lH kψik2a

x-axis slice

ψi

ψi

log10
¡
10−10 + |ψi||

¢x-axis slice

4

−10

r

Ω

τi



r

Ω

τi
Sr

Theorem

ku− u∗,locka ≤ 1√
λmin(a)

HkgkL2(Ω)

u∗,loc(x) =
Pm

i=1 ψ
loc,r
i (x)

R
Ω
u(y)φi(y) dy

If r ≥ CH ln 1
H

No loss of accuracy if
localization ∼ H ln 1

H

ψloc,ri : Minimizer of(
Minimize kψka
Subject to ψ ∈ H1

0 (Sr) and
R
Sr

φjψ = δi,j

for τj ∈ Sr

Localization  of the 
computation of gamblets



Formulation of the hierarchical game



Hierarchy of nested Measurement functions

φ
(1)
2 = 1

τ
(1)
2

φ
(2)
2,3 = 1

τ
(2)
2,3

φ
(k)
i1,...,ik

with k ∈ {1, . . . , q}
φ
(k)
i =

P
j ci,jφ

(k+1)
i,j

τ
(1)
2 τ

(2)
2,3

τ
(3)
2,3,1

φ
(3)
2,3,1 = 1

τ
(3)
2,3,1

Example

φ
(1)
i1

φ
(2)
i1,j1

φ
(2)
i1,j2

φ
(2)
i1,j3

φ
(2)
i1,j4

φ
(3)
i1,j2,k1

φ
(3)
i1,j2,k2

φ
(3)
i1,j2,k3

φ
(3)
i1,j2,k4

φ
(k)
i : Indicator functions of a

hierarchical nested partition of Ω of resolution Hk = 2−k



i
Π1,2i

I1 I2 I3

j ∈ Π1,2i ⊂ Π2I Π2,3j

Π1,3i

τ
(1)
i τ

(2)
j

φ
(1)
i φ

(2)
i φ

(3)
i

φ
(4)
i φ

(5)
i φ

(6)
i

In the discrete setting simply aggregate elements
(as in algebraic multigrid)



Player I Player II
Chooses
g ∈ L2(Ω)

Formulation of the hierarchy of games

kgkL2(Ω) ≤ 1

(
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

Must predict

Sees {
Ω
uφ

(k)
i , i ∈ Ik}

u and {
Ω
uφ

(k+1)
j , j ∈ Ik+1}



Player II’s best strategy(
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

(
− div(a∇v) = ξ in Ω,

v = 0 on ∂Ω,

ξ ∼ N (0,L)

u(k)(x) := E
£
v(x)

¯̄ R
Ω
v(y)φ

(k)
i (y) dy =

R
Ω
u(y)φ

(k)
i (y) dy, i ∈ Ik

¤Player II’s bets

Fk = σ(
R
Ω
vφ

(k)
i , i ∈ Ik) v(k)(x) := E

£
v(x)

¯̄
Fk
¤

Theorem Fk ⊂ Fk+1
v(k)(x) := E

£
v(k+1)(x)

¯̄
Fk
¤

The sequence of approximations forms a martingale under 
the mixed strategy emerging from the game



Player II’s best strategy(
− div(a∇u) = g in Ω,

u = 0 on ∂Ω,

(
− div(a∇v) = ξ in Ω,

v = 0 on ∂Ω,

ξ ∼ N (0,L)

u(k)(x) := E
£
v(x)

¯̄ R
Ω
v(y)φ

(k)
i (y) dy =

R
Ω
u(y)φ

(k)
i (y) dy, i ∈ Ik

¤Player II’s bets

u(1) u(2) u(3)

u(4) u(5) u(6)



Gamblets Elementary gambles form a hierarchy of deterministic 
basis functions for  player II’s hierarchy of bets

Theorem u(k)(x) =
P

i ψ
(k)
i (x)

R
Ω
u(y)φ

(k)
i (y) dy

ψ
(k)
i : Elementary gambles/bets at resolution Hk = 2−k

ψ
(k)
i (x) := E

h
v(x)

¯̄̄ R
Ω
v(y)φ

(k)
j (y) dy = δi,j , j ∈ Ik

i
ψ
(1)
i ψ

(2)
i ψ

(3)
i

ψ
(4)
i ψ

(5)
i ψ

(6)
i



Theorem

V(k) ⊂ V(k+1)

V(k) := span{ψ(k)i , i ∈ Ik} ψ
(1)
i1

ψ
(2)
i1,j1

ψ
(2)
i1,j2

ψ
(2)
i1,j3

ψ
(2)
i1,j4

ψ
(3)
i1,j2,k1

ψ
(3)
i1,j2,k2

ψ
(3)
i1,j2,k3

ψ
(3)
i1,j2,k4

Gamblets are nested

ψ
(k)
i (x) =

P
j∈Ik+1 R

(k)
i,j ψ

(k+1)
j (x)



R
(k)
i,j = E

£ R
Ω
v(y)φ

(k+1)
j (y) dy

¯̄ R
Ω
v(y)φ

(k)
l (y) dy = δi,l, l ∈ Ik

¤Interpolation/Prolongation operator

1
0 0

0

R
(k)
i,j

Your best bet on the value of
R
τ
(k+1)
j

u

given the information thatR
τ
(k)
i
u = 1 and

R
τl
u = 0 for l 6= i

τ
(k)
i R

(k)
i,j

τ
(k+1)
j



At this stage you can finish with
classical multigrid 

But we want multiresolution decomposition



Elementary gamble

Ω

0
0

0

χ
(k)
i

0
0
0

0
0τ

(k)
i τ

(k)
j

0
0

0
0

Your best bet on the value of u

given the information thatR
τ
(k)
i

u = 1,
R
τ
(k)

i−
u = −1 and

R
τ
(k)
j

u = 0 for j 6= i

1
0
0

-1

τ
(k)
i−



+1−1

χ
(k)
i = ψ

(k)
i − ψ

(k)
i−

+1

−1

+1−1

i = (i1, . . . , ik−1, ik)

i− = (i1, . . . , ik−1, ik − 1)

ψ
(1)
i1

ψ
(2)
i1,j1

ψ
(2)
i1,j2

ψ
(2)
i1,j3

ψ
(2)
i1,j4

+1−1



ψ
(1)
i χ

(2)
i χ

(3)
i

χ
(4)
i χ

(5)
i

χ
(6)
i

χ
(k)
i = ψ

(k)
i − ψ

(k)
i−



Theorem

W(k+1): Orthogonal complement of V(k) in V(k+1)

with respect to < ψ,χ >a:=
R
Ω
(∇ψ)T a∇χ

H1
0 (Ω) = V(1) ⊕aW(2) ⊕a · · ·⊕aW(k) ⊕a · · ·

Multiresolution decomposition of the solution space 

V(k) := span{ψ(k)i , i ∈ Ik}
W(k) := span{χ(k)i , i}



Theorem

u(k+1) − u(k) = F.E. sol. of PDE in W(k+1)

u
=

u(1) u(2) − u(1) u(3) − u(2)

u(4) − u(3) u(5) − u(4) u(6) − u(5)

8× 10−3

1.5× 10−3 4× 10−4 4× 10−5

0.030.14

+

+

+

+

Multiresolution decomposition of the solution

Subband solutions u(k+1) − u(k)
can be computed independently



Uniformly bounded condition numbers

A
(k)
i,j :=

­
ψ
(k)
i ,ψ

(k)
j

®
a

B
(k)
i,j :=

­
χ
(k)
i ,χ

(k)
j

®
a

4.5
log10(

λmax(A
(k))

λmin(A(k))
)

log10(
λmax(B

(k))
λmin(B(k))

)

Theorem
λmax(B

(k))

λmin(B(k))
≤ C

Just relax!
In v ∈W(k)

to get
u(k) − u(k−1)



V = W(1) ⊕aW(2) ⊕a · · ·⊕aW(k)

Ranges of eigenvalues in V and
W(k) (k = 1, . . . , 5) in log scale

£
infψ∈V

kψk2a
kψk2

L2
, supψ∈V

kψk2a
kψk2

L2

¤

£
infψ∈W(k)

kψk2a
kψk2

L2
, supψ∈W(k)

kψk2a
kψk2

L2

¤



c
(1)
i

c
(2)
j

c
(3)
j

c
(4)
j
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c
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u =
P

i c
(1)
i

ψ
(1)
i

kψ(1)i ka
+
Pq

k=2

P
j c
(k)
j

χ
(k)
j

kχ(k)j ka

0 1000 2000 3000 4000
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Coefficients of the solution in the gamblet basis

c
(6)
j



Operator Compression

Throw 99% of the coefficients

u

Gamblets behave like wavelets but they are adapted to the 
PDE and can compress its solution space

Gamblet compression

Compression ratio = 105
Energy norm relative error = 0.07



Fast gamblet transform

Nesting A(k) = (R(k,k+1))TA(k+1)R(k,k+1)

Level(k) gamblets and stiffness matrices can be computed
from level(k+1) gamblets and stiffness matrices

Well conditioned linear systems

ψ
(k)
i = ψ

(k+1)
(i,1) +

P
j C

(k+1),χ
i,j χ

(k+1)
j C(k+1),χ = (B(k+1))−1Z(k+1)

Localization
Z
(k+1)
j,i := −(e

(k+1)
j − e(k+1)j− )TA(k+1)e

(k+1)
(i,1)

Underlying linear systems have uniformly bounded 
condition numbers

The nested computation can be localized without  
compromising accuracy or condition numbers

O(N ln3dN) complexity



Theorem

Localizing (ψ
(k)
i )i∈Ik and (χ

(k)
i )i to subdomains of size

≥ CHk ln 1
Hk

≥ CHk(ln 1
Hk

+ ln 1
² )

Cond. No (B(k),loc) ≤ C

°°u− u(1),loc −Pq−1
k=1(u

(k+1),loc − u(k),loc)
°°
a
≤ ²

The number of operations to compute gamblets and
achieve accuracy ² is O

¡
N ln3d

¡
max( 1

²
, N1/d)

¢¢
(and O

¡
N lnd(N1/d) ln 1

²

¢
for subsequent solves)

Theorem

Complexity

O(N ln3dN) O(N lnd+1N)
Gamblet
Transform

Linear
Solve



u(3) − u(2)8× 10−3

u(2) − u(1)0.03

u(1)0.14

.
.
.

u(1)

ϕi, A
h,Mh χ

(q)
i , B

(q)ψ
(q)
i , A(q) u(q) − u(q−1)

ψ
(q−1)
i , A(q−1) χ

(q−1)
i , B(q−1) u(q−1) − u(q−2).

.
.

.
.
.

χ
(3)
i , B(3)ψ

(3)
i , A(3) u(3) − u(2)

ψ
(2)
i , A(2) χ

(2)
i , B(2) u(2) − u(1)

ψ
(1)
i , A(1)

ψ
(1)
i

χ
(2)
i

χ
(3)
i

ψ
(1)
i

ψ
(2)
i

ψ
(3)
i

Parallel 
operating
diagram 

both in space 
and in

frequency



Numerical Homogenization

HMM

Harmonic Coordinates

[Gloria 2010]

Babuska, Caloz, Osborn, 1994
Allaire Brizzi 2005; Owhadi, Zhang 2005

Engquist, E, Abdulle, Runborg, Schwab, et Al. 2003-...

MsFEM [Hou, Wu: 1997]; [Efendiev, Hou, Wu: 1999]

Nolen, Papanicolaou, Pironneau, 2008

[Chu-Graham-Hou-2010] (limited inclusions)

[Babuska-Lipton 2010] (local boundary eigenvectors)
[Efendiev-Galvis-Wu-2010] (limited inclusions or mask)

[Malqvist-Peterseim 2012] Volume averaged interpolation

Flux norm Berlyand, Owhadi 2010; Symes 2012

Arbogast, 2011: Mixed MsFEM

Kozlov, 1979

Localization

[Fish - Wagiman, 1993]

Projection based method

[Owhadi-Zhang 2011] (localized transfer property)



Statistical approach to numerical approximation



Statistical approach to numerical approximation



Some high level remarks



What is the worst?

Au†: Unknown element of A

Robust Optimization worst case

Φ : A −→ R
u −→ Φ(u) Quantity of Interest

What is Φ(u†)?

infu∈AΦ(u) ≤ Φ(u†) ≤ supu∈A Φ(u)



A

Game theoretic worst case

AMax Min



Confidence error

Robust Optimization worst case
Failure is not an option. 
You want to always be right.

Game theoretic worst case

Interpretation depends on the choice of loss function.

You want to be right with high probability.

Quadratic error
You want to be right on average.
Well suited for numerical computation where you need to 
keep computing with partial information (e.g. invert a 
1,000,000 by 1,000,000  matrix)



Non Bayesian

Bayesian

Complete class theorem

Risk

Prior

Estimator
Non cooperative 
Minmax loss/error

cooperative 
Bayesian loss/error

Over-estimate risk

Under-estimate risk

Can we approximate the optimal prior?



Numerical robustness of Bayesian inference

Can we numerically approximate the prior when 
closed form expressions are not available for 
posterior values?





• Brittleness of Bayesian Inference under Finite Information in a Continuous World. H. Owhadi, 
C. Scovel and T. Sullivan. Electronic Journal of Statistics, vol 9, pp 1-79, 2015. 
arXiv:1304.6772

• Brittleness of Bayesian inference and new Selberg formulas. H. Owhadi and C. Scovel. 
Communications in Mathematical Sciences (2015). arXiv:1304.7046

• On the Brittleness of Bayesian Inference. H. Owhadi, C. Scovel and T. Sullivan. SIAM 
Review, 57(4), 566-582, 2015, arXiv:1308.6306

• Qualitative Robustness in Bayesian Inference (2015). H. Owhadi and C. Scovel. 
arXiv:1411.3984

Positive Negative
• Classical Bernstein Von Mises
• Wasserman, Lavine, Wolpert (1993)
• P Gustafson & L Wasserman (1995)
• Castillo and Rousseau (2013)
• Castillo and Nickl (2013)
• Stuart & Al (2010+). 
• ….

• Freedman (1963, 1965)
• P Gustafson & L Wasserman (1995)
• Diaconis & Freedman 1998
• Johnstone 2010
• Leahu 2011
• Belot 2013

Robustness of Bayesian conditioning 
in continuous spaces



10.000 children are given one pound of play-doh. 
On average, how much mass can they put above a
while, on average, keeping  the seesaw balanced  
around m? 

Paul is given one pound of play-doh. 
What can you say about how much mass he is
putting above a if all you have is the belief that
he is keeping the seesaw balanced around m?

Brittleness of Bayesian Inference under Finite Information in a Continuous World. H. 
Owhadi, C. Scovel and T. Sullivan. Electronic Journal of Statistics, vol 9, pp 1-79, 
2015. arXiv:1304.6772



What is the least upper bound on

If all you know is ?

Answer



Theorem







Reduction calculus with measures over measures

QΨ

QΨ−1 ⊂M(Q)M(A) ⊃
Theorem

sup
π∈Ψ−1Q

Eμ∼π Φ(μ)

sup
Q∈Q

h
Eq∼Q

£
sup

μ∈Ψ−1(q)
Φ(μ)

¤i=

M(X ) ⊃ Polish
space

Brittleness of Bayesian Inference under Finite Information in a 
Continuous World. H. Owhadi, C. Scovel and T. Sullivan. Electronic 
Journal of Statistics, vol 9, pp 1-79, 2015. arXiv:1304.6772



What is the worst with random data? A



A

Frequentist/Concentration of measure worst case



Theorem

N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the 
empirical measure, Probability Theory and Related Fields, (2014), pp. 1-32.

A



The extreme points of the Prokhorov, Monge-Wasserstein and 
Kantorovich metric balls about a measure whose support has at most n 
points, consist of measures whose supports have at most n+2 points.

• D. Wozabal. A framework for optimization under ambiguity. Annals of Operations 
Research, 193(1):21—47, 2012.

• P. M. Esfahani and D. Kuhn. Data-driven distributionally robust optimization 
using the Wasserstein metric: performance guarantees and tractable reformulations. 
arXiv:1505.05116, 2015.

• Extreme points of a ball about a measure with finite support (2015). H. Owhadi 
and Clint Scovel. arXiv:1504.06745

Reduction calculus of the ball about the empirical distribution



Question
Game/Decision Theory + Information Based Complexity

Turn the process of discovery of scalable numerical solvers
into an algorithm  

Worst case calculus

?



P. L. Chebyshev
1821-1894

M. G. Krein
1907-1989

A. A. Markov
1856-1922

The truncated moment problem

³
EX∼μ[X],EX∼μ[X2], . . . ,EX∼μ[Xk]

´Ψ

Study of the geometry of Mk := Ψ
¡
M([0, 1])

¢



Finite dim.Infinite dim.

³
EX∼μ[X],EX∼μ[X2], . . . ,EX∼μ[Xk]

´Ψ Mk := Ψ
¡
M([0, 1])

¢

Finite dim.



Finite dim.Infinite dim.

Ψ

t1 t2 tj tN



Index

Theorem

t1 t2 tj tN

t1 t2 tj tN

Upper

Lower



Sn(α,β, γ) =
Qn−1
j=0

Γ(α+jγ)Γ(β+jγ)Γ(1+(j+1)γ)
Γ(α+β+(n+j−1)γ)Γ(1+γ)

Selberg Identities

Sn(α,β, γ) :=
R
[0,1]n

Qn
j=1 t

α−1
j (1− tj)β−1|∆(t)|2γdt .

∆(t) :=
Q
j<k (tk − tj)

Brittleness of Bayesian inference and new Selberg formulas. H. Owhadi and C. 
Scovel. Communications in Mathematical Sciences (2015). arXiv:1304.7046



Forrester and Warnaar 2008

The importance of the Selberg integral

Used to prove outstanding conjectures in
Random matrix theory and cases of the 
Macdonald conjectures

Central role in random matrix theory, Calogero-
Sutherland quantum many-body systems, Knizhnik-
Zamolodchikov equations, and multivariable 
orthogonal polynomial theory



Index

Theorem

t1 t2 tj tNt∗



New Reproducing Kernel Hilbert Spaces and Selberg Integral formulas 
related to the Markov-Krein representations of moment spaces.

Ψ ³
EX∼μ[X],EX∼μ[X2], . . . ,EX∼μ[Xk]

´
R
Im
Σt−1 ·Qm

j=1 t
2
j (1− tj)2∆4m(t)dt = Sm(5,1,2)−Sm(3,3,2)

2R
Im
Σt−1 ·Qm

j=1 t
2
j ·∆4m(t)dt = m

2 Sm−1(5, 3, 2)

Sn(α,β, γ) =
Qn−1
j=0

Γ(α+jγ)Γ(β+jγ)Γ(1+(j+1)γ)
Γ(α+β+(n+j−1)γ)Γ(1+γ)

∆m(t) :=
Q
j<k (tk − tj)¡

Σφ
¢
(t) :=

Pm
j=1 φ(tj), t ∈ Im

I := [0, 1]



Z
Im−1

h̃k(t)ΣQj(t)

m−1Y
j0=1

t2j0 ·∆4m−1(t)dt = V ol(M2m−1)(2m−1)!(m−1)!
(k + 2)!

(8k + 4)(k − 2)!
δjk .

Theorem

ej(t) :=
X

i1<···<ij
ti1 · · · tij

Πn0 : n-th degree polynomials which vanish on the boundary of [0, 1]
Mn ⊂ Rn: set of q = (q1, . . . , qn) ∈ Rn such that there exists a probability
measure μ on [0, 1] with Eμ[Xi] = qi with i ∈ {1, . . . , n}.

Consider the basis of Π2m−10 consisting of the associated Legendre polyno-
mials Qj , j = 2, .., 2m − 1 of order 2 translated to the unit interval I. For
k = 2, .., 2m− 1 define

ajk :=
(j + k + k2)Γ(j + 2)Γ(j)

Γ(j + k + 2)Γ(j − k + 1)
, k ≤ j ≤ 2m− 1

h̃k(t) :=
2m−1X
j=k

(−1)j+1ajke2m−1−j(t, t) .

Then for j = k mod 2, j, k = 2, .., 2m− 1, we have

Bi-orthogonal systems of Selberg Integral formulas
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