The worst case approach to UQ

Houman Owhadi

“The gods to-day stand friendly, that we may,
Lovers of peace, lead on our days to age!

But, since the affairs of men rests still uncertain,
Let’s reason with the worst that may befall.”

Julius Caesar, Act 5, Scene 1
William Shakespeare (1564 —1616)



You want to certify that

PIG(X) >al <e

Problem

e You don’t know .
and

e You don’t know P



You want to certify that

Problem

PIG(X) >al <e

e You don’t know .

and

e You don’t know P

You only know

(G,

) e A

A C {(f,u)

f: X — R,
u € P(X)

}



Compute Worst and best case

optimal bounds P|G(X) > a
given available information.

U(A) ;= sup p[f(X) > d
(f,p)EA
£(A):= inf WIX) 24

L(A) <PG(X) > a] < U(A)

U(A) < e: Safe even in worst case.
¢ < L(A): Unsafe even in best case.

L(A) <e<U(A): Cannot decide.
Unsafe due to lack of information.
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Optimization problems are a priori infinite dimensional, non-convex and highly
constrained but as in linear programming, under general conditions, they can
be reduced to finite dimensional families of extremal scenarios of A and the
dimension of the reduced problem is proportional to the number of probabilistic
inequalities describing A



You are given one pound of playdoh,
how much mass can you put above a
while keeping the seesaw balanced around m?

P. L. Chebyshev A. A. Markov M. G. Krein
1821-1894 1856-1922 1907-1989



Answer

w
m

max p

subject to ap < m




What is the least upper bound on P|X > a]
if all that you know is that [P is an unknown
distribution on |0, 1] having mean less than m

0 A @ 1

T

A= e M([0,1]) |E,[X] < mj

Markov’s inequality

Answer SUp M[X Z CL} — @
neA a




sup  u[f(X) >a
fu)eA
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Our proof relies on

» Winkler (1988, Extreme points of moment sets)
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solutions of a generalized moment problem)
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A

= q (f, 1)

f: A1 x---x &, — R,

=1 & L,
G(f,pn) <0

G(fiu) <0 n’ generalized moment constraints on p, [E, [(,0‘7’c | <0
T ni generalized moment constraints on pr, E,, [wg i1 <0
_i‘l . '4“1
Theorem | SUP “ [qf] T SUup ‘[ [qf}
(fpn)eA (f,m)€AA
(g 1s a sum of at most
Aa =< (f,p) € A n' 4+ ng + 1 weighted
Dirac measures on




Further Reduction of optimization variables

(f: X >R, pcPX))

k
{f: X — R, p€P(X) M—Z@k%k}
1=1

!

{f:4L,2,....n} =R, p e P({L,2,...,n})}

!

{{1,2,...,q}, p € P({1,2,...,n})}




Another example: Optimal concentration inequality

H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns, and M. Ortiz.
Optimal Uncertainty Quantification. SIAM Review, 55(2):271-345, 2013.

( frXx - xX, —-R,
B weMAX)® - R M(AX,),
Amp = (f, 1) E,[f] <0, ’
\ Osc;(f) < D; )

Osc;i(f) := sup sup (f(--oy @)= f,a, ...

(T1,..., T )EX 2l EX;

UAvp) = sup p[f(X) >
(fs1)EAMD

McDiarmid inequality’s

i) <o




Reduction of optimization variables
C c {0,1}™,

Ac =1 (C,a) |a € &2, M({0,1}),

. [hE] <0

Theorem

U(Arnp) =U(Ac)




Explicit Solution m=2

Theorem 7)) — 2

0 if D1 -+ D2 § a
U(Ayup) = (Dlﬂjll)ga) if |D1—Ds| <a< Di+ Do
o max(gl,Dg) if 0<ac< ‘Dl_D2|

C=1L1); ®

hC(S) — a — (1 — Sl)Dl — (]. — 82)D2




Explicit Solution m=2

Theorem 7)) — 2

0 if D1 -+ D2 § a
U(Ayup) = (Dlﬂjll)ga) if |D1—Ds| <a< Di+ Do
o max(gl,Dg) if 0<ac< ‘Dl_D2|

Corollary [f Dl > a + DQ, then
U(Arp)(a, D1, Ds) =U(Anp)(a, D1,0)



Each piece of information is a constraint
on an optimization problem.

Optimization concepts (binding, active) transfer to
UQ concepts

Binding but non
f active constraint

/

Non binding
constraint

N

— Active constraint

Extremizer/
Worst case scenario

I




Optimal Hoeffding= Optimal McDiarmid for m=2
f: X1 x---x &, — R,

4:M[f] S 07
Osc;(f) < D;

U(Anvp) = U(Ansq)

Amp = < (f, 1)

F= X1t ot X,
Ana == (f, ) [ € Qioq M([bi — Dy, bi]),
uLf1 <0




Explicit Solution m=3

Theorem 1717 — 3

F1

Z/{(AMD) — max(]:l, fg)

U(Amp) = U(Anta)

U(Anp) > U(Amnia)




Seismic Safety Assessment of a Truss Structure

I
|

I
|

N

.

(1) i F'(1)

Ground

Acceleration

F

min( Yield Strain

- Axial Strain)

We want to certify that

D)

F(a) <0

< €
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Filtered White Noise Model

N. Lama, J. Wilsona, and G. Hutchinsona.
Generation of synthetic earthquake accelograms
using seismological modeling: a review. Journal of

Wh Ite noise Earthquake Engineering, 4(3):321-354, 2000.

Filter

Ground
acceleration



Vulnerability Curves (vs earthquake magnitude)



|dentification of the weakest elements

H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns,
and M. Ortiz. Optimal Uncertainty Quantification.
SIAM Review, 55(2):271-345, 2013.



Caltech Small Particle Hypervelocity Impact Range

(h, a,v)

Plate thickness
Plate Obliquity

Projectile velocity

Problem

G—G(h, Y, U)

Perforation area

We want to certify that

PG =0|<e

We don’t know G nor P.




What do we know?

Plate thickness h, € X := [1.524,2.667| mm,
Plate Obliquity & X2 .= 07 %]7
Projectile velocity v E XB = 21, 28] kIIl . S_l.

Thickness, obliquity, velocity: independent random variables

Mean perforation area: in between 5.5 and 7.5 mm*2

my < “3[G] < Mo

Bounds on the sensitivity of the response function w.r. to each variable

Osc; G < D;

Osc; G :=sup {|G(z) — G(2')| | xj = a; for j # i}



We only know (G’P)) - A

U= & a2 & us,
A=< (f,pn) | mi <E,|f] <ma
Osc; f < D;

Worst case bound

PG <0] <U(A):= sup p[f(X) <0
(f,n)eA

Reduction calculus

UA) = 43.7%



What if we know the response function?

What if we know G = H?

Deterministic surrogate model for the perforation area (in mm#*2)

H(h,a,v) —K(

h

Dy,

)p (cos)” ( vanh (

2

Ubl

)

T |

=

+

LI



Optimal bound on the probability of non perforation

U(A) = sup plf(X) <]

(fin)eA
I U= & u2 & us,
A=< (f,pn)|5.5mm? <E,[f] <7.5mm?,
| ey J
Application of the reduction calculus
UA) = U(Ar)

Aa = {(f, 1) € A|ur has support at only 2 points}

The measure of probability can be reduced to the tensorization of
2 Dirac masses on thickness, obliquity and velocity

U(A) = 37.9%



The optimization variables can be reduced to the tensorization
of 2 Dirac masses on thickness, obliquity and velocity

Support Points at iteration 0



Numerical optimization

Support Points at iteration 150



Numerical optimization

Support Points at iteration 200



Velocity and obliquity marginals each collapse to a single Dirac mass. The plate
thickness marginal collapses to have support on the extremes of its range.

Iteration
1000

Probability non-perforation maximized by distribution supported on minimal, not
maximal, impact obliquity. Dirac on velocity at a non extreme value.



Important observations

Extremizers are singular

They identify key players
i.e. vulnerabilities of the physical system

Extremizers are attractors



Initialization with 3 support points per marginal

Support Points at iteration 0



Initialization with 3 support points per marginal

Support Points at iteration 500



Initialization with 3 support points per marginal

Support Points at iteration 1000



Initialization with 3 support points per marginal

Support Points at iteration 2155



Initialization with 5 support points per marginal

Support Points at iteration 0



Initialization with 5 support points per marginal

Support Points at iteration 1000



Initialization with 5 support points per marginal

Support Points at iteration 3000



Initialization with 5 support points per marginal

Support Points at iteration 7100



Unknown response function G + Legacy data

Objective
We want least upper bound on P|G(h, a,v) < 6]

Constraints on input variables

h, o, v: independent
(h,a,v) € [0.062,0.125]in x [0,30] deg x [2300, 3200] m/

Constraint on the mean perf. area E|G(h,a,v)] > 11.0 mm?

Modified Lipschitz continuity constraints on response function

G(h,a,v) — G, o', 0| <dp((h,a,v), (R, o', v") + T,

dr,((h,a,v), (A, a’,v") ;= Lp|h — h'| + Lo|la — & | + Ly|v — 0/
L:=(Ly, Ly, L), T := 1.0 mm?,

Ly = 175.0mm?/in, L, :=0.075mm?*/deg, L, :=0.1mm?/(m/s).



Legacy Data

32 data points

(steel-on-aluminium shots
A48-A81) from summer 2010
at Caltech’s SPHIR facility:

hese constrain the value
of G at 32 points

T. J. Sullivan, M. McKerns, D. Meyer, F. Theil,
H. Owhadi, and M. Ortiz. Optimal uncertainty
quantification for legacy data observations of
Lipschitz functions. ESAIM Math. Model. Numer.
Anal., 47(6):1657-1689, 2013.



Least upper bound on P|G(h, a,v) < 6]

The numerical results demonstrate agreement with the Markov bound

M —m
P < 0| <
M:= sup inf (G(z)+dr(z, (h,a,v))+T) ~ 39.895 mm”

(h,a,v)EX z€0

Only 2 data points out of 32 carry information about the optimal bound



Legacy Data
32 data points

(steel-on-aluminium shots
A48-A81) from summer 2010
at Caltech’s SPHIR facility:

Only A54 and A67 carry information

The other 30 data points carry no
information about least upper bound
and could have be ignored.

T. J. Sullivan, M. McKerns, D. Meyer, F. Theil,
H. Owhadi, and M. Ortiz. Optimal uncertainty
quantification for legacy data observations of
Lipschitz functions. ESAIM Math. Model. Numer.
Anal., 47(6):1657-1689, 2013.



What if we have model uncertainty?

What do we want?

Least upper bound on P|G(h,v) < 6]

What do we know?
Numerical model (h,v) — F(h,v)
59 noisy data/experimental points G(h;, v;)
Expert judgement (+data points):
(G (h,v)] > 12mm?
h and v are independent random variables

(h,v) € [0.5,3.0lmm x [4.5,7.0lkm/s




PSAAP numerical model

Plate Obliquity=0

(7, V) e— (R, V)

Plate thickness Perforation area

Projectile velocity

30 mm?

— h=0.5
— h=15
— h=3.0

F

0 mm

4.5km/s v 7km/s



59 data/experimental points

Plate Obliquity=0 G
(h7 TV ) S ——— G ( ]’L) ’U)
Plate thickness Perforation area

Projectile velocity

30 mm?
— h=05
@ ® — h=15
R o — h=3.0
F O 0 0 ° ®
° o ® o ©
@ @
Omm® @

4.5km/s v 7km/s



Confidence sausage around the model

Perforation 0 $\C
- Y
Area ©o o O

(h; v)
With probability|p;| we have
p2(p1, Cy, data)




Admissible set
g: X — Y,
1= [p & Ly,

(g, )] X :=10.5,3.0lmm x [4.5,7.0]km/s,

L lg(h, v, )] > 12.0mm?,
lg — Flle < Cy

Confidence sausage

With probability|p;| we have
2 /s, (pla Cyv dCLtCL)

land p; =0.85 we have ps =
What we compute

SUP(g,p)eA M[g < 9}

0.51










sup  pu|g < 0|

(g,n)EA

_M—m
- M-8

For C,, = 3 and 6 > 8 the model impacts the least
upper bound only through its maximum value M

At the extremum

1L, collapses to a single mass of Dirac

30 mm?

F

0 mm
4.5km/s

— h=0.5
— h=15
— h=3.0

7km/s



The extremizers led to the identification of a bug in an old model
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Reduced numerical optimization problems solved using

* mystic: http://trac.mystic.cacr.caltech.edu/project/mystic
— a highly-configurable optimization framework

« pathos: http://itrac.mystic.cacr.caltech.edu/project/pathos

— a distributed parallel graph execution framework providing a high-
level programmatic interface to heterogeneous computing

Mike McKerns



Important observations

In presence of incomplete information on the distribution of
input variables the dependence of the least upper bound on
the accuracy of the model is very weak

We need to extract as much information as possible from the
sample/experimental data on the underlying distributions

How do we reason with the worst in presence of data
sampled from an unknown distribution?




X>a

Unknown or partially known
measure of probability on R

d:(dl,...,dn)ERn

n i.i.d samples from u'

Problem:

Find the best estimate of ®(u')
0(d)



Player |
Chooses
uwe A

Player Il

Sees d ~ "

Wes m/" Chooses 6
E(p, 0)

Mean squared error

E(p,0) =

Confidence error

g(/% 0) — Pd’\“ﬂn

td,\,ﬂn
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Princeton University Press, Princeton, New Jersey, 1944.

A. Wald. Contributions to the theory of statistical estimation and testing hypotheses.
Ann. Math. Statist., 10(4):299-326, 1939.

A. Wald. Statistical decision functions which minimize the maximum risk. Ann.
of Math. (2), 46:265—280, 1945.

A. Wald. An essentially complete class of admissible decision functions. Ann.
Math. Statistics, 18:549—555, 1947.

A. Wald. Statistical decision functions. Ann. Math. Statistics, 20:165—205, 1949.



Deterministic zero sum game

Player li
O O
@ 0
® |3
Player |
® Player I's payoff

Player | & Il both have a blue and a red marble
At the same time, they show each other a marble

How should | & Il play the game?



Pure strategy solution

Player 11

Il should play blue and loose 1 in the worst case

| should play red and loose 2 in the worst case



Mixed strategy (repeated game) solution

Player 11
QZ%Q Ql—ng
3 @0
P=3@ 3
Player |
l-p=;@

Il should play red with probability 3/8 and win 1/8 on average
Player I's expected payoff= 3pq + (1 — p)(1 — q) — 2p(1 — q) — 2¢(1 — p)

=1-3¢+p(8g—3)=—4 forqg=2

| should play red with probability 3/8 and loose 1/8 on average



max min 7 min max

aximin pure strategy] Plaver [] PMinimax pure strategy
for Player I: Play red Y for Player II: Play blu€
nd | most 2. | @ @ land! most 1.

X
® 13

Player 1

J. Von Neumann

O
Player I's payoff

max min — min max

Maximin mixed strategy Minimax mixed strategy
for Player I: Play red for Player II: Play red
with probability % with probability 2

and loose exactly % and win exactly %8

lon average. lon average.




Player 1 Player 11
chooses \”““x /W/ chooses 6@
ne A

E(p, 0)

Pure strategy solution for Player Il
Optimal bound on the statistical error

E(u, 0
max & (u, 0)

Optimal statistical estimators

j E(w, o
min max £(u, 6)

Not ddle point: mi E(p, 6 in&(u,0) =0
ot a saddle point: minmax (u, )#Eleaicmém (p,60)



Player 1 Player 11
chooses \W"K /W/ chooses 6@
ueA

E(p, 0)

Mixed strategy (repeated game) solution for Player |
u~mr e M(A)
Mixed strategy (repeated game) solution for Player Il

Choose 6 at random and minimize

{:},LNWI, 0 [g(lu’ é)]

Saddle point: mgn mrenﬁt)&) E r 6 E(p, 0)] = wfrenAaA>(<A) méin B r;.d E(w,0)]




Bayesian estimator (with prior 7 € M(A))
Or(d) = By, @ty [2(p)|d = d]
Theorem If the loss is quadratic, i.e.

E(1,0) = Eamper | [0(d) — B(11))?]
then for all prior 7 € M(A)

minmax &(u,0) > E, . E(1, Or)

.0 M J - il
e al . Var; | f
Minimal loss in ariance'o
non cooperative game Bayesian estimator

Can we have equality?



Theorem If the loss is quadratic, i.e.
E(1,0) = Eamper | [0(d) — ()]

then the optimal § is non-random and
lives in the (classical) Bayesian class of estimators

m@m mﬁxxg(u, 9) = m?JX L~ [5(/“7 97?)}

The best mixed strategy for | and Il
= worst prior for |l

The best estimator is not random if the loss function is strictly convex

A. Dvoretzky, A. Wald, and J. Wolfowitz. Elimination of randomization in certain
statistical decision procedures and zero-sum two-person games. Ann. Math.
Statist., 22(1):1-21, 1951.



Complete class theorem

Estimator
>

Non cooperative

Minmax loss/error \

Non Bayesian
Over-estimate risk

—Risk

cooperative =
Bayesian loss/error \ BayeS|an

Under-estimate risk
>

Prior



Further generalization of Statistical decision theory

L. J. Savage. The theory of statistical decision. Journal of the American Statistical
Association, 46:55—67, 1951.

L. Le Cam. An extension of Wald’s theory of statistical decision functions. Ann.
Math. Statist., 26:69—-81, 1955

L. D. Brown. Minimaxity, more or less. In Statistical Decision Theory and Related
Topics V, pages 1—18. Springer, 1994.

L. D. Brown. An essay on statistical decision theory. Journal of the American
Statistical Association, 95(452):1277-1281, 2000.

I. Gilboa and D. Schmeidler. Maxmin expected utility with non-unique prior.
Journal of Mathematical Economics, 18(2):141-153, 1989

A. Shapiro and A. Kleywegt. Minimax analysis of stochastic problems. Optim.
Methods Softw., 17(3):523-542, 2002.

M. Sniedovich. The art and science of modeling decision-making under severe
uncertainty. Decis. Mak. Manuf. Serv., 1(1-2):111-136, 2007

M. Sniedovich. A classical decision theoretic perspective on worst-case analysis.
Appl. Math., 56(5):499-509, 2011.



Impact in econometrics and social sciences

O. Morgenstern. Abraham Wald, 1902-1950. Econometrica: Journal of the Econo-
metric Society, pages 361-367, 1951.

G. Tintner. Abraham Wald’s contributions to econometrics. Ann. Math. Statistics,
23:21-28, 1952.

R. Leonard. Von Neumann, Morgenstern, and the Creation of Game Theory: From
Chess to Social Science, 1900—1960. Cambridge University Press, 2010.

If we want to make decision theory practical for UQ we need to introduce
computational complexity constraints

H. Owhadi and C. Scovel. Towards Machine Wald. Handbook for Uncertainty
Quantication, 2016. arXiv:1508.02449.

How do we do that?

Is there a natural relation between game theory,
computational complexity and numerical approximations?



A simple approximation problem
Approximate solution x of

A: Known n X n symmetric
Az =0

positive definite matrix

b: Unknown element of R™

Based on the information that

@x p— y ®: Known m X n

rank m matrix (m < n)
T H—1
Ib Q b S 1 y: Known element of R™

(2: Known n X n symmetric positive definite matrix




Set of candidates (ambiguity set) for x

A={z€eR"| Pz =y, and |Az|g-1 <1}

blo-1 := /bTQ b



Classical numerical analysis minimax solution
z* minimizing
M1« A INlaX,c 4 [|[£ — <

*

Looks like a game

Player I: Player 11:
Chooses z € A Chooses z* € A

()

Iz — 27|




Classical numerical analysis minimax solution

z* minimizing

MIN*c 4 MAX, A

L — &

*

No saddle point in the numerical analysis formulation!

maX,«c 4 Min,c 4 |2 — 2%|| = 0

Il

MinN,»c 4 MaX e A

7 MaX,*c A MiNe 4

Why should we care?



Deterministic zero sum game

Player 11

Player I's payoff

How should | and Il play the game?



Pure strategy (classical numerical analysis) solution

Player 11

Il should play blue and loose 1 in the worst case

| should play red and loose 2 in the worst case



Mixed strategy (repeated game) solution

Player 11
QZ%Q Ql—ng
3 @0
P=3@ 3
Player |
l-p=;@

Il should play red with probability 3/8 and win 1/8 on average
Player I's expected payoff= 3pq + (1 — p)(1 — q) — 2p(1 — q) — 2¢(1 — p)

=1-3¢+p(8g—3)=—4 forqg=2

| should play red with probability 3/8 and loose 1/8 on average



aximin pure strategy . # | inimax pure strategy
for Player I: Play red for Player II: Play blue
nd 1 most 2. Pl ayer [] landl most 1.

X
® 13

Player I

J. Von Neumann

O
Player I's payoff

Maximin mixed strategy Minimax mixed strategy
for Player I: Play red for Player 1I: Play red
with probability % with probability 2

and loose exactly % and win exactly %8

lon average. N mAx — e min lon average.




Game theoretic formulation

Player 1 Ar =b

chooses Player 11
b c R sees y = dx
p'Q-1h <1 chooses x*

|l — 27|

Continuous game but as in decision theory under
compactness it can be approximated by a finite game



Best strategy: lift minimax to measures

Player 1 Az =b

chooses Player 11

b c R™ sees y = dx

pI'Q-1p < 1 chooses z~
|z — 27|

The best strategy for | is to play at random

Player II’'s best strategy live
in the Bayesian class of estimators



Player II’s mixed strategy

Player II’s bet §~ N(O’ Q)

¥ =E|X|PX = O]

Player 1I’s recovery error on x;

‘:1:@- — E[X;|PX = <I>:1;'H unknown

Player II's stochastic error assuming that Player I
is selecting x at random with the same prior distribution

‘X ; — I [ X; ‘ (I)X] ‘ random variable with

known distribution




Player II’s mixed strategy

Ar =)

Theorem

= AX =¢
E~N(0,Q)

2 — E[X;|®X = y]| < ¢E[\X?; _ E[X@-\@X]\Q] T Qb

|

unknown known Standard Deviation
deterministic error of stochastic error

I ’

known compactnes:
bound on b

Owhadi 2015, Multi-grid with rough coetficients and Multiresolution PDE decomposition
from Hierarchical Information Games, arXiv:1503.03467, SIAM Review (to appear)



Main Question

Can we turn the process of discovery of a scalable
numerical method into a UQ problem and, to some
degree, solve it as such in an automated fashion?

Can we use a computer, not only to implement a
numerical method but also to find the method itself?



Example: Find a method for solving (1)
as fast as possible to a given accuracy

—div(aVu) =g, x € (),
u=0, =z,

QCRY 00 is piec. Lip.

(1)

a unif. ell. loggo(a)
Q; j - LOO(Q)




Multigrid Methods
Multigrid: [Fedorenko, 1961, Brandt, 1973, Hackbusch, 1978§]

Multiresolution/Wavelet based methods
[Brewster and Beylkin, 1995, Beylkin and Coult, 1998, Averbuch et al., 1998]

« Linear complexity with smooth coefficients

Problem Severely affected by lack of smoothness



Robust/Algebraic multigrid

[Mandel et al., 1999, Wan-Chan-Smith, 1999,
Xu and Zikatanov, 2004, Xu and Zhu, 2008], [Ruge-Stiiben, 1987
[Panayot - 2010]

Stabilized Hierarchical bases, Multilevel preconditioners
Vassilevski - Wang, 1997, 1998
Panayot - Vassilevski, 1997]

(Chow - Vassilevski, 2003]
Aksoylu- Holst, 2010]

« Some degree of robustness but problem
remains open with rough coefficients
Why? Interpolation operators are unknown

Don’t know how to bridge scales with rough
coefficients!



Low Rank Matrix Decomposition methods

Fast Multipole Method: [Greengard and Rokhlin, 1987]
Hierarchical Matrix Method: [Hackbusch et al., 2002]
'Bebendorf, 2008]:

N1n***t8 N complexity

To achieve grid-size accuracy in L*-norm




Common theme between these methods

Their process of discovery is based on intuition,
brilliant insight, and guesswork




Answer: YES Compute fast

!

Play adversarial ) Compute with

Information game partial information
‘ Find optimal ",':”'"'"’:
Identify game strategy
— | E————— |V

Owhadi 2015, Multi-grid with rough coefficients and Multiresolution PDE decomposition
from Hierarchical Information Games, arXiv:1503.03467, SIAM Review (to appear)

Resulting method:

NIn*? N complexity

This is a theorem
To achieve grid-size accuracy in H'-norm

Subsequent solves: ‘N In“* N complexity‘




—div(aVu) = g in Q,
u = 0 on 0,

Resulting method: \

H}(Q) = wh e, wDe, . --q, WE @,

<Y, x >ai= [o(V)TaVy = 0 for (¢, x) € W x W) § £ j

Theorem For v € 95(F)

C1 < |v]]a < C2
[ div(aVv)llp2q) — 2k

[v]|2 :=<v,v >q= [,(Vv)'aVu

Looks like an eigenspace decomposition



u:w1—|-w2 —|—wk

w'*) = F.E. sol. of PDE in 25X
Can be computed independently

B e
AN . R '\“\\“"'".".‘,”
ng L _ il

018 i
’! Al

\‘.‘ i

014

0.08

£.08
1

Multiresolution decomposition of solution space



uw=w +w® .o k) ..

w*) = F.E. sol. of PDE in 25
Can be computed independently

B(k). Stiffness matrix of PDE in 25(%)

Amax (B*))

Just relax in 20%) to find w*)

Quacks like an eigenspace decomposition

Theorem




Application to time dependent problems

'Owhadi-Zhang 2016, From gamblets to near FFT-complexity
solvers for wave and parabolic PDEs with rough coefficients|

1(z)07u — div(aVu) = g(z, t)
u(x)0yu — div(aVu) = g(z, t)

Hyperbolic and parabolic PDEs with rough coefficients
can be solved in O(N In** N) (near FFT) complexity

w3

0.14 ’w(l) 0.03 UJ(2) 8 x 1073

Swims like an eigenspace decomposition



U: F.E. space of Hj(Q) of dim. N

Theorem The decomposition

v =020Wg¢ wDag, .. ¢, 0

Can be performed and stored in

O(N In** N) operations

Doesn’t have the complexity of an eigenspace decomposition



o
"*'5':1:’9’»!‘3"‘ i
LA
AR

i)

Basis functions look like and behave like wavelets:
Localized and can be used to compress the operator
and locally analyze the solution space



R™S u,,-

Inverse Problem O, c R™

Numerical implementation requires
computation with partial information.

o1, -

,Om € L*(Q)

Uy, = (fQ ¢1u7 SO fQ ¢mu)

Uy, € R™

Missing information

u € Hy ()



Discovery process

Identify underlying
information game

Measurement functions: ¢1 g o o

Player |

Chooses
g€ L*(Q

\

—div(aVu) = g in ,

u = 0 on 0,

. Om € L (Q)

Player I

s Jo um
Chooses u* € L?(Q)

HgHLQ(Q) < 1 \ /

Sees [, ug1, ..

Qa

I£1I2 = Jo(VH) aV f



Deterministic zero sum game

Player li
O O
@ 0
® |3
Player |
® Player I's payoff

Player | & Il both have a blue and a red marble
At the same time, they show each other a marble

How should | & Il play the (repeated) game?



Optimal strategies Game theory
are mixed strategies

Optimal way to Playe r‘lll
play is at random q@® — (q

Pe
Player | -
l-pe -
Player I's expected payoft John Nash
=3pg+ (1 —p)(1 —q) —2p(1 —q) — 2¢(1 — p)

1
=1 —3q + p(8¢q — 3) =—3 forng



Player A Player B

Chooses
g€ L2(Q) Sees [, U1, ..., [o udm
l9llz2g) < 1 Chooses u* € L*(Q)

NS

Hu—u*

a

Continuous game but as in decision theory
under compactness it can be approximated
by a finite game

A

Abraham

2l

£

i

Wald

The best strategy for A is to play at random

Player B’s best strategy live
in the Bayesian class of estimators



Player II's class of mixed strategies

Pretend that player | is choosing g at random

ge L*(Q) <= ¢ Random field

—div(aVu) = g in Q, — [ —div(aVv) = € in Q,
<\ u = 0 on 0, < v =0 on 012,
Player II’'s bet

u(z) = Blv(z)| [ v(y)di(y) dy = [, uly)ei(y) dy, Vil

Player II’'s optimal strategy?

Player II’s best bet? “ min max problem
over distribution of &




Computational efficiency mm) ‘f ~ ,/\[(()7 I’)‘
4

Elementary gambles form deterministic
basis functions for player B’s bet

Theorem 4
) = S ) e ]

Gamblets

;. Elementary gambles/bets
Player II's bet if [, u¢; =6;,, j=1,.

%(w) ‘= EENN(O,F) [U(ﬂ?)‘ fQ v(y)¢] (y) dy — 5i,j7 .] < {17 I




What are these gamblets? Depend OonNn

e I': Covariance function of £ (Player B’s decision)

e (¢;)",: Measurements functions (rules of the game)

[Owhadi, STAM MMS, 2015]

Example ;... xumcrical Homosenization
F(CIZ‘, y) — 5('73 o y)
¢i(r) = d(x — x;)

a = [; e==p q),: Polyharmonic splines
‘Harder-Desmarais, 1972] [Duchon 1976, 1977,1978]

a; ; € L>(Q)) 4= 1);: Rough Polyharmonic splines
'Owhadi-Zhang-Berlyand 2013]



What is Player IlI’'s best strategy?

What is Player II’'s best choice for

[(z,y) =E[{(z)¢(y)] 2

[ — [|e= Jat@rd~aos)
I If1I7 == Jo (V) aVf

L =—div(aV)

Why? <¢==) gee algebraic generalization



The recovery is optimal (Galerkin projection)

Theorem [f['= [ then
u*(z) is the F.E. solution of (1) in span{L~1¢;|li = 1,...,m}

Hu — U*Ha, — inf@béspan{ﬁ_lqbi:iE{l,...,m}} Hu — wua

L=—div(aV")

<( —div(aVu) = g, r €,
(1) u=20, x €0,

\




Optimal variational properties
Theorem

> o wi; minimizes Y|4

over all ¢ such that |, ¢;9 =w; for j=1,...

Variational characterization

Theorem 1);: Unique minimizer of

‘Minimize |||,

<
| Subject to ¢ € Hij(Q)and [,¢;9=10;;, j=1,...



Selection of measurement functions

Example [ndicator functions of a
Partition of €2 of resolution H

!

Theorem |I|& — U*|la < Amf(a) HgHLQ(Q)




Elementary gamble

% Your best bet on the value of u

given the information that

fTiuzlandiju:Oforj#i

00 0
T4 @ 0
0|0 0
0|0 0
[ —div(aVu) = g, r €, X O
(1) <\ w=0, xcd, Tj




Exponential decay of gamblets

Theorem

Vi

r-axis slice

r-axis slice




Localization of the )
computation of gamblets ]
:°“": Minimizer of . Sy
T3
Minimize %] a T
Subject to ¢ € Hy(S,) and [4 ¢;9 = d;
for ; € 5,

No loss of accuracy if

localization ~ H In %

w1 (a) = Y 9 (@) oy uly)dily) dy

Theorem Ifr > CHIn+

lo € <= Hllglli2(0)

x,loc

|u—u




Formulation of the hierarchical game




Hierarchy of nested Measurement functions ¢(1)

o) with ke {l,...,q) %
k k+1
ng ) — Z CZ,]¢( 1) ¢ ¢ &; (2)

11,71 7 1,72 11,73 T 11,74

Example
BB B ,®
k . . ¢i1,-2,k1¢1 5 k2¢11,'2,k3 ¢’i1,'2,k4
qb,g ) . Indicator functions of a o TR j

hierarchical nested partition of € of resolution H; = 2~*

| =]
(1) 3)
| e Jj




In the discrete setting simply aggregate elements
(as in algebraic multigrid)

] L [ ]
/I/ ] 0.8 K
./ 1 ey s jEHLQ’L.CHQI
i (1) 1 06— o |
T’I, f 0.6} | |

|
< s (2
q 04 >~ ; . — oal
\ / - oat \ j g oat R /
i 0.2 \ | ozF
Il 1 o1f IQ ‘ 1 ot Ig
L L L L L L L 0 L L L L o | L L L L L L
e 05 0.8 a7 08 08 1 Q 0.1 a2 0.3 0.4 2.6 0.6 a7 0.8 0.8 1 o] 0.1 0z 03 0.4 0.5 0.6 0.7 0.8 09 1

=10 30

=137




Formulation of the hierarchy of games

Player |

Chooses
g € L*(Q)

|9llr2(0) <1

|

—div(aVu) = g in ,
u = 0 on 01},

Player I

Sees { |, uqbgk), i € 1y}
Must predict

wand {foug;"", j € Tpin)




Player II’s best strategy

g div(aVu) = g in Q,

€NN(O7£)

[ —div(aVv) = € in Q,

<\ u = 0 on 01}, v = 0 on 0],
Player II’s bets
u®) () == E[v(z)| fov)e!” (v) dy = fou(v)o)” (y) dy, i € T,

The sequence of approximations forms a martingale under
the mixed strategy emerging from the game

fk :O'(fQU¢,Ek),ZEIk)

Theorem JFi C fk+1
v(k)(a:) =K [v(k+1)(m)|.7:k]

vF) () := E|v(z)|F]




Player II’s best strategy

&~ N0, L

. —div(aVu) = g in €2, [ _ div(aV = £ in (),

\ u = 0 on 0, v = 0 on 0],
Player II’s bets

u® (z) = E[v(z)] [, v@)o (v) dy = [, uly)e'® (v) dy, i € T

:“J '
ff;’i"“ ‘4‘;
M “

i)

U ,-«m

i
.rf'ﬂ" '
!

\\ s

f,l,..m i ‘ v

f!"'!; 0': “’1 i

A
’f"h"‘!"

.«*&

v ov“

T

4

i

i




Gamblets Elementary gambles form a hierarchy of deterministic
basis functions for player II’s hierarchy of bets

Theorem k) (1) — 5 o (2) [ u(y)o® (y) dy

gb(k): Elementary gambles/bets at resolution Hj, = 27"

(2




Gamblets are nested

PF) = Span{¢§k),i c I} vy,

——=7\

(2)
Theorem %,31 %,32 % 3 %1,34

Bk  qkt1)

(3) (3) (3) (3)
wil,jz,kl¢’i1,j2,7€2¢i1,j2,k3 wilaj2ak4

k k k+1
(@) = X ez, R (@)




Interpolation/Prolongation operator

(k) _
Ri,j

R®

t,J

E| [q ¢(k+1 (y) dy| [, ”U(y)ﬁbl(k)(y) dy = 0;,, | € I

Your best bet on the value of fT(k—l—l) U
j

given the information that
ngk>u:1and leu:Oforl#z'

(k+1)

] o 7]

00




At this stage you can finish with
classical multigrid

But we want multiresolution decomposition



Elementary gamble

X(‘k) Your best bet on the value of u
1

eiven the information that
fT.(k) u = ]_7 f’T,(E) u = —1 and ngk) u = 0 for ] # 7

k
’7'.(_)
N
o |-1]0 (O
(k) (k)
Ti — 110 |0 HTj
0,00 (O
0,00 (O 0O
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(k) _ (k)

(il
A

4
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Multiresolution decomposition of the solution space
Pk) = Span{@b(k) i € I}
(k) .= span{x(k) i}

5(k+1). Orthogonal complement of Y*) in Yk+1)
with respect to < ¥, x >4:= fQ (Vi) aVy

Theorem

H& () = v @, WHDe, --@, 0 ¢




Multiresolution decomposition of the solution

Theorem

w1l — (k) — FE. sol. of PDE in 2p(k+1)

Subband solutions (k1) — (k)
can be computed independently



Uniformly bounded condition numbers

A= 0P B = 0P,

Theorem

/\max B(®)

<

Just relax!

In v € k)

to get
u(k) — u(k_l)




v =020Yag, WA aq, - ¢, W0

Ranges of eigenvalues in U and
W) (k=1,...,5) in log scale

[infyen 120 su 13 1
| e gz SHPyew Jigpz, )
ar ® ®
4+ @ @

. )2 (KA1
bk F—® [1nf¢€m(k) W,Sup¢em(k) ||¢||2LQ]
ol F—a

1F @_@

1 1 1 1 | 1 |
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(k)

_ (1) oy (k) X
U = Zz C; Hw(UHQ Zk 2 Zg C] HX(k)Ha

Coefficients of the solution in the gamblet basis




Operator Compression

Gamblets behave like wavelets but they are adapted to the
PDE and can compress its solution space

il o . Energy norm relative error = 0.07

005

Gamblet (_:ofhpféssion

—

Throw 99% of the coefficients




Fast gamblet transform ‘(’)( NIn** N ) complexity

A®) = (RF+INT g(k+1) Rk, h+1)

Nesting

Level(k) gamblets and stiffness matrices can be computed
from level(k+1) gamblets and stiffness matrices

Well conditioned linear systems

Underlying linear systems have uniformly bounded
condition numbers

wzgk w(f;r)l) +y.Ct k+1) XX§k+1) Ok+1),x — (B(k“))_lZ(kH)

(k+1) (k+1) (k:—|—1) (k+1)
AS — _(ej J )TA(k:—I—l) ( it

Localization

The nested computation can be localized without
compromising accuracy or condition numbers



Theorem

Localizing (¢§k))z’ezk and (ng))z- to subdomains of size
> CHyln 5~ = |Cond. No (B#)1¢) < ¢
> C’Hk(lnH%f +In+) m)

Hu o u(l),loc o z;i (u(k—l—l),loc o u(k),loc)Ha < ¢

Theorem
The number of operations to compute gamblets and

achieve accuracy € is O(N In® (max(¢, N Y 1))

€

(and O(N In“(N1/4)1n L) for subsequent solves)

Complexity
Gamblet 3d Linear d+1
TransformO(N In™" N )‘ Solve O(N In N )




, h
i 0 > u(Q) — u(q_l)

1 /
Y, A
AT Y Bl
Parallel . : culd™t) —ylam?)
operating %(3), AG) L\ B® |
diagram ! . -
both in space YD, AD @ g
and in b P - u® —y)
frequency P, AW
> ’U,(1>
X§3) sx10- w3 — 2
=)
X(2) 0.03 u? — M)
—>
0.14 u(l)




Numerical Homogenization
Harmonic Coordinates Babuska, Caloz, Osborn, 1994
Kozlov, 1979 Allaire Brizzi 2005; Owhadi, Zhang 2005
MsFEM [Hou, Wu: 1997]; [Efendiev, Hou, Wu: 1999
Fish - Wagiman, 1993] [Gloria 2010] Arbogast, 2011: Mixed MsFEM

Projection based method Nolen, Papanicolaou, Pironneau, 2008
HMM Engquist, E, Abdulle, Runborg, Schwab, et Al. 2003-...

Flux norm Berlyand, Owhadi 2010; Symes 2012

Localization |Chu-Graham-Hou-2010] (limited inclusions)
Efendiev-Galvis-Wu-2010] (limited inclusions or mask’
Babuska-Lipton 2010] (local boundary eigenvectors)

‘Owhadi-Zhang 2011] (localized transfer property)
[Malqvist-Peterseim 2012] Volume averaged interpolation

|[Owhadi-Zhang-Berlyand 2013] (Rough Polyharmonic Splines)
Owhadi, SIAM MMS, 2015] [Hou and Liu,DCDS-A, 2016]

Bayesian Numerical Homogenization




Statistical approach to numerical approximation

| Henri Poincaré. Calcul des probabilités. 1896. |

[ A. V. Sul’din, Wiener measure and its applications to approximation methods.
Matematika 1959 ]

[ A. Sard. Linear approximation. 1963. |

| G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation
on stochastic processes and smoothing by splines. 1970 |

| F.M. Larkin. Gaussian measure in Hilbert space and applications in numerical
analysis. Rocky Mountain J. Math, 1972 |

| H. Wozniakowski. Probabilistic setting of information-based complexity. J.
Complexity, 1986.]

. E. W. Packel. The algorithm designer versus nature: a game-theoretic ap-
proach to information-based complexity. J. Complexity, 1987]

[ J. F. Traub, G. W. Wasilkowski, and H. Wozniakowski. Information-based
complexity. 1988]



Statistical approach to numerical approximation
| P. Diaconis. Bayesian numerical analysis. In Statistical decision theory and

related topics, 1988 |
| J. E. H. Shaw. A quasirandom approach to integration in Bayesian statistics.

Ann. Statist, 1988. |
[ A. O’Hagan. Bayes-Hermite quadrature. J. Statist. Plann. Inference, 29(3):245

260, 1991. |
| A. O’Hagan. Some Bayesian numerical analysis. Bayesian statistics, 1992. |
|

Skilling, J. Bayesian solution of ordinary differential equations. 1992. |

| Erich Novak and Henryk WozZniakowski, Tractability of Multivariate Problems,

2008-2010 |
| Chkrebtii, O. A., Campbell, D. A., Girolami, M. A. and Calderhead, B.

Bayesian uncertainty quantification for differential equations. arXiv:1306.2365.

2013 |
| H. Owhadi. Bayesian Numerical Homogenization. STAM MMS, 2015 ]

| P. Hennig. Probabilistic interpretation of linear solvers. SIAM Journal on

Optimization, 2015. |

| P. Hennig, M. A. Osborne, and M. Girolami.
uncertainty in computations. Journal of the Royal Society A, 2015. ]

Probabilistic numerics and



Some high level remarks



What is the worst?

uw': Unknown element of A

®: A—R
u — ®(u) Quantity of Interest

What is ®(u')?

infueq ®(u) < ®(u') < sup, 4 P(u)

Robust Optimization worst case



layer I: Player 11:
hooses u! & A Chooses u!! € A

Wex Win
L(ul,ul!)

Loss of Player 11
(gain of Player I)

Game theoretic worst case



Robust Optimization worst case

Failure is not an option.
You want to always be right.

Game theoretic worst case

Interpretation depends on the choice of loss function.
Confidence error

You want to be right with high probability.

Quadratic error

You want to be right on average.

Well suited for numerical computation where you need to

keep computing with partial information (e.g. invert a
1,000,000 by 1,000,000 matrix)



Complete class theorem Egtimator

>
Non cooperative
Minmax loss/error \
Non Bayesian
Over-estimate risk
—Risk
cooperative .
Bayesian loss/error \ BayeSIan
Under-estimate risk

- >
Prior

Can we approximate the optimal prior?



Numerical robustness of Bayesian inference

A

Qﬂ(d) = Wpy~om, dopm [(I)(/u)|d}

Prior =

U

Bayes

Data

= Posterior

Can we numerically approximate the prior when
closed form expressions are not available for

posterior values?



Numerical Prokhorov approximated
approximation | ™ @ Prior

Prior e

N . KL approximated
.. umerical j
Densities mm) approximation m=) @ Drior

Curse of dimensionality

Prokhorov — TV —— KL

!

Perturbed Hellinger D ata
data i l
Hell; turbed TV perturbed Brittle
. ellinger perturbe . Bayes -
Prior =) |Bayes| m) @ posterior prior ¥ == =

Data Data

! !

. MC TV approximated KL perturbed KL pe]jturbed
Prior s | ;¢ | =» @ posterior prior % ma) (Bayes mm) @ posterior




Robustness of Bayesian conditioning
In continuous spaces

Brittleness of Bayesian Inference under Finite Information in a Continuous World. H. Owhadi,
C. Scovel and T. Sullivan. Electronic Journal of Statistics, vol 9, pp 1-79, 2015.
arXiv:1304.6772

Brittleness of Bayesian inference and new Selberg formulas. H. Owhadi and C. Scovel.
Communications in Mathematical Sciences (2015). arXiv:1304.7046

On the Brittleness of Bayesian Inference. H. Owhadi, C. Scovel and T. Sullivan. SIAM
Review, 57(4), 566-582, 2015, arXiv:1308.6306

Qualitative Robustness in Bayesian Inference (2015). H. Owhadi and C. Scovel.
arXiv:1411.3984

Positive Negative

Classical Bernstein Von Mises * Freedman (1963, 1965)

Wasserman, Lavine, Wolpert (1993) ¢ P Gustafson & L Wasserman (1995)
P Gustafson & L Wasserman (1995) ¢ Diaconis & Freedman 1998

Castillo and Rousseau (2013) Johnstone 2010

Castillo and Nickl (2013) « Leahu 2011

Stuart & Al (20104 ). « Belot 2013



Brittleness of Bayesian Inference under Finite Information in a Continuous World. H.
Owhadi, C. Scovel and T. Sullivan. Electronic Journal of Statistics, vol 9, pp 1-79,

2015. arXiv:1304.6772

10.000 children are given one pound of play-doh.
On average, how much mass can they put above a
while, on average, keeping the seesaw balanced

around m?

0 A ¢ 1

T

Paul is given one pound of play-doh.

What can you say about how much mass he Is
putting above a if all you have is the belief that
he is keeping the seesaw balanced around m?



What is the least upper bound on

o |1 X > a

If all you know is Eu~r [Eu[X]] =m

e A=

M([0,1

Answer

sup It

mell

II := {’ﬂ' e M(A) : Ejr |I




Theorem

Sup
mell

o [U[X > a]] =

Lg~Q SUp




sup B, |[1[X > a]] = sup
mell QeM([0,1]) : Eg[g]=m

S . 4
Lg~Q [mm(a, 1)}







Reduction calculus with measures over measures
Polish
X) ) '/4 Q SPacCe
AT ) C M(Q)

Th Brittleness of Bayesian Inference under Finite Information in a
eorem Continuous World. H. Owhadi, C. Scovel and T. Sullivan. Electronic
Journal of Statistics, vol 9, pp 1-79, 2015. arXiv:1304.6772

sup  Ejor | 2(1),
reWw—10 | |

sup [tq,\,@[ sup @(u)]}
Qe pe¥—1(q)




What is the worst with random data?

17: Unknown element of A

¢: A—R
n— ®(pn) Quantity of Interest

You observe data d ~ ()"

What is ®(u')?



Find a (confidence) set C(d)

such that with probability 1 — € ,

u' e C(d)

Il

With probability 1 — €
inf,canc@ P(p) < @(uh) <sup,cancia L)

Notion of worst/sharpest depends on the particular choice of C(d)
Frequentist/Concentration of measure worst case



pe M(X)

P -= %Z?:l 0x, € M(X)

Theorem  dwaesinlinim) = supseriy, (Bulfl = Eulf))  Exop[el17] < oo

g |-/J..-_(1 “ \
M LWW \Hy U )

N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the
empirical measure, Probability Theory and Related Fields, (2014), pp. 1-32.

BW o, T )

=N



Reduction calculus of the ball about the empirical distribution

 D. Wozabal. A framework for optimization under ambiguity. Annals of Operations
Research, 193(1):21-47, 2012.
« P. M. Esfahani and D. Kuhn. Data-driven distributionally robust optimization

using the Wasserstein metric: performance guarantees and tractable reformulations.
arXiv:1505.05116, 2015.

» Extreme points of a ball about a measure with finite support (2015). H. Owhadi
and Clint Scovel. arXiv:1504.06745

The extreme points of the Prokhorov, Monge-Wasserstein and
Kantorovich metric balls about a measure whose support has at most n
points, consist of measures whose supports have at most n+2 points.



Question

Game/Decision Theory + Information Based Complexity

!

Turn the process of discovery of scalable numerical solvers
into an algorithm

Worst case calculus

!

?



The truncated moment problem
M[0,1] W Rk

2! (EXNM[XLEXNM[XQ]?“"EXN“[Xk])

Study of the geometry of My := \If(/\/l([(), 1]))

P. L. Chebyshev A. A. Markov M. G. Krein
1821-1894 1856-1922 1907-1989



Mio,1] W Rk M, = ¥ (M(0,1]))
(L

(EXNM[Xj Ex.,[X7,... ,EXNM[X’“])

Infinite dim. < > Finite dim.
O

o) 3
O O

Let us compute Vol(My) using different

Q extreme points representations.
Finite dim.



Infinite dim. Finite dim.

o
o »% (]

g ©
M:Zj‘\le )\jétj \Ij (Q17°"7Qk)

N .
9i = Zj:l At

ll|lll|_|—-|1

t1 to



f = Zjvzl AjOt,
Index 4(1): Number of support points of u
Counting interior points with weight 1 and boundary points with weight 1
1t 1s called e principal if i(u) = kel

e canonical if i(u) = k‘f

e upper if support points include 1
Theorem e Jower if support points do not include 1

Every point ¢ € Int(M}y) has a unique
upper and lower principal representation.

Upper -l-l—l_-l 1

t1 1o

Lower () Ml



Vol(Ms,,,_1) using Upper Rep. = Vol(Mgm 1) using Lower Rep.

e Om-1(3,3,2) = 779m(1,1,2)

Vol(Ms,,) using Upper Rep. = Vol(Ms,,,) using Lower Rep.

Sm(1,3,2) = 5,,(3,1,2)

Selberg Identities

_ 1771 D(a+in)T(B+ivI(1+(i+1)7)
Snla, B,7) = Hj:O ['(a+p+(n+i—1)y)T(1+7)

Sn(a, B,7) = fong 1ty NI =) AR Pt
At) = cr (e = 15)

Brittleness of Bayesian inference and new Selberg formulas. H. Owhadi and C.
Scovel. Communications in Mathematical Sciences (2015). arXiv:1304.7046




Forrester and Warnaar 2008

The importance of the Selberg integral

Used to prove outstanding conjectures in
Random matrix theory and cases of the
Macdonald conjectures

Central role in random matrix theory, Calogero-
Sutherland quantum many-body systems, Knizhnik-
Zamolodchikov equations, and multivariable
orthogonal polynomial theory



H = Zj\le )\jétj
Index ;(;): Number of support points of u

Counting interior points with weight 1 and boundary points with weight %

i is called e principal if i(u) = £5

e canonical if i(p) = £22
e upper if support points include 1

Theorem ° lower if support points do not include 1

For t, € (0,1), every point g € Int(M},) has a unique
canonical representation whose support contains t..
When t, = 0 or 1, there exists a unique principal
representation whose support contains t..

0@%1



New Reproducing Kernel Hilbert Spaces and Selberg Integral formulas
related to the Markov-Krein representations of moment spaces.

M0, 1 W 0, 1]*
17

(EXNM[Xj,EXNM[Xﬂ, ..E XNM[Xk])

f]m Et_l | H] 1 t?(l — 1 )2A4 ( )dt — Sm(57172);Sm(3,3,2)

Jrm St T 82 - A, (D) dt = 2.S,—1(5, 3, 2)

j=1"%y

Ap(t) == Hj<k (e =) T:= 0, 1]

(Zg)(t) =227, 6(t;), tel™

n— 1 ['(a+jy)T(B+iv) T+ +1)v)
Snle, B,7) = H ['(atB+(n+j—1)7)I'(1+7)



i1 < - <1

0: n-th degree polynomials which vanish on the boundary of [0, 1]

M, C R™ set of ¢ = (q1,-..,9n) € R™ such that there exists a probability
measure p on [0,1] with E,[X"] = ¢; with ¢ € {1,...,n}.

Theorem Bi-orthogonal systems of Selberg Integral formulas

Consider the basis of Hgm_l consisting of the associated Legendre polyno-
mials @;,7 = 2,..,2m — 1 of order 2 translated to the unit interval I. For
k=2,..,2m — 1 define

. 2 . .
_ (Jfk+k )F(J'JFQ)F(J)’ k<j<om-_1
FGj+k+2)T'(G—k+1)

ajk

2m—1

hi(t) == Y (=17 ajpeam—_1-;(t,1).

j=k

Then for j = kmod 2, 5,k = 2,..,2m — 1, we have

m—1

/ ) hi (1) 2Q;(2) H t5 - A% 1 (t)dt = Vol(Mam—1)(2m—1)!(m—1)!

j'=1

(k+2!
(8k + 4)(k —2)1 7%
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