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Black box functions

Suppose y = f(a) computes
® clectrical properties of a semi-conductor, or
® |ift and drag of a plane’s wing, or
® projections under a climate change model, or
® predicted effects of a malaria eradication strategy,
® cic.
We want to understand f. Usually there is no closed form, just code. Often the code is slow.
® which inputs are most important?
® which interactions (if any) are important?

The main use of Sobol’ indices is quantifying importance of variables
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Global sensitivity analysis

For books giving context and uses see:

Fang, Li & Sudijanto (2010), Saltelli, Chan & Scott (2009), Saltelli, Ratto & Andres (2008),
Cacuci, lonescu-Bujor & Navon (2005), Saltelli, Tarantola & Campolongo (2004), Santner,
Williams & Notz (2003)

Many scientific communities participate, many terms:

FANOVA DACE FAST SAMO MASCOT UCM HDMR NPUA uQ

Kriging approach

Sacks, Welch, Mitchell, Wynn, Ylvisaker, Currin, Morris, Yu, Kleijnen, Koehler, O’'Hagan,

Kennedy, Stein, Ginsbourger, Roustant, - - -

Derivative based

Sobol’, Kucherenko, Shah, Rodriguez-Fernandez, Pantelides, looss, Gamboa, Popelin, Lamboni

Survey looss & Lemaitre (2015) SIAM UQ 2016, Lausanne



How important is importance?

This talk is mostly about ways to define and estimate importance of variables.
Attention can then be focussed on the most important variables.

One risk: measuring importance may be a very expensive first step.

Surrogate

It may be necessary to do this on a surrogate, sampling f' ~ f
from, e.g., kriging or polynomials.
E.g., looss, Van Dorpe & Devictor (2006), Wang, Lu, Tang (2013)

Or directly Oakley & O’Hagan (2004), Chen, Jin, Sujianto (2005),
Marrel, looss, Laurent, Roustant (2009)



ANQOVA: starting with potatoes

Fisher & MacKenzie (1923)

Studies in crop variation Il: The manurial response of different potato varieties

Hypothetical potato yields, Y;

Four varieties, and 3 fertilizer levels

Yield (kg) Vi Va Vs Vy
| 109.0 1109 942 1259 |
P 104.9 113.4 110.1 138.0

Fy - 151.8 160.9 111.9 145.0 |



Potatoes continued

The average vyield is Y,, = 123.0. (index = « for average)
Q: Did fertilizer F;; raise or lower the yield?

A: Subtract 123 from row ¢ and average: Y;, — Y..

For fertilizer ¢ : %Z]J:l(Y}j —-Y..)

Fy Fy F3
~13.0 —6.4 194
: : I /
Forvariety j : 1> ;_;(Yi; — Y..)

Vi Vo Vs Vy
—1.1 54 —-17.6 13.3

These are the ‘main effects’ for fertilizer and variety respectively.

By construction they sum to zero. Y,, is the ‘grand mean’.



[ 109.0 110.9
104.9 113.4
| 151.8  160.9

— 6.4
19.4

10.5

ANQOVA for potatoes

94.2 125.9
110.1 138.0 | =
111.9 145.0

-13.0 —-13.0 —-13.0 —13.0
— 6.4 — 6.4 — 6.4

19.4 19.4 19.4

0.1 —4.5 1.8 2.6
—10.6 —8.6 11.1 8.1

13.1 —129 —10.7

123 123 123 123 |
123 123 123 123
123 123 123 123 |

[ 11 54 —17.6
+ | =11 54 —176
| —1.1 54 —176

The last term is the ‘interaction’.
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13.3
13.3 |
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Extensions of ANOVA

From [ x Jtablestol X J X K X --- X 4
e.g. 24 designs in industrial statistics Box, Hunter, Hunter (2005)

f e 1?0, 1]

Embedded N¢ grid as N — o0
Hoeffding (1948), Sobol’ (1969), Efron & Stein (1981) and others surveyed in Takemura (1983)

Further generalization
Any d independent inputs: LZ(H;.lzl X;)

Also d = o0 via martingales. O (1997) (Latin supercubes)



ANOVA for L?[0, 1]¢

Hoeffding (1948) for U -statistics
Sobol’ (1969) for QMC
Efron & Stein (1981) for jackknife

d
flz) = fi() +Zf(j)(wj) +

=fo0+ > >

r=1 1<j1<ja2<-

Zf(j,k)($j733k) +"'+f(1,2 ..... d)(ZUl,---,CUd)

j<k

f(jlan ----- jr)(le s Loy oo 7:Ejr)

'<j7“<d

More simply

Sumoveralu C D ={1,2,...,d}

12



Notation

Foru CD={1,...,d}

|fu:{j1,j2,...

lu| = card(u)
—u=u‘={1,2,...,d} —u

v Cu  strictsubsetie. C

,Jjul} then @, = (zj,, ..., x5, ) and dey, = [[;¢, da;

Dependence

fu(a) is a function of « that only depends on x,,
fu(x) + fou(x) is well defined

13



Recursive definition

Overall mean u= fo(x) = /f(ar:) de
Main effect 7 f{j}(w) = /(f(a:) — fg(m)) d.’L‘_{j}
Interaction u fulx) = /(f(:l:) — Z fo(x)) dz_,

14
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ANOVA properties

1
jEU = / fulx)dx; =0 induction on ||
0
uFv = /fu(a:)fv(a:) dx =0 integrate over j € (u —v) U (v — u)

& / fu()go(x) dz = 0

Variances

Var(f) = / (f(z) - p)Pdz =3 o2

uC'D

u

5 3(f){ffu(a:) de u+# o

o° =0
0 u=d.
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ANOVA for dependent inputs

® Stone (1984)
Retains [ fu(x)fy(x)w(x)de = 0foru C v

® Hooker (1997)
Applies to machine learning functions

® (Chastaing, Gamboa & Prieur (2012,2015)
New estimation methods for generalized indices

® Kucherenko, Tarantola & Annoni (2012)

Use Gaussian copula

The challenges

® Conceptual. How should one define importance here? Should it ever be negative?
What if support of z; depends on xx? E.g., input space has ‘holes’.

® Computational.

New work from Song, Nelson & Staum (2015) using Shapley value looks super promising.



Sobol’s decomposition

Sobol’ (1969) obtained the same decomposition.

“Decomposition into summands of different dimension”

Sobol’ and Hoeffding

Hoeffding (1948)  Analysis Break f into pieces, one for each f,,
Sobol’ (1969) Synthesis Assemble parts of f to make f,,

In more detalil

Sobol’ used a complete orthonormal basis of L2[0, 1]¢
(tensor product of Haar wavelets).
Then he gathered terms for each u C {1,...,d}.

Thanks to A. Chouldechova for translation.

17



Variable importance

How important is x,,?

Larger o2

~ means that f,, () contributes more.

We also want to count o2 for v C .

Sobol's (1993) importance measures

2 _ E : 2
Tu = Ty
vCu
=2 _ E : 2
Ty = Ty
vNuA£J

Large 72 means ,, important

Small 72 means ,, unimportant

v contained in u

v touches wu, so interactions count

can be frozen Sobol’
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Normalized versions

Normalized versions are analogues of R?, proportion of variance explained.

2
T :
Partial/closed sensitivity ~—  S; foru = {i}
o
=2
By n u t t _ .
Total sensitivity ) St foru = {3}

The denominator is easier to estimate, so focus on numerators.

Units

Normalized sensitivities are dimensionless (% of variance).

If we need an answer in meters or volts or €, etc. then we are back to the numerator.



Interpretation

E(f() | @y) =) folz)

vCu

=Y o5 =Var(E(f(z) | z.))

vCu

2 . .
If you control &, you control 72 of the variance in f.

If Ii is large, then a,, are important.

=2 _ 2 2
T, —0 —1_,

?Z includes the interaction between x,, and x _,,

If an adversary controls x,, then the most ‘damage’ they can do is ?3.

If ?i is small then x,, is not important. Can be ‘frozen’. Sobol’ (1990/1993)

20



Unimportance Is important

1) It lets you focus on the key inputs.

2) Potential for faster code.

Factor sparsity

Often most variables are unimportant, e.g., Box & Meyer (1986)

Also: they cannot all be relatively important.

21



Examples

d=4andu ={1,2}

T{o) = 0(1y +0{ay + 012

Tlie) = 01y T 0(2oy T 01y
+0{ia) + 0fay 0oz + 0oy

+ 0%1,3,4} + 0%2,3,4} + 0%1,2,3,4}

22



Brute force estimation

Naive approach for 72:

1) Sample z; € [0,1]% andgety; = f(x;)fori =1,...,n.
2) Get statistical machine learning estimates of f, ().

3) Put _ffu 2 dx,u # .

4) s — ngu 53-

This is expensive and has many biases.

Pick-freeze

Sobol’ has a much better way, using pick-freeze identities (next).

23



Hybrid points

x,.z_, takes x,, from x and z_,, from 2
Fory=x,:z_,

xj, JEU

Yj = .

Example
x = (0.1,0.2,0.3,0.4,0.5,0.6)

z = (0.9,0.8,0.7,0.6,0.5,0.4)
33{1,2,475}22{3,6} — (01, 02, 07, 04, 05, 04)

24



Fixing methods

Evaluate f at two points:
freeze: repeat some components

pick: independent draws for others

Recall f,, does not depend on x_,,

Therefore f,(x) = fu(Ty:x_y) = fulTu:z_,) V2 € ]0,1]¢

Sobol’ (1990/3) used the identities:

/f (Ty:z_y)dxedz — p
Tu / (f(x) — f(x_y:2y))? dxd2

25



Identity for 77,

//f (y:2z_y)dedz

2

:ZZ// fo(@) fu(Ty:z_y)dedz (ANOVA)

_Z//f” Vfo(@y:z_y)dedz

vCD

_Z//fv ) fo(Tu:z—y)dzdz

vCu

= [ fu(@Pd

vCu

— M +Zau

vCu

= ,u2 —I—Li.

(orthogonality)

(line integrals over z;)

(f, only depends on @, and v C u)

26



| dentity for 7

1

//(f(w) — f(®ouizy)) dadz

1
— 5(02 +u* —2(r2, + p°) + 07 +,u2>
0?12
— 72

Sobol’s identities are like tomography:
global integrals reveal internal structure.

Computation

?Z and IZ can be done via 2d dimensional integrals.
Monte Carlo or quasi-Monte Carlo approaches.

Also: Poincaré inequalities let one estimate bounds using derivatives:

Lamboni, looss, Popelin, Gamboa (2012), Roustant, Fruth, looss, Kuhnt (2014),

Kucherenko, looss (2014)

27



28

MC or QMC estimation

o1y o BN :
= @S @z - () 3 fw)
~ 1 —

.= o > () - F(@iuizin)’

72 needs (&, zi _y,) € [0,1]%F7ul = [0, 1]2d~Iul

U

~2
7, needs (x;, z;.,,) € [0, 1]4F

u

Bias

The subtraction in fi introduces an annoying bias for MC or randomized QMC.
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Even better
22 = [[ 1@ (f@aizo) - 1(2)) dada

i % Z f@:) (f(@iu:zi—u) — f(24))

This avoids subtracting /1%. It is unbiased: E(fi) =72

Mauntz (2002), Saltelli (2002), Kucherenko, Feil, Shah, Mauntz (2011)

Improved statistical efficiency

o 1 1~ f@) + f(@iw:ziu)\
Ii — n ;f(wi)f(wz‘,uizz’,—u) - (ﬁ ; 9 )

From Monod, Naud & Makowski (2006)
Janon, Klein, Lagnoux, Nodet & Prieur (2012)

prove efficiency in a class of estimators - - - that does not include the unbiased one above.
(Either one could be better for given f)
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Simplified Saint-Venant flood model

Lamboni, looss, Popelin, Gamboa, (2012)

Overflow in meters at a dyke

S=7Z,+H—H;— C}y, where
3/5
H = ( ¢ ) (max annual river height)
BE\/(Zm — Zy)/ L
()  Maximal annual flow m?/s  Gumbel(1013,558) N [500, 3000]
K,  Strickler coefficient m'/3 /s N(30,8) N [15, 00)
Z,  River downstream level m Triangle(49, 50, 51)
Z,, River upstream level m Triangle (54, 55, 56)
H,; Dyke height m U|7,9]
(',  Bank level m Triangle(55, 55.5, 56)
L Length of river stretch m Triangle(4990, 5000, 5010)
B River width m Triangle (295, 300, 305)

Reduced from a Navier-Stokes model; Usually we don’t see a formula.



The cost model

Cp — 1S>Om
+ Lg<om (0.2 + 0.8(1 — ¢~ 1000m%/5%y)
+ 0.05 min(Hgm ™!, 8)

in millions of Euros

(flood cost)

(dyke maintenance)

(investment cost, from construction)

31
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Y, }/a for the flood model

72 /o2 Q K, Zy Zom Hy Ch L B

weight | 072 0.29 0.0078 0.0077 0 0 7.4x10"7 0.00021
ovefiows | 0.35 0.14  0.19 0.0038 0.28 0.036 3.6 x 10~7 0.00010
costC, | 048 025 023  0.0077 0.17 0.039 6.8x 107 0.00019 |

From n = 100,000 runs

()  Maximal annual flow m?/s  Gumbel(1013, 558) N [500, 3000]
K,  Strickler coefficient m'/3 /s N(30,8) N [15, c0)

Z,  River downstream level m Triangle (49, 50, 51)
Z,, River upstream level m Triangle(54, 55, 56)

H,; Dyke height m U|7,9]

C,  Bank level m Triangle(55, 55.5, 56)

L Length of river stretch m Triangle(4990, 5000, 5010)

B River width m Triangle (295, 300, 305)



Sobol’ indices

33
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Related ANOVA quantities

1) Superset importance. Used to find parsimonious models.
2) Shapley value. Maybe a more ‘fair’ importance measure.

3) Effective and mean dimension. Used in quasi-Monte Carlo (QMC) integration.

34



Superset importance

Statistical and machine learning prediction.

The data are (, y) pairs. We have a model to predict y by f ().

For parsimony

Remove interaction f,, and all super-effects. Squared error:

Y=Y o’ Liu & O (2006)

vIoUu

Small T2 means deleting f,, and f, for v D u costs little.

Relevant to Hooker (2004)’s simplifications of black box functions.

35
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For superset importance

After some algebra:

2
Ti = ZO}% 2|U| // |u Ulf(w—v ZU)) dxdz
voUu

vCu

Mean of a square of differences - - - always get a non-negative estimate.
From Liu & O (2006)

Generalizes 72 formula from 2 terms to 21Ul terms.

As a design

Use n repeats of a 2lul 5 19=lul factorial randomly embedded in the unit cube.

Does best in comparisons by Fruth, Roustant, Kuhnt (2012)



Shapley value



15 million Francs

Shapley’s (1953) value can be used to quantify the contribution of members to a team.
We need to know what each subset of the team would have accomplished.

Example from Bank of International Settlement

Team  Output value in Swiss Francs

%) 0

A 4,000,000

B 4,000,000

C 4,000,000
A,B 9,000,000
A,C 10,000,000
B,C 11,000,000
A,B,C 15,000,000

Q: How should we split the CHF 15,000,000 earned by A, B, C among them?
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15 million Francs

Shapley’s (1953) value can be used to quantify the contribution of members to a team.
We need to know what each subset of the team would have accomplished.

Example from Bank of International Settlement

Team  Output value in Swiss Francs

%) 0

A 4,000,000

B 4,000,000

C 4,000,000
A,B 9,000,000
A,C 10,000,000
B,C 11,000,000
A,B,C 15,000,000

Q: How should we split the CHF 15,000,000 earned by A, B, C among them?
A: Shapley says: A gets CHF 4,500,000, B gets CHF 5,000,000, C gets CHF 5,500,000
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Shapley setup

Letteam u C D = {1,2,...,d} create value val(u).
Total value is val(D).
We attribute ¢; of thisto 7 € D.

Efficiency
Dummy
Symmetry
Additivity

Shapley axioms
d
Zj:l ¢] = vaI(D)
If val(u U {i}) = val(u), all u then ¢; = 0
fval(u U {i}) =val(uU {j}), alun{i,j} = S then ¢, = ¢,
If games val, val’ have values ¢, ¢’ then val + val’ has value ¢; + ¢

Unique solution

R S G IR )



For variable importance

Let variables x1, T2, . .., T4 be team members trying to explain f.
The value of any subset u is how much can be explained by x,,.
Choose val(u) =12 = > ., 02

Shapley value

1 d—1\""

uC—{j}

41



Shapley # Sobol’

The Shapley value qu is not I%j} or ?%j}. After some algebra O (2014),
2
u

¢; = > lg—‘-

uC{1,...,d},jEu

Bracketing
2 2 =2 _ 2
oy =Ty <8 <Tin = D ol
uU:JEU
Shapley seems like a more reasonable allocation.

Sobol’ indices are easier to compute than Shapley and they provide bounds.

Bracketing holds for any ‘totally monotone game’ (where the analogue of O'Z = 0).

42



Shapley for dependent x

Song, Nelson & Staum (2015)

7, = Var(E(f(z) | z.))

1 d—1\"", , )
uC—{j}
=

-

Works even if
1) Support of x5 depends on x4
2) x1 = o or T3 is constant

3) a Gaussian

43



Special cases

qu:é Z (d

o1 1 (1 N Var(E(Y

_ 1\t
) (2, —12)

o2 2

Wy N U
When d = 2
x1)) — Var(E(Y xg))
x2)) — E(Var(Y :1:1)))

1 E(Var(Y
2(1+

x ~N(0,%), flx) =a'p

72 = (Bu+ S0 %0 —uBu) Suu(Bu + S5t Su—uBu)

Issue

Neither requires nor provides effects f,.

44



Quasi-Monte Carlo (QMC)



QMC context

p= / f(x)de
[0,1]
Decomposition

N TR s

uwC{1,.. >0 i=1

Sum of 2¢ — 1 integration errors.
For small cardinality |u/| the integration problem is easier.

Favorable when f is dominated by its low dimensional components.

More precise statements require Koksma-Hlawka or similar inequalities.
See Niederreiter (1992), Dick & Pillichshammer (2010)
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Effective dimension

Caflisch, Morokoff & O (1997)

f has low effective dimension if it is dominated by s < d dimensional parts

Truncation sense

fl@)~ ) ful)

uC{1,2,...,s}

Superposition sense
fl@)~ > ful)

u:lu|<s

These make integration (and some other) problems easier.

Smoothness also matters.

47
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Measures of dimensionality

Foru # O, let
lu| =min{j | j € u}
lu] =max{j | j € u}
span(u) = [u] — |u] +1
Effective dimension
mins > 1 with Z o2 > 0.990° Truncation sense u C {1,2,...,s}
[u]<s
mins > 1 with Z 03 > (0.990° Superposition sense
[ul<s
mins = 1 with Z 02 > 0.990° Successive dimensions sense
span(u)<s

Superposition & Truncation Caflisch, Morokoff & O (1997)
Successive dimensions LEcuyer & Lemieux (2000)
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Dimension moments

u

Z lujo? = (1 +€)o? = Z (|u| = 1)o2 = eo?

0.2

Then k-fold interactions contribute < € X P

k> 2
So f is nearly additive.

|| is highest coordinate j € u

Mean Mean square
. 1 1
Superposition  — > lulo? = > lulfol
. 1 5 1 5 o
Truncation — > [ulo — > w0
Successive — Z span(u)o; — Z span(u)“o;
u u

Superposition moments in Liu & O (2006)



For mean dimension

-2
Ti = 2 9
1 j=lon{j}#o

d d

J

Much easier to estimate than effective dimension s.

Generalizes to Z ulo? fork > 1

u

Liu & O (2006)
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Example

Kuo, Schwab, Sloan (2012) consider quadrature for
1

500
= =50 — x € [0,1]
1+ Zj:l zi/J!

f(z)

R = 50 replicated estimates of > |u|o2/o? using n = 10,000
had mean 1.0052 and standard deviation 0.0058.

Upshot

f(x) is nearly additive
mean dimension between 1.00356 and 1.00684
(£2 standard errors)
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Generalized Sobol’ indices
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Arbitrary pick-freeze

Forany u,v C D, let

Ou= [ [ fl@viz ) f(@yiz) dedz

Unbiased estimate
R 1 <
@uv — E zzzl f(mi,u-zi,—u)f(mi,v-zi,—fv)
Generalized Sobol’ index

> D) QB =1(Q70)  ©,0¢ R2x2°

uCDvCD

Choosing §? lets us estimate many things.
O (2013) JUQ
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NXOR

XOR(u,v) =ulNv=uUv—unNuv (exclusive OR)
NXOR(u,v) = XOR(u, v)° (not exclusive OR)

NXOR(u, v) has indices j in both w and v or in neither u or v

O via 7°

Ouy = //f(:cu:z_u)f(wv:z_v)dwdz

2 2
= p-+ TNXOR(u,v)

=,LL2+ Z qu

wCNXOR(u,v)

Written XNOR in electrical engineering



Non-unigueness

d

/Zf(w)(f(w) ~ f(ayz_y)dzdz = 3 Julo?

j=1

1
2

d

[ (@) - flagz) dwdz = 3 fulo?

g=1

55
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Special GSls

1) Mean squares € = AT

2
// (Z Ao f (2 iz—u)) dxdz  Nonnegative & fast

) Bilinear (rank one) £ = Ay

// ZA f(@y: 2z )(ZU:%f(wvzz—v)) dxdz  Fast

) Simple

// Z)\uf Ty Z_y ) f(z)dedz  Only uses one row/col of ©

4) Contrast

Z Z Qu,fu =0 Free of Iu2
u v

N.B.: Here a contrast can also be a sum of squares.



Squares
For a square (or a sum of squares) tr(QT(:)) = 0.
Also ]E(tr(QT@)) = tr(QTO)
Therefore tr(27©) = 0 implies Pr(tr(QT(:)) =0) =1.

GSls with sum of squares estimators

(7

72 and Y2  and Z |u|o?
u

No sum of squares exists for 72 when |u| < d
The coefficient of 07, is > A2 Never 0 for nontrivial A

generally > .y, ie., tr(§2)

Same thing happens in ANOVA tables:
every variance component has a contribution from the measurement error.

57



Cost of a GSI

C'(€2) counts the # of function evaluations per (x, z) pair.

We can have tr(Q{ ©) = tr(Q1O) but C(Q;) < C(Qy).
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Three factor interaction

0l12.3) = T{123) — T{12} — T{1,3) — T{23) T T{1} T T2y T {3y — T

C'(€2) = 9 evaluations

f(il?) (f($17$273337 24, Z5)
T f(ilfl,CUQ,Zg,Zgl, 25) o f(ﬁl’)l, 22,L3, 24, 25) o f(Zl,fEQ,xg, Z4 25)

+ f(xlafZQ) 23y 24, 25) —+ f(21,$2,23,24, 25) + f(21,22,$3724,25)
- f(2))
C'(€2) = 6 evaluations
(f(Z) o f(x17227z37z4725)) X
(f(zlazQJ 23,x4,$5) — f(21,332, 23,$4,$5> - f(zl7 227x37x47x5) + f(21,332,$3,$4,$5))

N.B. The bilinear version is invariant under f — f + ¢

See O (2013) JUQ for this and generalizations



Bilinear, with O(d) evaluations

Suppose A, = O for |u| & {0,1,d — 1,d}. Same for y,, = 0.

Then the rule
ZZAu% //f(wu:z_u)f(azvzz_v)dazdz

takes O(d) computation - - - not O(d?).
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Bilinear example

/[ if }[ if w—gzj}dwdz
71=1
Reduces to

2
> o

w:|u|=2

This is a sum of (g) ANOVA components but it only takes 2d + 1 evaluations of f.
O (2013) JUQ
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O(d) pairs, with k #

For j # k, let j represent {j} and —j represent —{j} etc.

All the XORs
Every u and v is j or k or —j or —k.
D={1,2,...,d}.

XOR 1%} 9 k —9 —k D
s | o k. —i -k D
J ] < {]7 k} D _{j7 k} _j
—J _j D _{j7 k} I {Ja k} ]
D D —j —k J k %)




All the NXORs

NXOR o ] k —j —k D
s | D - —k k ]
j -5 D ik o {4k}
—j g 9 ik} D {4k} —J
D | D ] k —J —k D

For |u| and |v|in {0,1,d — 1,d}.
We can estimate the corresponding 12NXOR( ) with O(d) cost per (x, z) pair.

u,v

Saltelli (2002) already noticed this (or at least most of it).



What we can get

After some algebra we can get unbiased estimates of

2 lulo 2. o
u

u|=1

2 luler; 2 o
u

|u|=2
at cost 2d + 2. (Some parts can be gottenat C' = d + 1)
O (2013) JUQ
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Initial and final segments

Suppose that x1, o - - -

T4 are used in that order. E.g. time steps in a Markov chain

First 4 variables

(O,J]{

a, J=0

Last d — 4 variables

. {j+1,...,d}, 0<j<d—-1
(J,d] = |
%] j=d

There are 2d + 1 of these subsets.
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NXOR

(0,4]

(4,d]

WLOG j < k.

Enumeration
(0,4] (0,k] (4,d] (k,d]
(J,d]  (k,d] (0,5]  (0,k]
D —(jk © (g, K]
%) J,kl D —(J,kK]
0,51 (0,k] (j,d]  (k,d]
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Effect of recent variables

Recall, first and last elements of u # -

[u] =min{j | j € u}
[u] = max{j | j € u}

Recency weighted variance components

> (lu) = 1oz, and,

uC’D

> (d—Tul)or.

uCD
Another measure of how fast f () forgets its initial conditions.

Weighting by |u](d — [u] + 1) also possible.
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Test functions

Min function

fl@) = min x;

2 |U’ .
—_— L d O. (2006
T = @ 12Qd—Ju+2) Ueneo e
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2
9(12.3)

Product function — numerically same estimate for simple or bilinear.
Therefore bilinear is better because of lower cost.

For min(x) and d = 6 the bilinear estimator was about 5 times as efficient as the simple one
based on n = 1,000,000 (x, z) pairs.

2
T{1,2,3,4}
Product function withd = 8 and u; = land 7 = (4,4, 3,3,2,2,1,1) /4.

Square beats bilinear:

Measure Value R? Square’s efficiency
T%1,2,3,4} 0.558 0.034 14.7
T%5’6’7’8} 0.0024 0.000147 2710.0

Hard to beat a sum of squares when the true effect is small.



Lower index I%L

No sum of squares is available.
Contrast
LY M@ it = £(20)
Simp_le estimator (bias adjusted)

mn - ’
%Zf($i>f($i,uizi,—u) - (% Zﬂw") + f<wi’uzzi’_u)>
1=1 =1

The contrast has an advantage on small 72.
The simple estimator sometimes beats it on large ones.
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Shapley again
di= > |u'ol

w:uN{j}#2
This is a — 1% moment.

Hard to get a nice formula like the ones for 15!, 2" etc. moments.
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Optimal estimates

Letn® =Y . 0,02

We would like

E(?) =n° and, Var(/®) x cost = minimum.

Using variance components theory
Unfortunately Var(7)?) depends on 4’th moments
Fortunately  There is a theory of MINimum Quadratic Norm UNbiased Estimates (MINQUE)*
Unfortunately They do not appear to be available for crossed random effects
Fortunately = The computed case gives us more options, e.g., quadrature.
*C. R. Rao (1970s)

Optimality is still an open problem



GSls so far

Just use 2 inputs, & and z

What about 37
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Small Sobol’ indices

When 77 is small it is easy to estimate (sum of squares)

2
u
When 72 is small it is hard to estimate.

% Z f(m’i)f(mi,u:zi,—u) — ﬂQ basic
1=1

% Z f(@a) (f (@iu2i,—u) — [(20)) Mauntz (2002), Saltelli (2002)
=1

% (f(@i) = ) (f (@i uizi,—u) — f(24)) Sobol’ & Myshetskaya (2007)
=1

The basic estimate can be dominated by noise in [i.
Sobol” & Myshetskaya (2007) found an advantage by centering at ¢ near L.
Averaging small X small
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For small I%

Here it pays to use 3 vectors x, y, « € [0, 1]¢

% ;n; f(@a) (f(@i0:yi—0) = f(95)) (Mauntz-Saltell)

% .”1 (f(@:) = ) (f (@i 02y, —) = f(93)) (Oracle centered)

% .”1 (f(@:) = 1) (f(@iu:ys, ) — 1) (Double oracle)

% '"1 (f(xs) = f(Ziuw®i—u)) (f(®iu:y; ) — f(y;))  (Use 3 vectors) (%)

where (;,Y;, Z;) W U0, 1]3% fori =1,...,n.

“Double centering should work if x,, is really unimportant. Tiny X tiny



An example

For Sobol’'s g-function from Sobol” & Myshetskaya (2007) and smallest T}

Efficiencies

Maunt-Saltelli  Oracle centered Double oracle Three vector

1 518 74 4256

These account for varying numbers of function evaluations.
These numbers are for the smallest 12 and are the most extreme from O (2013)

Some theory
In a limit where 7 is fixed and 72 = O(€2), Var(72) is

Maunt-Saltelli  Oracle centered Double oracle Three vector

O(e?) O(e?) O(1) O(et)
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Sobol’ indices

77

SIAM UQ 2016, Lausanne



Sensitivity at the extremes

Sobol’ indices measure the importance of variable subsets.
They are derived from the ANOVA, an L? quantity.

Gary Tang (Stanford aero/astro) asked:

How should Sobol’ indices be adapted if we're interested in variables that drive the

function to its most extreme values? Maybe an L? approach with p > 2 would work.

This is not verbatim.
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Why focus on extremes?

Many physical processes are sensitive to extremes:

So---

® highest temperature for a chemical reaction
® single heaviest vehicle for road damage
® maximum acceleration/stress for mechanical systems

which variables dominate the attainment of extremely high or extremely low values for

the function f(x) = f(x1,x2,...,24)?
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Simplest solution

Replace f(x) by
® exp(kf(x)), somek > 0, or,
® f(x)* o
® ly@)>r2, on
°® ...

Then use usual Sobol’ indices.

But

Transformations may introduce unnecessary interactions.
f () may already be dichotomous (e.g., safe vs. not).

So, transformation is not always suitable.
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What we get

1) An L* version that shows which variables dominate extremes

2) An L3 version that distinguishes variables dominating high vs low extremes

O, Dick & Chen (2014) Information and Inference
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Piston cycle time C

M
C' =27 2P0V0T , Wwhere
k+ S TRTE

S PoVo kVo
V=21|,/A2+4 T, — A EAL
o <\/ SRl ) and A = Py +19.62M — —.

Variable Range Description

M 30, 60] piston weight (kg)

S 0.005, 0.020] piston surface area (m?)

Vo 0.002,0.010] initial gas volume (m?)

k 1000, 5000 spring coefficient (N /m)

P, 90,000, 110,000]  atmospheric pressure (N /m?)
T, 290, 296] ambient temperature (K)

T 340, 360)] filling gas temperature (K)

Kenett, Zacks & Amberti (2014), Surjanovic & Bingham (2014)
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Spoiler!

83

Wi Area Vol Spring Pres Amb Fill
1027/ 0.073 1.088  0.626 0.040  0.001 —0.002 —0.002
1057 —0.096 8.931 -3.830 -0.270 —0.219 -0.206 —0.210
10575 0.074 2.258  0.805 —0.006  0.000  0.007  0.007

These are estimates (explaining negative Sobol indices)
This function is about 94% additive (in L?)
Area is most important for extreme positive values

Volume is most important for extreme negative values

Bold means above 5 standard errors. Others are less than 2 s.e.



Approaches

We could generalize
1) Hoeffding’s (1947) analysis
2) Sobol's (1969) synthesis

a) Fourier version

D) Walsh version
3) Sobol’s (1990/1993) pick-freeze identity

For L?, these all coincide.
For LP, analysis becomes cumbersome but synthesis and pick-freeze go through.

84



Precursor 1

Analysis of skewness Wang (2001) for X;;

Define X;, X,; X.. by averaging over index with «

2.

J I
1=1 5=

J
(X’Lj T X00>3 — JZ(X’L. T X..)S —|_ IZ(X’LQ T X’io)g
1 1=1 71=1

J J
+3) (X — Xo)) (X — Xi)*

g=1

These terms have interpretations in biology. They can be negative. I and J are treated
asymmetrically. (It allows us to have J; obs at level 7.)
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Precursor 2

Median polish Tukey (1977), Siegel (1983)
Essentially (but not exactly) an additive 1.1 fit

Try to make every row and column have median 0 instead of mean 0.

Alternately adjust rows/columns to have median zero

86



Analysis

,u:argmin/ f(x) —m|P dx

oy (@) =argmin [ [7(@) ~p - mPde_,

Or
fru(x) = ngu fo(x) minimizes [(f(x) — g(x))? da

over functions ¢g(-) that depend only on x,,.

For p # 2 such projection becomes difficult.

And so

we don’t generalize the analysis approach.
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Sobol’s decomposition

Let ¢ (), k € 1 be a complete orthonormal basis of L? [0, 1]. Sobol’ (1969) used Haar
Assume that ¢g(x) = 1 and define I, =T — {0}.
Fork = (k1,...,kq) € 1% define

Pk (x) = H Pr; (75)

Synthesis

fu(fl?): Z Bku:O_u¢k,u:0_u(fE) u are ‘active’ variables
ko €0,

o= [L@Pde= Y |Buo P uto

k. eIl



Pick-freeze

Forx,z € [0,1]%, y = x,:2_, means

Tj, JEU
Y; = _

We glue together part of  and part of z to formy = x,,:z2_,.

Recall

p 4T = /f(a:)f(:z:u:z_u)dmdz
1
—2

Tw =75 /(f(a?) — f(_y:zy))* dedz

We will generalize the first one.
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Generalized synthesis (Fourier)

For L we will take p functions fo, f1,..., fp—1 and define a p-fold inner product. First,
A~ .kT .
fitw) =Y fi(k)e*™® j=0,1,...p-1

successor j+ =7+ 1 modp

predecessor j— =7 — 1 modp

We also use
{r}=x—|x] =xmod1

interpreted componentwise for vectors
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Fourier multilinear
oot = [ LAY 0 =00 ooy

Forevenp,egp =4
uses {xo—x1} {(-1)(x1—=x2)} {z2—=3} {(-1)(z3—x0)}
l.e. {ZIZ‘O — 331} {iEQ — 331} {332 — 233} {ZIZ‘O — 333}
Forodd p,egp = 3
uses {xg—x1} {xo—x1} {22 — X0}
Forp = 2

uses {xo— x1} twice getting

/fo({fﬂo —x1}) f1({xo — ®1}) dwo dy

91



Fourier multilinear

ooty = [ TLAM1 @~ 250)) dag-- dapy

[0,1]97 5 g

Diagonality on Fourier basis functions

1, k; :(—1)jk0, 7=1,....,p—1
<§bkoa¢k17"'7¢kp—1>p — { !

0, else.
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Consequences of diagonality

Recall fu(z)= »  f(ku:0_ )e2mik, T
k., 7!
(fuos furs---s fup_1>p =0 wunlessug =uy = -+ = Up_1
Define
op(f) = (fifs- o Pp then ou(f) = D op(fu)
uC'D
Also
— _ Z f fp/ﬂf )Lp/2J
kecZd
For even p

:Zf p/2f Z|f

kEZd keZd



Fourier importance for even p > 2

p—1
rlo) 4 = / [Tr({-1 @D - 2i)py)) [T da? [T dy®
j=0
LBO] — Z Up(fv)
vCu
Op(fu) — Z ‘f(ku:o—uﬂp
kyez"!

Interpretation

For equal L? norm, larger L? is a measure of sparsity
So important o, ( f,,) have sparser signal

Does not favor any part of the spectrum

Depends on the basis
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Walsh multilinear

The same process can be carried out in the Walsh basis.

The key property is again diagonality.

Sparsity in the Walsh basis measures different things than Fourier sparsity.

Major open problem
Can it be done in a modern wavelet basis?

Diagonality does not appear to hold.
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Generalizing the pick-freeze identity

7' ‘|‘,U _/f (y:z_y)dedz

p
) 42 = / H F(@a2®) dz T dz®
k=1 k=1

One copy of x,, with p copies of z__,,

Forevenp > 2

Monotonicity: © C v = 7P) < 7(P)

Nonnegativity: Lgp) >0 = Ig’)



Mobius relations

olPl = Z(—l)lu_”|7'[p] Fourier

vCu
Lp’]wal — Z(—1)|“—”|ILP] Walsh
vCu
olP) = Z(—D'“—”'L@p) Sobol’ pick-freeze
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Piston cycle time C

M
C' =27 2P0V0T , Wwhere
k+ S TRTE

S PoVo kVo
V=21|,/A2+4 T, — A EAL
o <\/ SRl ) and A = Py +19.62M — —.

Variable Range Description

M 30, 60] piston weight (kg)

S 0.005, 0.020] piston surface area (m?)

Vo 0.002,0.010] initial gas volume (m?)

k 1000, 5000 spring coefficient (N /m)

P, 90,000, 110,000]  atmospheric pressure (N /m?)
T, 290, 296] ambient temperature (K)

T 340, 360)] filling gas temperature (K)

Kenett, Zacks & Amberti (2014), Surjanovic & Bingham (2014)
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Integrals
s +z§-2) =
[ H0 0D (0 o125
(3) _
W+ I
/f ({29 — P32 f(? - 20}z D) f (e — 29122, and
(4) _
pt+ 1

/f {:1:§0) — xgl)}:z(i);)f({w§2) — xg.l)}:z(_lj)-)f(- > )f({xﬁ-m - x§3)}:z(_3})
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Quadrature approach

Westudy f = f — u
Fromn = 7% = 117,649 points of a fully scrambled (0,6, 7) Faure net in base 7:
p = 0.4624964  standard error 9.8 x 107

For 7(3)
—J
1 7 7
- Z f({xio — ZCil}:ZST%)(Z.),_j) X f({ng — Xi1}:2 Wl(z) _j) X f({:czz — a:io}izg)(i)’_j)
i=1

Latin supercube sampling

Five randomized Faure nets, «; € [0, 1]%, (O) El), z,gQ) (3) ¢ e [0,1]°

4 random permutations 7, . .., T3

10 replicates
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Pick-freeze results

Wi Area Vol Spring Pres Amb Fill

1027¥  0.073 1.088 0626 0.040 0.001 —0.002 —0.002
10578 —0.096 8.931 —3.830 -0.270 —0.219 —0.206 —0.210
10575 0.074 2.258  0.805 —0.006  0.000  0.007  0.007

This function is about 94% additive (in L?)

Area is most important for extreme positive values

Volume is most important for extreme negative values

Bold means above 5 standard errors. Others are less than 2 s.e.
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