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Ilya Meerovich Sobol’

At MCM 2001, Salzburg

Known for Sobol’ sequences

and Sobol’ indices

Every time I read one of his papers,

I wish I’d read it earlier

SIAM UQ 2016, Lausanne
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Outline
1) ANOVA

originated in agriculture, used in medicine & industry

2) Global sensitivity

ANOVA-based measures of variable importance

3) Estimation

Pick-freeze methods

4) Use in quasi-Monte Carlo

effective dimension and mean dimension

5) Extensions

Generalized Sobol’ indices

New results

• Sobol’ indices and Shapley value

• Explaining extremes, not just variance

• New sampling algorithms
SIAM UQ 2016, Lausanne
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You’re invited to

MCQMC 2016
At Stanford University

August 14-19, 2016

Overlapping topics with UQ2016

mcqmc2016.stanford.edu

SIAM UQ 2016, Lausanne
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Black box functions
Suppose y = f(x) computes

• electrical properties of a semi-conductor, or

• lift and drag of a plane’s wing, or

• projections under a climate change model, or

• predicted effects of a malaria eradication strategy,

• etc.

We want to understand f . Usually there is no closed form, just code. Often the code is slow.

• which inputs are most important?

• which interactions (if any) are important?

The main use of Sobol’ indices is quantifying importance of variables

SIAM UQ 2016, Lausanne
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Global sensitivity analysis
For books giving context and uses see:

Fang, Li & Sudijanto (2010), Saltelli, Chan & Scott (2009), Saltelli, Ratto & Andres (2008),

Cacuci, Ionescu-Bujor & Navon (2005), Saltelli, Tarantola & Campolongo (2004), Santner,

Williams & Notz (2003)

Many scientific communities participate, many terms:

FANOVA DACE FAST SAMO MASCOT UCM HDMR NPUA UQ

Kriging approach
Sacks, Welch, Mitchell, Wynn, Ylvisaker, Currin, Morris, Yu, Kleijnen, Koehler, O’Hagan,

Kennedy, Stein, Ginsbourger, Roustant, · · ·

Derivative based
Sobol’, Kucherenko, Shah, Rodriguez-Fernandez, Pantelides, Iooss, Gamboa, Popelin, Lamboni

Survey Iooss & Lemaitre (2015) SIAM UQ 2016, Lausanne
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How important is importance?

This talk is mostly about ways to define and estimate importance of variables.

Attention can then be focussed on the most important variables.

One risk: measuring importance may be a very expensive first step.

Surrogate

It may be necessary to do this on a surrogate, sampling f̃ ≈ f
from, e.g., kriging or polynomials.

E.g., Iooss, Van Dorpe & Devictor (2006), Wang, Lu, Tang (2013)

Or directly Oakley & O’Hagan (2004), Chen, Jin, Sujianto (2005),

Marrel, Iooss, Laurent, Roustant (2009)

SIAM UQ 2016, Lausanne
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ANOVA: starting with potatoes
Fisher & MacKenzie (1923)

Studies in crop variation II: The manurial response of different potato varieties

Hypothetical potato yields, Yij
Four varieties, and 3 fertilizer levels


Yield (kg) V1 V2 V3 V4

F1 109.0 110.9 94.2 125.9

F2 104.9 113.4 110.1 138.0

F3 151.8 160.9 111.9 145.0



SIAM UQ 2016, Lausanne
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Potatoes continued
The average yield is Ȳ•• = 123.0. (index = • for average)

Q: Did fertilizer Fi raise or lower the yield?

A: Subtract 123 from row i and average: Ȳi• − Ȳ••

For fertilizer i : 1
J

∑J
j=1(Yij − Ȳ••)

F1 F2 F3

−13.0 −6.4 19.4

For variety j : 1
I

∑I
i=1(Yij − Ȳ••)

V1 V2 V3 V4

−1.1 5.4 −17.6 13.3

These are the ‘main effects’ for fertilizer and variety respectively.

By construction they sum to zero. Ȳ•• is the ‘grand mean’.

SIAM UQ 2016, Lausanne
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ANOVA for potatoes


109.0 110.9 94.2 125.9

104.9 113.4 110.1 138.0

151.8 160.9 111.9 145.0

 =


123 123 123 123

123 123 123 123

123 123 123 123



+


−13.0 −13.0 −13.0 −13.0

− 6.4 − 6.4 − 6.4 − 6.4

19.4 19.4 19.4 19.4

+


−1.1 5.4 −17.6 13.3

−1.1 5.4 −17.6 13.3

−1.1 5.4 −17.6 13.3



+


0.1 −4.5 1.8 2.6

−10.6 −8.6 11.1 8.1

10.5 13.1 −12.9 −10.7

 The last term is the ‘interaction’.

SIAM UQ 2016, Lausanne
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Extensions of ANOVA
From I × J tables to I × J ×K × · · · × Z

e.g. 2d designs in industrial statistics Box, Hunter, Hunter (2005)

f ∈ L2[0, 1]d

Embedded Nd grid as N →∞
Hoeffding (1948), Sobol’ (1969), Efron & Stein (1981) and others surveyed in Takemura (1983)

Further generalization

Any d independent inputs: L2(
∏d
j=1 Xj)

Also d =∞ via martingales. O (1997) (Latin supercubes)

SIAM UQ 2016, Lausanne
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ANOVA for L2[0, 1]d
Hoeffding (1948) for U -statistics

Sobol’ (1969) for QMC

Efron & Stein (1981) for jackknife

f(x) = f()() +
d∑
j=1

f(j)(xj) +
∑
j<k

f(j,k)(xj , xk) + · · ·+ f(1,2,...,d)(x1, . . . , xd)

= f()() +
d∑
r=1

∑
16j1<j2<···<jr6d

f(j1,j2,...,jr)(xj1 , xj2 , . . . , xjr )

More simply

f(x) =
∑
u

fu(x)

Sum over all u ⊆ D = {1, 2, . . . , d}
SIAM UQ 2016, Lausanne
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Notation
For u ⊆ D ≡ {1, . . . , d}

|u| = card(u)

−u = uc = {1, 2, . . . , d} − u

v ⊂ u strict subset i.e. (

If u = {j1, j2, . . . , j|u|} then xu = (xj1 , . . . , xj|u|) and dxu =
∏
j∈u dxj

Dependence

fu(x) is a function of x that only depends on xu
fu(x) + fv(x) is well defined

SIAM UQ 2016, Lausanne



Sobol’ indices 14

Recursive definition

Overall mean µ ≡ f∅(x) =

∫
f(x) dx

Main effect j f{j}(x) =

∫ (
f(x)− f∅(x)

)
dx−{j}

Interaction u fu(x) =

∫ (
f(x)−

∑
v⊂u

fv(x)
)

dx−u

=

∫
f(x) dx−u −

∑
v⊂u

fv(x)

SIAM UQ 2016, Lausanne
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ANOVA properties

j ∈ u =⇒
∫ 1

0

fu(x) dxj = 0 induction on |u|

u 6= v =⇒
∫
fu(x)fv(x) dx = 0 integrate over j ∈ (u− v) ∪ (v − u)

&

∫
fu(x)gv(x) dx = 0

Variances

Var(f) ≡
∫

(f(x)− µ)2 dx =
∑
u⊆D

σ2
u

σ2
u = σ2

u(f) =


∫
fu(x)2 dx u 6= ∅

0 u = ∅.

SIAM UQ 2016, Lausanne
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ANOVA for dependent inputs
• Stone (1984)

Retains
∫
fu(x)fv(x)w(x) dx = 0 for u ⊂ v

• Hooker (1997)

Applies to machine learning functions

• Chastaing, Gamboa & Prieur (2012,2015)

New estimation methods for generalized indices

• Kucherenko, Tarantola & Annoni (2012)

Use Gaussian copula

The challenges

• Conceptual. How should one define importance here? Should it ever be negative?

What if support of xj depends on xk? E.g., input space has ‘holes’.

• Computational.

New work from Song, Nelson & Staum (2015) using Shapley value looks super promising.
SIAM UQ 2016, Lausanne
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Sobol’s decomposition
Sobol’ (1969) obtained the same decomposition.

“Decomposition into summands of different dimension”

Sobol’ and Hoeffding

Hoeffding (1948) Analysis Break f into pieces, one for each fu

Sobol’ (1969) Synthesis Assemble parts of f to make fu

In more detail
Sobol’ used a complete orthonormal basis of L2[0, 1]d

(tensor product of Haar wavelets).

Then he gathered terms for each u ⊆ {1, . . . , d}.

Thanks to A. Chouldechova for translation.

SIAM UQ 2016, Lausanne
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Variable importance
How important is xu?

Larger σ2
u means that fu(x) contributes more.

We also want to count σ2
v for v ⊂ u.

Sobol’s (1993) importance measures

τ2u =
∑
v⊆u

σ2
v v contained in u

τ2u =
∑

v∩u 6=∅
σ2
v v touches u, so interactions count

Large τ2u means xu important

Small τ2u means xu unimportant can be frozen Sobol’

SIAM UQ 2016, Lausanne
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Normalized versions
Normalized versions are analogues of R2, proportion of variance explained.

Partial/closed sensitivity
τ2u
σ2

Si for u = {i}

Total sensitivity
τ2u
σ2

S tot
i for u = {i}

The denominator is easier to estimate, so focus on numerators.

Units

Normalized sensitivities are dimensionless (% of variance).

If we need an answer in meters or volts or e, etc. then we are back to the numerator.

SIAM UQ 2016, Lausanne
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Interpretation
E(f(x) | xu) =

∑
v⊆u

fv(x)

τ2u =
∑
v⊆u

σ2
v = Var(E(f(x) | xu))

If you control xu you control τ2u of the variance in f .

If τ2u is large, then xu are important.

τ 2
u = σ2 − τ 2

−u
τ2u includes the interaction between xu and x−u

If an adversary controls xu then the most ’damage’ they can do is τ2u.

If τ2u is small then xu is not important. Can be ‘frozen’. Sobol’ (1990/1993)

SIAM UQ 2016, Lausanne
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Unimportance is important
1) It lets you focus on the key inputs.

2) Potential for faster code.

Factor sparsity

Often most variables are unimportant, e.g., Box & Meyer (1986)

Also: they cannot all be relatively important.

SIAM UQ 2016, Lausanne
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Examples
d = 4 and u = {1, 2}

τ2{1,2} = σ2
{1} + σ2

{2} + σ2
{1,2}

τ2{1,2} = σ2
{1} + σ2

{2} + σ2
{1,2}

+ σ2
{1,3} + σ2

{1,4} + σ2
{2,3} + σ2

{2,4}

+ σ2
{1,3,4} + σ2

{2,3,4} + σ2
{1,2,3,4}

SIAM UQ 2016, Lausanne
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Brute force estimation
Naive approach for τ2u:

1) Sample xi ∈ [0, 1]d and get yi = f(xi) for i = 1, . . . , n.

2) Get statistical machine learning estimates of f̂v(x).

3) Put σ̂2
v =

∫
f̂u(x)2 dx, u 6= ∅.

4) Sum: τ̂2u =
∑
v⊆u σ̂

2
v .

This is expensive and has many biases.

Pick-freeze

Sobol’ has a much better way, using pick-freeze identities (next).

SIAM UQ 2016, Lausanne
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Hybrid points
xu:z−u takes xu from x and z−u from z

For y = xu :z−u

yj =

xj , j ∈ u
zj , j 6∈ u.

Example

x = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6)

z = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4)

x{1,2,4,5}:z{3,6} = (0.1, 0.2, 0.7, 0.4, 0.5, 0.4)

SIAM UQ 2016, Lausanne
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Fixing methods
Evaluate f at two points:

freeze: repeat some components

pick: independent draws for others

Recall fu does not depend on x−u

Therefore fu(x) = fu(xu:x−u) = fu(xu:z−u) ∀z ∈ [0, 1]d

Sobol’ (1990/3) used the identities:

τ2u =

∫
f(x)f(xu:z−u) dxdz − µ2

τ2u =
1

2

∫
((f(x)− f(x−u :zu))2 dxdz

SIAM UQ 2016, Lausanne
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Identity for τ2u∫∫
f(x)f(xu :z−u) dxdz

=
∑
v

∑
w

∫∫
fv(x)fw(xu :z−u) dxdz (ANOVA)

=
∑
v⊆D

∫∫
fv(x)fv(xu :z−u) dxdz (orthogonality)

=
∑
v⊆u

∫∫
fv(x)fv(xu :z−u) dxdz (line integrals over zj )

=
∑
v⊆u

∫
fv(x)2 dx (fv only depends on xv and v ⊆ u)

= µ2 +
∑
v⊆u

σ2
u

≡ µ2 + τ2u.
SIAM UQ 2016, Lausanne
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Identity for τ2u
1

2

∫∫ (
f(x)− f(x−u :zu)

)2
dxdz

=
1

2

(
σ2 + µ2 − 2

(
τ2−u + µ2

)
+ σ2 + µ2

)
= σ2 − τ2−u
= τ2u.

Sobol’s identities are like tomography:

global integrals reveal internal structure.

Computation
τ2u and τ2u can be done via 2d dimensional integrals.

Monte Carlo or quasi-Monte Carlo approaches.

Also: Poincaré inequalities let one estimate bounds using derivatives:

Lamboni, Iooss, Popelin, Gamboa (2012), Roustant, Fruth, Iooss, Kuhnt (2014),

Kucherenko, Iooss (2014)
SIAM UQ 2016, Lausanne
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MC or QMC estimation

τ̂2u =
1

n

n∑
i=1

f(xi)f(xi,u :zi,−u)−
( 1

n

n∑
i=1

f(xi)
)2

τ̂
2

u =
1

2n

n∑
i=1

(
f(xi)− f(xi,−u :zi,u)

)2
τ̂2u needs (xi, zi,−u) ∈ [0, 1]d+|−u| = [0, 1]2d−|u|

τ̂
2

u needs (xi, zi,u) ∈ [0, 1]d+|u|

Bias

The subtraction in τ̂2u introduces an annoying bias for MC or randomized QMC.

SIAM UQ 2016, Lausanne
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Even better
τ2u =

∫∫
f(x)

(
f(xu :z−u)− f(z)

)
dxdz

τ̂2u =
1

n

n∑
i=1

f(xi)
(
f(xi,u :zi,−u)− f(zi)

)
This avoids subtracting µ̂2. It is unbiased: E

(
τ̂2u) = τ2u

Mauntz (2002), Saltelli (2002), Kucherenko, Feil, Shah, Mauntz (2011)

Improved statistical efficiency

τ̂2u =
1

n

n∑
i=1

f(xi)f(xi,u :zi,−u)−
(

1

n

n∑
i=1

f(xi) + f(xi,u :zi,−u)

2

)2

From Monod, Naud & Makowski (2006)

Janon, Klein, Lagnoux, Nodet & Prieur (2012)

prove efficiency in a class of estimators · · · that does not include the unbiased one above.

(Either one could be better for given f ) SIAM UQ 2016, Lausanne
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Simplified Saint-Venant flood model
Lamboni, Iooss, Popelin, Gamboa, (2012)

Overflow in meters at a dyke

S = Zv +H −Hd − Cb, where

H =

(
Q

BKs

√
(Zm − Zv)/L

)3/5

(max annual river height)

Q Maximal annual flow m3/s Gumbel(1013, 558) ∩ [500, 3000]

Ks Strickler coefficient m1/3/s N (30, 8) ∩ [15,∞)

Zv River downstream level m Triangle(49, 50, 51)

Zm River upstream level m Triangle(54, 55, 56)

Hd Dyke height m U[7, 9]

Cb Bank level m Triangle(55, 55.5, 56)

L Length of river stretch m Triangle(4990, 5000, 5010)

B River width m Triangle(295, 300, 305)

Reduced from a Navier-Stokes model; Usually we don’t see a formula.
SIAM UQ 2016, Lausanne
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The cost model

Cp = 1S>0m (flood cost)

+ 1S60m(0.2 + 0.8(1− e−1000m
4/S4

)) (dyke maintenance)

+ 0.05 min(Hdm
−1, 8) (investment cost, from construction)

in millions of Euros

SIAM UQ 2016, Lausanne
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τ2{j}/σ
2 for the flood model


τ2/σ2 Q Ks Zv Zm Hd Cb L B

Height H 0.72 0.29 0.0078 0.0077 0 0 7.4× 10−7 0.00021

Overflow S 0.35 0.14 0.19 0.0038 0.28 0.036 3.6× 10−7 0.00010

CostCp 0.48 0.25 0.23 0.0077 0.17 0.039 6.8× 10−7 0.00019


From n = 100,000 runs

Q Maximal annual flow m3/s Gumbel(1013, 558) ∩ [500, 3000]

Ks Strickler coefficient m1/3/s N (30, 8) ∩ [15,∞)

Zv River downstream level m Triangle(49, 50, 51)

Zm River upstream level m Triangle(54, 55, 56)

Hd Dyke height m U[7, 9]

Cb Bank level m Triangle(55, 55.5, 56)

L Length of river stretch m Triangle(4990, 5000, 5010)

B River width m Triangle(295, 300, 305)SIAM UQ 2016, Lausanne



Sobol’ indices 33

SIAM UQ 2016, Lausanne



Sobol’ indices 34

Related ANOVA quantities
1) Superset importance. Used to find parsimonious models.

2) Shapley value. Maybe a more ‘fair’ importance measure.

3) Effective and mean dimension. Used in quasi-Monte Carlo (QMC) integration.

SIAM UQ 2016, Lausanne
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Superset importance
Statistical and machine learning prediction.

The data are (x, y) pairs. We have a model to predict y by f(x).

For parsimony

Remove interaction fu and all super-effects. Squared error:

Υ2
u =

∑
v⊇u

σ2
v Liu & O (2006)

Small Υ2
u means deleting fu and fv for v ⊇ u costs little.

Relevant to Hooker (2004)’s simplifications of black box functions.

SIAM UQ 2016, Lausanne
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For superset importance
After some algebra:

Υ2
u ≡

∑
v⊇u

σ2
v =

1

2|u|

∫∫ (∑
v⊆u

(−1)|u−v|f(x−v :zv)
)2

dxdz

Mean of a square of differences · · · always get a non-negative estimate.

From Liu & O (2006)

Generalizes τ2u formula from 2 terms to 2|u| terms.

As a design

Use n repeats of a 2|u| × 1d−|u| factorial randomly embedded in the unit cube.

Does best in comparisons by Fruth, Roustant, Kuhnt (2012)

SIAM UQ 2016, Lausanne
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Shapley value

SIAM UQ 2016, Lausanne
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15 million Francs
Shapley’s (1953) value can be used to quantify the contribution of members to a team.

We need to know what each subset of the team would have accomplished.

Example from Bank of International Settlement

Team Output value in Swiss Francs

∅ 0

A 4,000,000

B 4,000,000

C 4,000,000

A,B 9,000,000

A,C 10,000,000

B,C 11,000,000

A,B,C 15,000,000

Q: How should we split the CHF 15,000,000 earned by A, B, C among them?
SIAM UQ 2016, Lausanne
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15 million Francs
Shapley’s (1953) value can be used to quantify the contribution of members to a team.

We need to know what each subset of the team would have accomplished.

Example from Bank of International Settlement

Team Output value in Swiss Francs

∅ 0

A 4,000,000

B 4,000,000

C 4,000,000

A,B 9,000,000

A,C 10,000,000

B,C 11,000,000

A,B,C 15,000,000

Q: How should we split the CHF 15,000,000 earned by A, B, C among them?

A: Shapley says: A gets CHF 4,500,000, B gets CHF 5,000,000, C gets CHF 5,500,000
SIAM UQ 2016, Lausanne
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Shapley setup
Let team u ⊆ D ≡ {1, 2, . . . , d} create value val(u).

Total value is val(D).

We attribute φj of this to j ∈ D.

Shapley axioms

Efficiency
∑d
j=1 φj = val(D)

Dummy If val(u ∪ {i}) = val(u), all u then φi = 0

Symmetry If val(u ∪ {i}) = val(u ∪ {j}), all u ∩ {i, j} = ∅ then φi = φj

Additivity If games val, val′ have values φ, φ′ then val + val′ has value φj + φ′j

Unique solution

φj =
1

d

∑
u⊆−{j}

(
d− 1

|u|

)−1
(val(u+ j)− val(u))

SIAM UQ 2016, Lausanne
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For variable importance
Let variables x1, x2, . . . , xd be team members trying to explain f .

The value of any subset u is how much can be explained by xu.

Choose val(u) ≡ τ2u =
∑
v⊆u σ

2
v .

Shapley value

φj =
1

d

∑
u⊆−{j}

(
d− 1

|u|

)−1
(τ2u+j − τ2u)

SIAM UQ 2016, Lausanne
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Shapley 6= Sobol’
The Shapley value φj is not τ2{j} or τ2{j}. After some algebra O (2014),

φj =
∑

u⊆{1,...,d},j∈u

σ2
u

|u|
.

Bracketing

σ2
{j} = τ2

{j} 6 φj 6 τ2
{j} =

∑
u:j∈u

σ2
u

Shapley seems like a more reasonable allocation.

Sobol’ indices are easier to compute than Shapley and they provide bounds.

Bracketing holds for any ‘totally monotone game’ (where the analogue of σ2
u > 0).

SIAM UQ 2016, Lausanne
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Shapley for dependent x
Song, Nelson & Staum (2015)

τ2u = Var(E(f(x) | xu))

φj =
1

d

∑
u⊆−{j}

(
d− 1

|u|

)−1
(τ2u+j − τ2u)

> 0

Works even if

1) Support of x2 depends on x1

2) x1 = x2 or x3 is constant

3) x Gaussian

SIAM UQ 2016, Lausanne
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Special cases
φj =

1

d

∑
u⊆−{j}

(
d− 1

|u|

)−1
(τ2u+j − τ2u)

When d = 2

φ1
σ2

=
1

2

(
1 +

Var(E(Y |x1))−Var(E(Y |x2)

σ2

)
=

1

2

(
1 +

E(Var(Y |x2))− E(Var(Y |x1))

σ2

)
.

x ∼ N (0,Σ), f(x) = xTβ

τ2u =
(
βu + Σ−1uuΣu,−uβ−u

)T
Σuu

(
βu + Σ−1uuΣu,−uβ−u

)
Issue

Neither requires nor provides effects fu.
SIAM UQ 2016, Lausanne
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Quasi-Monte Carlo (QMC)

SIAM UQ 2016, Lausanne
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QMC context
µ =

∫
[0,1]d

f(x) dx

Decomposition

µ̂ =
1

n

n∑
i=1

f(xi) =
1

n

∑
u⊆{1,...,d}

fu(xi) = µ+
∑
|u|>0

1

n

n∑
i=1

fu(xi)

Sum of 2d − 1 integration errors.

For small cardinality |u| the integration problem is easier.

Favorable when f is dominated by its low dimensional components.

More precise statements require Koksma-Hlawka or similar inequalities.

See Niederreiter (1992), Dick & Pillichshammer (2010)
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Effective dimension
Caflisch, Morokoff & O (1997)

f has low effective dimension if it is dominated by s� d dimensional parts

Truncation sense

f(x) ≈
∑

u⊆{1,2,...,s}

fu(x)

Superposition sense

f(x) ≈
∑

u:|u|6s

fu(x)

These make integration (and some other) problems easier.

Smoothness also matters.

SIAM UQ 2016, Lausanne
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Measures of dimensionality
For u 6= ∅, let

buc = min{j | j ∈ u}
due = max{j | j ∈ u}

span(u) = due − buc+ 1

Effective dimension

min s > 1 with
∑
due6s

σ2
u > 0.99σ2 Truncation sense u ⊆ {1, 2, . . . , s}

min s > 1 with
∑
|u|6s

σ2
u > 0.99σ2 Superposition sense

min s > 1 with
∑

span(u)6s

σ2
u > 0.99σ2 Successive dimensions sense

Superposition & Truncation Caflisch, Morokoff & O (1997)

Successive dimensions L’Ecuyer & Lemieux (2000)
SIAM UQ 2016, Lausanne
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Dimension moments
∑
u

|u|σ2
u = (1 + ε)σ2 =⇒

∑
u

(|u| − 1)σ2
u = εσ2

Then k-fold interactions contribute 6 ε× σ2

k − 1
, k > 2

So f is nearly additive.

due is highest coordinate j ∈ u

Mean Mean square

Superposition
1

σ2

∑
u

|u|σ2
u

1

σ2

∑
u

|u|2σ2
u

Truncation
1

σ2

∑
u

dueσ2
u

1

σ2

∑
u

due2σ2
u

Successive
1

σ2

∑
u

span(u)σ2
u

1

σ2

∑
u

span(u)2σ2
u

Superposition moments in Liu & O (2006)
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For mean dimension

d∑
j=1

τ2j =
d∑
j=1

∑
v∩{j}6=∅

σ2
v

=
∑
v

σ2
v

d∑
j=1

1v∩{j}6=∅

=
∑
v

|v|σ2
v

Much easier to estimate than effective dimension s.

Generalizes to
∑
u

|u|kσ2
u for k > 1

Liu & O (2006)
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Example
Kuo, Schwab, Sloan (2012) consider quadrature for

f(x) =
1

1 +
∑500
j=1 xj/j!

, x ∈ [0, 1]500

R = 50 replicated estimates of
∑
u |u|σ2

v/σ
2 using n = 10,000

had mean 1.0052 and standard deviation 0.0058.

Upshot

f(x) is nearly additive

mean dimension between 1.00356 and 1.00684

(±2 standard errors)

SIAM UQ 2016, Lausanne
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Generalized Sobol’ indices

SIAM UQ 2016, Lausanne
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Arbitrary pick-freeze
For any u, v ⊆ D, let

Θuv =

∫∫
f(xu :z−u)f(xv :z−v) dxdz

Unbiased estimate

Θ̂uv =
1

n

n∑
i=1

f(xi,u :zi,−u)f(xi,v :zi,−v)

Generalized Sobol’ index∑
u⊆D

∑
v⊆D

ΩuvΘuv = tr(ΩTΘ) Θ,Ω ∈ R2d×2d

Choosing Ω lets us estimate many things.

O (2013) JUQ

SIAM UQ 2016, Lausanne



Sobol’ indices 54

NXOR

XOR(u, v) = u4v = u ∪ v − u ∩ v (exclusive OR)

NXOR(u, v) = XOR(u, v)c (not exclusive OR)

NXOR(u, v) has indices j in both u and v or in neither u or v

Θ via τ 2

Θuv ≡
∫∫

f(xu :z−u)f(xv :z−v) dxdz

...

= µ2 + τ2NXOR(u,v)

= µ2 +
∑

w⊆NXOR(u,v)

σ2
w

Written XNOR in electrical engineering SIAM UQ 2016, Lausanne
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Non-uniqueness

∫ d∑
j=1

f(x)(f(x)− f(xj :z−j)) dxdz =
∑
u

|u|σ2
u

1

2

∫ d∑
j=1

(
f(x)− f(xj :z−j)

)2
dxdz =

∑
u

|u|σ2
u

SIAM UQ 2016, Lausanne



Sobol’ indices 56

Special GSIs
1) Mean squares Ω = λλT∫∫ (∑

u

λuf(xu :z−u)
)2

dxdz Nonnegative & fast

2) Bilinear (rank one) Ω = λγT∫∫ (∑
u

λuf(xu :z−u)
)(∑

v

γvf(xv :z−v)
)

dxdz Fast

3) Simple∫∫ (∑
u

λuf(xu :z−u)
)
f(z) dxdz Only uses one row/col of Θ

4) Contrast ∑
u

∑
v

Ωu,v = 0 Free of µ2

N.B.: Here a contrast can also be a sum of squares.

SIAM UQ 2016, Lausanne
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Squares
For a square (or a sum of squares) tr(ΩTΘ̂) > 0.

Also E
(

tr(ΩTΘ̂)
)

= tr(ΩTΘ)

Therefore tr(ΩTΘ) = 0 implies Pr
(

tr(ΩTΘ̂) = 0
)

= 1.

GSIs with sum of squares estimators

τ2u and Υ2
u and

∑
u

|u|σ2
u

No sum of squares exists for τ 2
u when |u| < d

The coefficient of σ2
D is

∑
u λ

2
u Never 0 for nontrivial λ

generally
∑
u Ωuu i.e., tr(Ω)

Same thing happens in ANOVA tables:

every variance component has a contribution from the measurement error.

SIAM UQ 2016, Lausanne
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Cost of a GSI
C(Ω) counts the # of function evaluations per (x, z) pair.

We can have tr(ΩT
1 Θ) = tr(ΩT

2 Θ) but C(Ω1) < C(Ω2).

SIAM UQ 2016, Lausanne
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Three factor interaction
σ2
{1,2,3} = τ2{1,2,3} − τ

2
{1,2} − τ

2
{1,3} − τ

2
{2,3} + τ2{1} + τ2{2} + τ2{3} − τ

2
∅

C(Ω) = 9 evaluations

f(x)
(
f(x1, x2, x3, z4, z5)

− f(x1, x2, z3, z4, z5)− f(x1, z2, x3, z4, z5)− f(z1, x2, x3, z4, z5)

+ f(x1, z2, z3, z4, z5) + f(z1, x2, z3, z4, z5) + f(z1, z2, x3, z4, z5)

− f(z)
)

C(Ω) = 6 evaluations(
f(z)− f(x1, z2, z3, z4, z5)

)
×(

f(z1, z2, z3, x4, x5)− f(z1, x2, z3, x4, x5)− f(z1, z2, x3, x4, x5) + f(z1, x2, x3, x4, x5)
)

N.B. The bilinear version is invariant under f → f + c

See O (2013) JUQ for this and generalizations
SIAM UQ 2016, Lausanne
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Bilinear, with O(d) evaluations
Suppose λu = 0 for |u| 6∈ {0, 1, d− 1, d}. Same for γv = 0.

Then the rule ∑
u

∑
v

λuγv

∫∫
f(xu :z−u)f(xv :z−v) dxdz

takes O(d) computation · · · not O(d2).

SIAM UQ 2016, Lausanne
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Bilinear example
∫ [

df(z)−
d∑
j=1

f(xj :z−j)
][

(d− 2)f(z)−
d∑
j=1

f(x−j :zj)
]

dxdz

Reduces to∑
u:|u|=2

σ2
u

This is a sum of
(
d
2

)
ANOVA components but it only takes 2d+ 1 evaluations of f .

O (2013) JUQ

SIAM UQ 2016, Lausanne



Sobol’ indices 62

O(d) pairs, with k 6= j
For j 6= k, let j represent {j} and−j represent−{j} etc.

All the XORs

Every u and v is j or k or−j or−k.

D ≡ {1, 2, . . . , d}.



XOR ∅ j k −j −k D

∅ ∅ j k −j −k D
j j ∅ {j, k} D −{j, k} −j
−j −j D −{j, k} ∅ {j, k} j

D D −j −k j k ∅



SIAM UQ 2016, Lausanne
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All the NXORs



NXOR ∅ j k −j −k D

∅ D −j −k j k ∅

j −j D −{j, k} ∅ {j, k} j

−j j ∅ {j, k} D −{j, k} −j
D ∅ j k −j −k D


For |u| and |v| in {0, 1, d− 1, d}.

We can estimate the corresponding τ2NXOR(u,v) with O(d) cost per (x, z) pair.

Saltelli (2002) already noticed this (or at least most of it).

SIAM UQ 2016, Lausanne
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What we can get
After some algebra we can get unbiased estimates of∑

u

|u|σ2
u

∑
|u|=1

σ2
u∑

u

|u|2σ2
u

∑
|u|=2

σ2
u

at cost 2d+ 2. (Some parts can be gotten at C = d+ 1)

O (2013) JUQ

SIAM UQ 2016, Lausanne
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Initial and final segments
Suppose that x1, x2 · · · xd are used in that order. E.g. time steps in a Markov chain

First j variables

(0, j] ≡

{1, 2, . . . , j}, 1 6 j 6 d

∅, j = 0

Last d− j variables

(j, d] ≡

{j + 1, . . . , d}, 0 6 j 6 d− 1

∅ j = d

There are 2d+ 1 of these subsets.

SIAM UQ 2016, Lausanne
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Enumeration



NXOR ∅ (0,j] (0,k] (j,d] (k,d] D

∅ D (j, d] (k, d] (0, j] (0, k] ∅

(0,j] (j, d] D −(j, k] ∅ (j, k] (0, j]

(j,d] (0, j] ∅ (j, k] D −(j, k] (j, d]

D ∅ (0, j] (0, k] (j, d] (k, d] D


WLOG j < k.

SIAM UQ 2016, Lausanne
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Effect of recent variables
Recall, first and last elements of u 6= ∅:

buc = min{j | j ∈ u}

due = max{j | j ∈ u}

Recency weighted variance components∑
u⊆D

(buc − 1)σ2
u, and,

∑
u⊆D

(d− due)σ2
u.

Another measure of how fast f() forgets its initial conditions.

Weighting by buc(d− due+ 1) also possible.

SIAM UQ 2016, Lausanne
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Test functions

f(x) =
d∏
j=1

(µj + τjgj(xj))∫
gj = 0

∫
g2j = 1 and

∫
g4j <∞.

σ2
u =

∏
j∈u

τ2j ×
∏
j 6∈u

µ2
j

g(x) =
√

12(x− 1/2)

Min function

f(x) = min
16j6d

xj

τ2u =
|u|

(d+ 1)2(2d− |u|+ 2)
Liu and O. (2006)

SIAM UQ 2016, Lausanne
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σ2{1,2,3}
Product function =⇒ numerically same estimate for simple or bilinear.

Therefore bilinear is better because of lower cost.

For min(x) and d = 6 the bilinear estimator was about 5 times as efficient as the simple one

based on n = 1,000,000 (x,z) pairs.

Υ2
{1,2,3,4}

Product function with d = 8 and µj = 1 and τ = (4, 4, 3, 3, 2, 2, 1, 1)/4.

Square beats bilinear:

Measure Value R2 Square’s efficiency

Υ2
{1,2,3,4} 0.558 0.034 14.7

Υ2
{5,6,7,8} 0.0024 0.000147 2710.0

Hard to beat a sum of squares when the true effect is small.
SIAM UQ 2016, Lausanne
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Lower index τ2u
No sum of squares is available.

Contrast
1

n

n∑
i=1

f(xi)(f(xi,u :zi,−u)− f(zi))

Simple estimator (bias adjusted)

1

n

n∑
i=1

f(xi)f(xi,u :zi,−u)−
(

1

2n

n∑
i=1

f(xi) + f(xi,u :zi,−u)

)2

The contrast has an advantage on small τ2u.

The simple estimator sometimes beats it on large ones.

SIAM UQ 2016, Lausanne



Sobol’ indices 71

Shapley again

φj =
∑

u:u∩{j}6=∅

|u|−1σ2
u

This is a−1st moment.

Hard to get a nice formula like the ones for 1st, 2nd etc. moments.

SIAM UQ 2016, Lausanne
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Optimal estimates
Let η2 =

∑
u δuσ

2
u.

We would like

E
(
η̂2) = η2 and, Var

(
η̂2
)
× cost = minimum.

Using variance components theory

Unfortunately Var(η̂2) depends on 4’th moments

Fortunately There is a theory of MINimum Quadratic Norm UNbiased Estimates (MINQUE)∗

Unfortunately They do not appear to be available for crossed random effects

Fortunately The computed case gives us more options, e.g., quadrature.

∗C. R. Rao (1970s)

Optimality is still an open problem

SIAM UQ 2016, Lausanne
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GSIs so far

Just use 2 inputs, x and z

What about 3?

x, y, z

SIAM UQ 2016, Lausanne
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Small Sobol’ indices
When τ2u is small it is easy to estimate (sum of squares)

When τ2u is small it is hard to estimate.

1

n

n∑
i=1

f(xi)f(xi,u:zi,−u)− µ̂2 basic

1

n

n∑
i=1

f(xi)(f(xi,u:zi,−u)− f(zi)) Mauntz (2002), Saltelli (2002)

1

n

n∑
i=1

(f(xi)− c)(f(xi,u:zi,−u)− f(zi)) Sobol’ & Myshetskaya (2007)

The basic estimate can be dominated by noise in µ̂.

Sobol’ & Myshetskaya (2007) found an advantage by centering at c near µ.

Averaging small×small

SIAM UQ 2016, Lausanne
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For small τ2u
Here it pays to use 3 vectors x,y,x ∈ [0, 1]d

1

n

n∑
i=1

f(xi)
(
f(xi,u :yi,−u)− f(yi)

)
(Mauntz-Saltelli)

1

n

n∑
i=1

(
f(xi)− µ

)(
f(xi,u :yi,−u)− f(yi)

)
(Oracle centered)

1

n

n∑
i=1

(
f(xi)− µ

)(
f(xi,u :yi,−u)− µ

)
(Double oracle)

1

n

n∑
i=1

(
f(xi)− f(zi,u :xi,−u)

)(
f(xi,u :yi,−u)− f(yi)

)
(Use 3 vectors) (∗)

where (xi,yi, zi)
iid∼ U[0, 1]3d for i = 1, . . . , n.

∗Double centering should work if xu is really unimportant. Tiny×tiny
SIAM UQ 2016, Lausanne
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An example
For Sobol’s g-function from Sobol’ & Myshetskaya (2007) and smallest τ{j}

Efficiencies
Maunt-Saltelli Oracle centered Double oracle Three vector

1 518 74 4256

These account for varying numbers of function evaluations.

These numbers are for the smallest τ2 and are the most extreme from O (2013)

Some theory
In a limit where n is fixed and τ2u = O(ε2), Var(τ̂2u) is

Maunt-Saltelli Oracle centered Double oracle Three vector

O(ε2) O(ε2) O(1) O(ε4)

SIAM UQ 2016, Lausanne



Sobol’ indices 77

SIAM UQ 2016, Lausanne



Sobol’ indices 78

Sensitivity at the extremes
Sobol’ indices measure the importance of variable subsets.

They are derived from the ANOVA, an L2 quantity.

Gary Tang (Stanford aero/astro) asked:

How should Sobol’ indices be adapted if we’re interested in variables that drive the

function to its most extreme values? Maybe an Lp approach with p > 2 would work.

This is not verbatim.

SIAM UQ 2016, Lausanne
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Why focus on extremes?
Many physical processes are sensitive to extremes:

• highest temperature for a chemical reaction

• single heaviest vehicle for road damage

• maximum acceleration/stress for mechanical systems

So · · · which variables dominate the attainment of extremely high or extremely low values for

the function f(x) = f(x1, x2, . . . , xd)?

SIAM UQ 2016, Lausanne
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Simplest solution
Replace f(x) by

• exp(kf(x)), some k > 0, or,

• f(x)4, or,

• 1f(x)>72, or,

• · · ·
Then use usual Sobol’ indices.

But

Transformations may introduce unnecessary interactions.

f(x) may already be dichotomous (e.g., safe vs. not).

So, transformation is not always suitable.

SIAM UQ 2016, Lausanne
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What we get
1) An L4 version that shows which variables dominate extremes

2) An L3 version that distinguishes variables dominating high vs low extremes

O, Dick & Chen (2014) Information and Inference

SIAM UQ 2016, Lausanne



Sobol’ indices 82

Piston cycle time C

C = 2π

√
M

k + S2 P0V0

T0

Ta

V 2

, where

V =
S

2k

(√
A2 + 4k

P0V0
T0

Ta −A

)
and A = P0S + 19.62M − kV0

S
,

Variable Range Description

M [30, 60] piston weight (kg)

S [0.005, 0.020] piston surface area (m2)

V0 [0.002, 0.010] initial gas volume (m3)

k [1000, 5000] spring coefficient (N/m)

P0 [90,000, 110,000] atmospheric pressure (N/m2)

Ta [290, 296] ambient temperature (K)

T0 [340, 360] filling gas temperature (K)

Kenett, Zacks & Amberti (2014), Surjanovic & Bingham (2014) SIAM UQ 2016, Lausanne



Sobol’ indices 83

Spoiler!
Wt Area Vol Spring Pres Amb Fill

102τ
(2)
j 0.073 1.088 0.626 0.040 0.001 −0.002 −0.002

105τ
(3)
j −0.096 8.931 −3.830 −0.270 −0.219 −0.206 −0.210

105τ
(4)
j 0.074 2.258 0.805 −0.006 0.000 0.007 0.007

These are estimates (explaining negative Sobol indices)

This function is about 94% additive (in L2)

Area is most important for extreme positive values

Volume is most important for extreme negative values

Bold means above 5 standard errors. Others are less than 2 s.e.

SIAM UQ 2016, Lausanne
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Approaches
We could generalize

1) Hoeffding’s (1947) analysis

2) Sobol’s (1969) synthesis

a) Fourier version

b) Walsh version

3) Sobol’s (1990/1993) pick-freeze identity

For L2, these all coincide.

For Lp, analysis becomes cumbersome but synthesis and pick-freeze go through.

SIAM UQ 2016, Lausanne
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Precursor 1
Analysis of skewness Wang (2001) for Xij

Define X̄i• X̄•j X̄•• by averaging over index with •

I∑
i=1

J∑
j=1

(Xij − X̄••)3 = J
I∑
i=1

(X̄i• − X̄••)3 + I
J∑
j=1

(X̄ij − X̄i•)
3

+ 3
J∑
j=1

(X̄i• − X̄••)
J∑
j=1

(X̄ij − X̄i•)
2.

These terms have interpretations in biology. They can be negative. I and J are treated

asymmetrically. (It allows us to have Ji obs at level i.)

SIAM UQ 2016, Lausanne
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Precursor 2
Median polish Tukey (1977), Siegel (1983)

Essentially (but not exactly) an additive L1 fit

Try to make every row and column have median 0 instead of mean 0.

Alternately adjust rows/columns to have median zero

SIAM UQ 2016, Lausanne
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Analysis

µ = arg min
m

∫
|f(x)−m|p dx

f{j}(x) = arg min
m

∫
|f(x)− µ−m|p dx−{j}

Or

f[u](x) ≡
∑
v⊆u fv(x) minimizes

∫
(f(x)− g(x))2 dx

over functions g(·) that depend only on xu.

For p 6= 2 such projection becomes difficult.

And so

we don’t generalize the analysis approach.

SIAM UQ 2016, Lausanne
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Sobol’s decomposition
Let φk(x), k ∈ I be a complete orthonormal basis of L2[0, 1]. Sobol’ (1969) used Haar

Assume that φ0(x) ≡ 1 and define I∗ = I− {0}.

For k = (k1, . . . , kd) ∈ Id define

φk(x) =
d∏
j=1

φkj (xj)

Synthesis

f(x) =
∑
k∈Id

βkφk(x), βk =

∫
f(x)φ̄k(x) dx

fu(x) =
∑

ku∈I|u|∗

βku:0−uφku:0−u(x) u are ‘active’ variables

σ2
u =

∫
fu(x)2 dx =

∑
ku∈I|u|∗

|βku:0−u
|2, u 6= ∅

SIAM UQ 2016, Lausanne
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Pick-freeze
For x, z ∈ [0, 1]d, y = xu :z−u means

yj =

xj , j ∈ u
zj , j 6∈ u.

We glue together part of x and part of z to form y = xu :z−u.

Recall

µ2 + τ2u =

∫
f(x)f(xu:z−u) dxdz

τ2u =
1

2

∫
(f(x)− f(x−u:zu))2 dxdz

We will generalize the first one.

SIAM UQ 2016, Lausanne
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Generalized synthesis (Fourier)
For Lp we will take p functions f0, f1, . . . , fp−1 and define a p-fold inner product. First,

fj(x) =
∑
k∈Zd

f̂j(k)e2πik
Tx, j = 0, 1, . . . p− 1

successor j+ ≡ j + 1 mod p

predecessor j− ≡ j − 1 mod p

We also use

{x} ≡ x− bxc = xmod 1

interpreted componentwise for vectors

SIAM UQ 2016, Lausanne



Sobol’ indices 91

Fourier multilinear
〈f0, f1, . . . , fp−1〉p =

∫
[0,1]dp

p−1∏
j=0

fj
(
{(−1)j(xj − xj+)}

)
dx0 · · · dxp−1

For even p, eg p = 4

uses {x0 − x1} {(−1)(x1 − x2)} {x2 − x3} {(−1)(x3 − x0)}
i.e. {x0 − x1} {x2 − x1} {x2 − x3} {x0 − x3}

For odd p, eg p = 3

uses {x0 − x1} {x2 − x1} {x2 − x0}

For p = 2

uses {x0 − x1} twice getting∫
f0({x0 − x1})f1({x0 − x1}) dx0 dx1
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Fourier multilinear
〈f0, f1, . . . , fp−1〉p =

∫
[0,1]dp

p−1∏
j=0

fj
(
{(−1)j(xj − xj+)}

)
dx0 · · · dxp−1

Diagonality on Fourier basis functions

〈φk0
, φk1

, . . . , φkp−1
〉p =

1, kj = (−1)jk0, j = 1, . . . , p− 1

0, else.
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Consequences of diagonality
Recall fu(x) =

∑
ku∈Z|u|∗

f̂(ku:0−u)e2πik
T
uxu

〈fu0
, fu1

, . . . , fup−1
〉p = 0 unless u0 = u1 = · · · = up−1

Define
σp(f) ≡ 〈f, f, . . . , f〉p then σp(f) =

∑
u⊆D

σp(fu)

Also

σp(f) = · · · =
∑
k∈Zd

f̂(k)dp/2ef̂(−k)bp/2c

For even p

σp(f) =
∑
k∈Zd

f̂(k)p/2f̂(k)
p/2

=
∑
k∈Zd

|f̂(k)|p.
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Fourier importance for even p > 2

τ [p]u + µp≡
∫ p−1∏

j=0

f
(
{(−1)j(x(j)

u − x(j+)
u )}:y(j)

−u

) ∏
dx(j)

∏
dy(j)

τ [p]u =
∑
v⊆u

σp(fv)

σp(fu) =
∑

ku∈Z|u|∗

|f̂(ku:0−u)|p

Interpretation

For equal L2 norm, larger Lp is a measure of sparsity

So important σp(fu) have sparser signal

Does not favor any part of the spectrum

Depends on the basis
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Walsh multilinear
The same process can be carried out in the Walsh basis.

The key property is again diagonality.

Sparsity in the Walsh basis measures different things than Fourier sparsity.

Major open problem

Can it be done in a modern wavelet basis?

Diagonality does not appear to hold.
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Generalizing the pick-freeze identity

τ2u + µ2 =

∫
f(x)f(xu:z−u) dxdz

τ (p)u + µ2 ≡
∫ p∏

k=1

f
(
xu:z

(k)
−u
)

dx

p∏
k=1

dz(k)

One copy of xu with p copies of z−u

For even p > 2

Monotonicity: u ⊆ v =⇒ τ (p)u 6 τ (p)v

Nonnegativity: τ (p)u > 0 = τ
(p)
∅
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Mobius relations

σ[p]
u =

∑
v⊆u

(−1)|u−v|τ [p]v Fourier

σ
[p]
u,wal =

∑
v⊆u

(−1)|u−v|τ [p]v Walsh

σ(p)
u =

∑
v⊆u

(−1)|u−v|τ (p)v Sobol’ pick-freeze
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Piston cycle time C

C = 2π

√
M

k + S2 P0V0

T0

Ta

V 2

, where

V =
S

2k

(√
A2 + 4k

P0V0
T0

Ta −A

)
and A = P0S + 19.62M − kV0

S
,

Variable Range Description

M [30, 60] piston weight (kg)

S [0.005, 0.020] piston surface area (m2)

V0 [0.002, 0.010] initial gas volume (m3)

k [1000, 5000] spring coefficient (N/m)

P0 [90,000, 110,000] atmospheric pressure (N/m2)

Ta [290, 296] ambient temperature (K)

T0 [340, 360] filling gas temperature (K)

Kenett, Zacks & Amberti (2014), Surjanovic & Bingham (2014) SIAM UQ 2016, Lausanne



Sobol’ indices 99

Integrals
µ2 + τ

(2)
j =∫

f
(
{x(0)j − x

(1)
j }:z

(0)
−j
)
f
(
{x(0)j − x

(1)
j }:z

(1)
−j
)

µ3 + τ
(3)
j =∫

f
(
{x(0)j − x

(1)
j }:z

(0)
−j
)
f
(
{x(2)j − x

(1)
j }:z

(1)
−j
)
f
(
{x(2)j − x

(0)
j }:z

(2)
−j
)
, and

µ4 + τ
(4)
j =∫

f
(
{x(0)j − x

(1)
j }:z

(0)
−j
)
f
(
{x(2)j − x

(1)
j }:z

(1)
−j
)
f
(
· · ·
)
f
(
{x(0)j − x

(3)
j }:z

(3)
−j
)
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Quadrature approach
We study f̄ = f − µ

From n = 76 = 117,649 points of a fully scrambled (0, 6, 7) Faure net in base 7:

µ
.
= 0.4624964 standard error 9.8× 10−7

For τ̂
(3)
j

1

n

n∑
i=1

f̄
(
{xi0 − xi1}:z(0)π0(i),−j

)
× f̄

(
{xi2 − xi1}:z(1)π1(i),−j

)
× f̄

(
{xi2 − xi0}:z(2)π2(i),−j

)
Latin supercube sampling

Five randomized Faure nets, xi ∈ [0, 1]4, z
(0)
i , z

(1)
i , z

(2)
i , z

(3)
i ∈ [0, 1]6

4 random permutations π0, . . . , π3
10 replicates
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Pick-freeze results
Wt Area Vol Spring Pres Amb Fill

102τ
(2)
j 0.073 1.088 0.626 0.040 0.001 −0.002 −0.002

105τ
(3)
j −0.096 8.931 −3.830 −0.270 −0.219 −0.206 −0.210

105τ
(4)
j 0.074 2.258 0.805 −0.006 0.000 0.007 0.007

This function is about 94% additive (in L2)

Area is most important for extreme positive values

Volume is most important for extreme negative values

Bold means above 5 standard errors. Others are less than 2 s.e.
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