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Overview |

State space models are dynamical systems with partial and noisy
observations at discrete time points

Examples are numerical or stochastic models for weather,
earthquakes, flow in porous media, or statistical models in
economics, finance, ecology, systems biology, etc.

Data assimilation or filtering is the estimation of the state of the
system at some time t given all observations up to time t and the
quantification of its uncertainty, ideally in the form of a probability
distribution. This is the basis for predicting the system

State space models often contain unknown static parameters
related to the time evolution of the system or to the measurement

process Filtering also provides methods to estimate such
parameters

These topics appear in many talks at this conference
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Overview Il

@ In this tutorial, | want to introduce the basic concepts for
non-specialists and give an outlook on some new and ongoing
research

@ Statisticians, geophysicists and applied mathematicians have
made contributions, often without much exchange of ideas and
methods

@ lItis not possible to cover everything in 2 hours, the selection is my
own

@ The emphasis here is on the derivation and heuristic properties of
algorithms. | do not go into results about asymptotic performance
of the algorithms since | think it is often not clear how to do
asymptotics which is relevant

@ | will take questions in between at the end of each chapter, please
don’t hesitate to ask
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A few success stories

@ Particle filters have been extremely successful in tracking
problems of image analysis because they can deal with
occasional ambiguity

@ A version of the Ensemble Kalman filter, called the Local
Ensemble Transform Kalman filter is used in operational weather
forecasting

@ Importance splitting, a method for rare event simulation, can be
considered as a particle filter

@ Problems with unknown static parameters are much harder. The
examples used in papers on particle MCMC are of intermediate
complexity, e.g. stochastic volatility or models for GDP with
different regimes
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A first example: Cumulus convection
This is a toy model | will return to later. For now, this is just an example
for the methods that | will present
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State space models

A state space model consists of a dynamical system (X;) and partial
and noisy observations (Y;) of the state of the system at some discrete
time points t;.

(Xt) contains a complete description of the system and is not fully
observable. Its dynamics is given by a differential equation or a Markov
process in discrete or continuous time.

Observations Y; are conditionally independent given the state, and Y;
depends only on Xj.

Hans R. Kiinsch (ETH Zurich) Particle and Ensemble Kalman Filters SIAM-UQ16 9/81



Graphical representation of state space models

The dependence between the variables of a state space model can be
represented by the following directed acyclic graph

Yi1 Yi Yi

From this graph, conditional independence relations can be deduced,
by looking at separation properties after the arrows have been
dropped.

In particular, (Y;) is not a Markov chain, but Y; is independent of its
past given X; or X;_,.
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Notation and simplifications

X; takes values in RY, Y; takes values in RY. Distributions are time
homogeneous and observation times are t; = i. | write t instead of ¢;
and use yy.; as shorthand for (y1, ya, ..., ).

Transition kernel of (X;):
M(dx|x") = P(X; € dx|X;_1 = X)

In the deterministic case, this is a point mass at the value of the
solution at time 1 with initial condition x’. Starting distribution at time
zero Xo ~ Mp(dx).

Conditional distribution of observations
Yi| Xt = x ~ g(y|x)dy

(existence of a density required, but reference measure arbitrary).

Often pis used as a generic symbol of the density of the variables
indicated by its argument.
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Basics of data assimilation/filtering

Predicting the state at time t + 1 based on all observations up to time ¢
is done in two steps: First estimate the state at time t and then use the
dynamics of the state given the value at time t. For the first step,
combine prediction for time f (computed at time t — 1) with
observations at time t.

In order to quantify uncertainty, consider conditional distributions.
Filter 7] = conditional distribution of X; given Yi.; = yi.;.
Prediction 7 = conditional distribution of X; given Yi.;_1 = yq.1—1.

In data assimilation, the prediction is sometimes called the background
and the filter the analysis.

The observations yy.; are considered fixed and thus usually dropped in
the notation.
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Recursions for prediction and filter

Prediction follows from the filter one time step earlier
OB RICRCRY

Conversely, the filter can be computed from the prediction at the same
time, using Bayes’ formula and p(y:|xt, y1.t—1) = 9(¥t|xt):

77 (dx) (el x;)

f
ax;) =
mi(dxt) p(ytly1:t-1)

o< 7P (dxt)g(yi|x)

(Remember that TI'f(dXt) = 7Tf(dXt|y1:t) and Wp(dXt) = 7Tp(dX1|y1:t,1 ))
Prediction is used as the prior, it contains all the relevant information
from earlier observations yq.;_1.

These two steps are applied recursively. They are called propagation
and update.
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Monte Carlo filters

Recursions from the previous slides typically cannot be computed
analytically or numerically, except in the linear Gaussian case (Kalman
filter) or when the state space is finite (Baum-Welch).

Moreover, the transition distribution M(dx|x’) is often not in closed
form, but for given starting point x’ one can draw from it. In the case of
differential equations, this means computing the solution at time 1,
starting at x’.

Monte Carlo filters approxmate 7w and 7rt by samples or ensembles of
weighted “particles” (x"/, o/} and (x[/ o) (j=1,2,...,N). l.e. for
any (bounded) ¥ : RY — R

N

E [(X0) Y] = / S(X)P(Ax) ~ 3 H(xP)abd

j=1
and similarly for the filter.

Hans R. Kiinsch (ETH Zurich) Particle and Ensemble Kalman Filters SIAM-UQ16 14/81



Propagation and update for particles

In the propagation step, filter particles move forward according to the
dynamics of the state, independently of each other. They become the
next prediction particles. Weights do not change:

, £ J y
xPl~ M(dx|x 7)), of! =a}’,

This step often limits the size N of the ensemble.

Updating converts the prediction sample into the filter sample by

changing the weights and or the particles. The two main methods are
the Particle Filter (PF) and the Ensemble Kalman Filter (EnKF).
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Particle vs. Ensemble Kalman filter

@ PF originated in statistics (Gordon et al., 1993), EnKF in
geophysics (Evensen, 1994)

@ PF uses weighting and resampling. It works for arbitrary
observation densities g

@ PF is consistent under very weak assumptions, but degenerates
easily, in particular in high dimensions

@ EnKF moves the particles towards the observations. The
algorithm (essentially) assumes additive observation error with
constant variance

@ EnKF is consistent only if observation is a linear function of the

state plus independent Gaussian errors and if 7;;_4 is Gaussian.
However, it is extremely robust in practice
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Particle filter update: Reweighting

We consider only one step of the recursion and drop the time index t.

Sequential importance sampling sets x/ = xP/ and updates only the
weights ' . '
Odf7‘/ o apv/g(y‘xpv./)

Particles with a good fit to the new observation have a high weight.

Problem: In the iteration weights become quickly unbalanced, and
computation is wasted for extremely unlikely time evolutions. In the
end, the filter looses track.
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Particle filter update: Resampling

Basic remedy to counteract weight unbalance is resampling:
Take an unweighted filter sample containing the j-th prediction particle
xPI N times where

E[N]=Na, Y N=N
J

Particles with a poor fit to the new observation die, those with an
excellent fit have children.

Resampling creates ties among particles and reduces diversity. If the
dynamics of the state is stochastic and particles are propagated
independently, some diversity is restored, but one does not know if it
represents the true uncertainty of the next prediction. Resampling is
only a partial remedy.
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Resampling and effective sample size

Resampling also introduces an additional Monte Carlo error because
o'/ is replaced by N;/N. To reduce this, resample only if diversity of
weights is low, as measured by effective sample size ESS:

N —1

ESS = [ > (a/)?

j=1
ESS = 1 if one o)) = 1, ESS = N if all ol/) = 1/N. The definition is

based on an approximation of the asymptotic variance of weighted
samples (Liu, 1996).
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Balanced sampling

Monte Carlo error of resampling can also be reduced by balanced
sampling, meaning that |N; — Na/| < 1.

There are many balanced sampling schemes. The simplest one is
illustrated in the following figure. Steps have height Na//
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This is hard to analyze theoretically because no limit theory applies.
So-called tree sampling is an alternative.
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A single step of the particle filter
Left: Propagation (only few arrows shown).
Right: Reweighting and resampling
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A simple example of particle filtering

Blue: X; = nonlinear AR, Y; = Xt2 plus noise (not shown). Black:
Particle filter with area of circles « weight. «{ is often bimodal.
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Particle filter fails in high dimensions

In high dimensions, filter ensemble is often grossly overconfident,
because too few prediction particles survive. Analysed theoretically by
Bickel et al. (2008).

Auxiliary particle filtes is another method to reduce the loss of diversity,
see below. However, it does not resolve the problem in high
dimensions, and it requires that we can write down the transition M.
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Ensemble Kalman filter update

Based on the following standard result:

If X ~ N (1P, PP) and Y|X = x ~ N'(Hx, R) then X|Y = y ~ N (i, P")
where
pf = pP + K(y — HuP), P' = PP — KHPP

where K is the Kalman gain

K = Cov(X,Y)Cov(Y,Y) ' =PPHT(HPPHT + R)™"
= Cov(X,Z)Cov(Z,2)'R™'2, z=R"'2y

EnKF estimates 1? and PP from (xP/) and K, uf and Pf by plug-in: K
denotes estimated K etc.

Finally (xP/) is converted into a sample with mean /i and covariance
P!. There are different algorithms to achieve this.
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Perturbed observation Ensemble Kalman filter

This version is stochastic. Draw independent &/ ~ N(0, R) and set
Mean update of each particle with a perturbed observation.
Can be considered as a balanced sample from

1Y . -

N > N (xP1 4+ K(y — HxP1), KRKT)

J=1

The pairs (xP/, yPJ = HxPJ — <) are a sample of the joint prediction
distribution of (X, Y). The method regresses xP/ on yP/. The
estimated regression line applied to the actual observation y gives the
filter mean, the residuals represent the spread.
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Regression interpretation of EnKF

Left: Forward regression line y = Hx and points (xP/, yP/). Red line

indicates actual observation y. A
Right: Inverse regression line x = xP + K(y — yP).
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Square root filters

This version is deterministic. First update the mean
x" = xP + K(y — HxP)

and transform the residuals xP/ — XP linearly so that the empirical

covariance is P’. This can be achieved by pre- or post-multiplication.

Let XP be the d x N matrix with j-th column equal to x*/ — XP, and
similarly X’. Then the two possibilities are

X' =AXP, X'=XPW

Equations for A (d x d) and W (N x N) are straightforward to write
down.
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EnkF for banana-shaped prediction

Black: prediction ensemble (2-d). Observation Y ~ N (xy,0.52).

Blue: EnKF updates for two values y = +1. Left: stochastic (perturbed
observations), Right: deterministic (square-root).
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Particle filter for banana-shaped prediction

Particle filter update for the same situation.

Particle filter Particle filter
] . ]
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,:
{
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Shape and spread of true 7' depend here on y. The EnKF allows only
the mean of =/ to depend on y.
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Assumptions for the EnKF

@ The theoretical basis for the EnKF assumes a Gaussian prediction
distribution and linear Gaussian observations

@ To apply the method, fewer assumptions are needed. For the
square root filter, Y = H(X) + £ where ¢ is independent of X is
sufficient

@ The approach which regresses xP/ on yPJ can be applied for any
conditional distribution of Y|X

@ However, in these more general settings it is not clear how much
the filter sample (x') differs from a sample of the true filter
distribution

@ There are results saying that if the distributions of Y|X and X|Y
are both of the form “arbitrary mean plus independent errors”,
then the joint distribution must be Gaussian
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Data assimilation for seismicity

This is a joint project with Ylona van Dinther and Andreas Fichtner
from ETH Zurich

@ The model used is a seismo-thermal-mechanical model, applied
to a one-dimensional laboratory experiment

@ The seismo-part of the model has been developed by Ylona van
Dinther in her PhD thesis

@ So far, we use a perfect model framework, i.e. the “observations”
come from a simulation of the model, not from an experiment

@ We use the standard Ensemble Kalman Filter, there is no new
methodology for the assimilation part until now

@ | will show some slides by Ylona to give an idea of the model, the
experiment and the results
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EnKF in ensemble space

Assume N < d. The ensemble space is the (N — 1)-dimensional
hyperplane in R? spanned by the particles xP/.

If PP is the empirical covariance (N — 1)~"XP(XP)T, the filter particles

x"I of the perturbed observation EnKF and of the post-multiplication

square root filter are both in ensemble space. This is true because
A 1 .

K=P N—1X

This is a possible reason for the stability of the EnKF: The directions of
main expansion of the system are preserved during the update.

However, if N < d, the empirical covariance is not a good estimate of
the true covariance. Regularized estimates (e.g. by shrinking
off-diagonal elements) have better statistical properties, but then the
update is in general not in the ensemble space any more.
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Localization of EnKF

In many applications, d > N (e.g. in weather prediction, d ~ 108,

N < 100). Components of X and Y are typically related to locations in
space.

Update is local if each component of x'/ is only influenced by
components of y whose locations are close. Localization of updates
are essential for stability.

There are two paradigms for localization
@ Covariance tapering (“covariance filtering, background
localization”)
@ Local updates (“observation localization, localization in grid
space”)
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Observation localization

Update each component of xP/ individually, using only observations
nearby, and concatenate (glue together) these updates. This
concatenation can introduce discontinuities in the filter particles.

To keep this discontinuity small, use the same artificial noise values ¢
in the stochastic version. In the square root version choose the
multipliers A or W in a continuous way.

One can further reduce the discontinuities introduced by localization by
using some observations only partially. Assume R is diagonal. The
update which uses only the subset y,, can be computed by setting

R;;i = oo for all locations i ¢ V. To use an observation only partially,
one thus inflates R; by a factor in (1, c0).
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Background localization

In observation localization , each component of x was updated only
once, but each component of y was used several times. Here, each
component of y is used only once, but each component of x is updated
several times.

Regularize by elementwise multiplication of PP with a compactly
supported correlation function C (tapering). This sets correlations at
large distance to zero. If also H is local, updating with one component
of y then affects only a few components of x.

If R is diagonal, we can update serially, using one component of y
after the other. However, after each update P? should be replaced by
Pf which has a larger range of correlations, destroying locality
eventually. To preserve locality, need to neglect this increase in the
range of correlations, e.g. by using always the same taper C.
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Covariance inflation

So far we have assumed that there is no error in the propagation step.
In practice, this is not the case: The model for state evolution usually is
a simplification and there are errors in the numerical solution of
differential equations.

The simplest solution is covariance inflation: Increase the spread of
the prediction ensemble by a factor § > 1:

Inflation factor 6 may be spatially varying (a different factor for each
coordinate) and is often chosen adaptively. Ideally, covariance inflation
should ensure that the filter is correctly calibrated, i.e., in the long run
the observations should behave as if taken from the prediction or
updated ensemble.
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Bridging the Particle and the Ensemble Kalman filter

With localization, EnKF works surprisingly well in many real large scale
applications. For instance, a localized squared root version called
Local Ensemble Transform Kalman filter (LETKF) is the state of the art
in weather prediction.

Can we explain this success by some theory? Can we improve the
ability of the EnKF to deal with non-Gaussian features in 7 without
loosing the stability?

In the following | discuss the EnKPF (Frei and K., 2013). It adresses
the second question by progressive update

EnKF

7P(dx) 25 777 (dx) oc 7P(ax)g(y|X)T — 7 (dx) oc 7 (dx)g(y|x) 7.

Interpolates continuously between PF (v = 0) and EnKF (y = 1).

There are many other proposals to combine PF and EnKF.
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Implementing the EnKPF

Both steps of the EnKPF can be done exactly. The first step gives the
Gaussian mixture:

N
Z (xP1 + KV (y — HxP'), KYR(K")T)

Z \

where K7 = Kalman gain with vPP. The second step gives a another
Gaussian mixture:

N
af = Za%//\/(’uw” P
j=1
from which we sample.

In order to capture non-Gaussian features of the prediction sample
(xP7), choose ~ as small as possible while keeping a minimal amount
of diversity (measured e.g. by ESS of (a7/)).
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lllustration of EnKPF
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Single update for bimodal prior |

Left: EnKF, Right: EnKPF, diversity ~ 40%.
Dots: Prior sample, Dotted: Contours of underlying filter density.
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Single update for bimodal prior Il

As before, but with observation leading to a bimodal posterior.
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The EnKPF in ensemble space
The j-th particle in the EnKPF is

where /(1),..., I(N) are the resampling indices and 1"/ ~ A/(0, P).

By the same argument as for the EnKF, one can see that x"/ is in
ensemble space if PP is the empirical covariance:

@ 1" is the result of two EnKF updates
@ Resampling just deletes some of these points

@ 1"/ can be generated by adding two independent A/ (0, R)
variables, multiplied by two Kalman gains

A natural question is whether there is a square root version of the
EnKPF, i.e. an update of the form

X — 10 4 Py

This leads to a Ricatti equation for W (Robert and K., 2016).
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Localizing the EnKPF

Resampling does not lend itself to localization, unless the resampling
probabilities are global.

If we use observation localization, resampling probabilities change
continuously from one location to the next. Resampling then
occasionally leads to concatenating updates that come from two
different prediction particles which can lead to large discontinuities.

With background localization, we can concatenate updates in two
separated regions such that second moments are still correct. Details
in Robert and K. (2016)
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The modified shallow water equation

This is a one-dimensional model resembling cumulus convection,
proposed by Wirsch and Craig (2014). It has three variables, the
height of the cloud, the velocity and rain water. The first two obey a
shallow water equation with a modified geopotential and there is a
conservation equation for rain water. Clouds with moist air raise, and if
a certain height is reached, rain starts and the cloud slowly
disappears. Random perturbation of the velocity are added which
produce new clouds. Height is unobserved, and wind is only observed
where there is rain.

In a cooperation with MeteoSwiss and the German Weather Service,
Sylvain Robert and | are currently testing a localized EnKPF in a high
resolution numerical weather prediction model (COSMO 2). This is a
particular challenge since the complexity of the code limits the
methods we can use for filtering. Results are not yet available.
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A modified shallow water equation
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A solution of the equation at a fixed Rain component of ensemble

time with observations in red. members at the same time. Top:
localized EnKF, Middle and Bottom:
2 versions of localized EnKPF.
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Filter iterations

Filter after 10 minutes

1.0+

Location [km]

K<<l I> ] =]+

Hans R. Kiinsch (ETH Zurich) icle and Ensemble Kalman Filters



Calibration and sharpness of filters

Continuous ranked probability score (CRPS) for 3 ensembile filters in a
simulation with many iterations.

water level [m]

rain [mm]|

wind [m/s]

125+

50 -
& & & R & & <&
> > & §
S ¥ & Gl ¥ s s
. Y g W N N
& & & & & R
\% 9 » Qo N R
< > < ¥ < >
method

Hans R. Kiinsch (ETH Zurich)

Particle and Ensemble Kalman Filters

SIAM-UQ16 50/81



ﬂ Introduction

9 Basics about State Space Models and Filtering
9 Particle filters Part |

0 Ensemble Kalman filters

e The Ensemble Kalman Particle Filter

@ Particle Filters, Additional Topics
@ Auxiliary particle filter
@ Particle smoothing
@ General sequential Monte Carlo

e Parameter estimation

Hans R. Kiinsch (ETH Zurich) Particle and Ensemble Kalman Filters SIAM-UQ16

51/81



Further conditional distributions

In the following we need .1, = conditional distribution of X given
Yi.y = ¥1.4. Compared with previous notation «f = my;_¢ and ] = my;.

By Bayes’ formula
t
mo.4t(AXo:¢) o< Mo(dxo) HM dxs|Xs—1)9(¥s|Xs)
s=1

or in recursive form
7o:t/¢(AX0:t) o o.¢—1)t—1 (AXo.t—1)M(AXe| X¢—1)g(Vt|xt)
This is essentially the same recursion as for w{, except that we have an

extension instead of propagation.

All other .4, follow in principle by marginalization. In one of the
subsections, we will see more efficient ways to compute e.g. the
so-called smoothing distribution 7y 7.
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Auxiliary particle filter

This is an idea by Pitt and Shephard (1999) to improve the balance of
weights. The new observation y; is already taken into account in the
propagation step to generate particles with better fit to y;.

The state transition M must be known. For simplicity | assume here
that it has a density denoted by m. Then also all 75, have a density.

In the auxiliary particle filter, filter particles (x,” 1) by a transition Q with
density g which can (and should) depend on y;. Assume for simplicity

that weights o/ = 1.
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Weights for propagated particles

If we want the propagated particles (x,f J ) to approximate 7r{ , we must
weight them by
_ mi(x”)
[t (g |x)dx
gWelx”) [y (x)m(x{7|x")ax’
Sl (x)a(x x")ax

f?j
@

Because of the integrals, these weights cannot be computed.

If we replace the integrals by averages using (xtf’_j1 ), computation is
possible, but with complexity O(N?).
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Pairs of particles

A better solution considers the pairs of particles (x, t 1,xt /1) which have
the density

w4 (%1) (e X -1)-

If we want them to approximate 7;_4.¢, the conditional distribution of
Xi_1.¢ given yy.;, we must use the weights

fiif fj

o O(m(Xt/|Xt_j1)g(yt|Xt/)

t-1:t 7 ofi
Q(th’th1)

In particular the weighted sample (xt ,at’j1 ;) approximates then wt,
but the weights now depend on both x/, and x/”.

This idea of considering the distribution of interest as the marginal of
some distribution on a product space which is easier to sample plays
an important role in modern Monte Carlo.
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Choice of the propagation g
One can show that the choice of g which minimizes the variance of the
weights is the conditional distribution of X; given (x;_1, yt), i.e

m(x|xt—1)9(yt|x)
P(ytlXt—1)

pUilx1) = / m(x|x_1)g(yilx)dix

Q(X|}/I7Xt—1) =

Then the weights depend only on xtf’_j1 :

O‘t’j1 4 X p(yt|xtf7_j1)
One can then gain diversity by weighting and resampling the particles
(X2 1) before instead of after propagation.

In the standard particle filter, the weights are proportional to the
likelihood of x; given y; whereas now they are proportional to the
likelihood of x;_4. Because this time delay looses information, the
weights are more equal, but in general the gain is not huge.
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Approximating the ideal transition

The ideal choice for q and the likelihood p(y;|x;_1) which is needed for
the weights are usually not available explicitely. Often we can use a
Gaussian approximation

log m(x¢|x;—1) + log g(yt|xt)
1
~  c(Xi—1, ¥t) + b(Xt—1, yt) Xt + EX;A(Xt—h}/t)Xt,

obtained by using e.g. a Taylor approximation around
argmaxy m(x|x;—1)g(y:|x).

Hans R. Kiinsch (ETH Zurich) Particle and Ensemble Kalman Filters SIAM-UQ16 57 /81



The auxiliary particle filter algorithm

The idea of weighting and resampling the particles before propagation
can be used in general. Hence we choose a weight function w and a
transition density g which depend also on y;.

Given the weighted filter sample (x t 1,ozt 1) attime t — 1, the
algorithm does the following
o Resample (x/”,) with probabilities proportional to w(x/”, )al’..
Let the j-th resampled particle be xtf _’10)
@ Propagate resampled particles with transition g:
xtf’j ~ q(x|x{’_’§j))dx, independently for different indices j.
@ Compute new weights

f/(,)

f P
fj (yt‘xt ym (Xt/|X
o’ o
£,10) )

t
wix e 1907 1x
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Overview of smoothing methods

Smoothing is concerned with conditional distributions of past state
values. | will discuss the following methods

@ Smoothing by filtering of paths
@ Forward filtering, backward smoothing
@ Applications of the two-filter formula
@ Ensemble Kalman smoothers
All methods require the storage of past filter samples.
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Smoothing by filtering of paths

We can implement the recursion

To:tt—1(AXo:t) = M(dxe|X¢—1)m0:0—1)1—1(AX0:t-1)
moqt(AX0:t) o To.ge—1(Ax0:t) X gVl Xt)-

by a particle filter that generates samples of paths (x} o: t“) Attach the
propagated particle to the current path
= (% X

J
X0:t)t—1 0:t—1)t—1°

and resample (x!. 11_1) With probabilities o< g( yi|xPy.

Then (xé“) degenerates quickly to a single value for any fixed s since
this component is not rejuvenated. So this method is useless for
uncertainty quantification, but it still can generate a reasonable path

from mo.4s.
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Particle filter for 7.4;

Nonlinear AR-model for X;, Y; = th plus noise.
Black: Filter samples. Red: True state.
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Forward filtering, backward smoothing

Assume state transition M(dx;|x;_1) has a density m(x;|x;_1). Under

To:ttr (Xt Xt—1, ..., Xo) is Markov chain with backward transition
densities

P(Xs|Xst1, Y1:t) = P(Xs|Xs11, Y1:5) o< M(Xst1 ’XS)W;(XS)

Hence we can generate recursively an approximate sample from .
by weighting and resampling the particle filter approximation of

m( s+1\t|X “)

]P’( )
N fe
> g M( s+1|1|xs )

= x¢|x

s|t +1|t) =

For different values of xs L1)e We have different resampling probabilities,

so a naive implementation has complexity O(N?). Moreover, many ties
occur if spread of mg; is much lower than spread of mgs.

Hans R. Kiinsch (ETH Zurich) Particle and Ensemble Kalman Filters SIAM-UQ16 62 /81



Smoothing by accept/reject

For an absolutely continuous approximation of p(xs|Xs.1, Y1:t), we go
back to the filter sample at time s — 1, using

N

7Té(xs ) o< 9(¥sxs) Zm Xs|
k=1

Then we draw x st from

N
p(xs|x. +1|p}’1 :t) o m( s+1|t|Xs 9(¥s|Xs) Zm Xs|
k=1

Since we need only one draw from this distribution, we have to use the
accept/reject method instead of importance sampling.
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Smoothing using the two filter formula

Another approach is based on the formula
Ts|t(Xs) o 75 (Xs)P(Vs:t] Xs).-
The second factor is unknown, but it satisfies the recursion

P(Ys:tlxs) = g(Vs|Xs)P(Vsr1:tlXs)
P(Vst1:t|Xs) = /p(}’s+1:t|xs+1)m(xs+1|Xs)dxs+1

This has the same structure as the filter relations, except that p(ys.¢|Xs)

is not a probability density in xs (hence there is no normalization in the
update step).
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Monte Carlo approximation of p(ys:.t|Xs)

If | p(¥s:t|Xs)dxs < oo, weighted particles (xs,o/ ) can be constructed
recursively (starting at s = t and going backward) such that

N

[ o0ptslxd ~ >~ v,

=1

for bounded ¢ : RY — R. For the general case, need to introduce an
additional weight function.

Then we obtain an approximation of w5, by the density proportional to

N N
Z m( Xs, 9(¥s|xs) Z m()?é-ﬂ ’XS)5/S+1
=1 j=1

Al ~P(Ys+1:t|Xs)
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O(N) smoothing algorithms

The density on the previous slide is a mixture of N? components. The
same ideas as in auxiliary particle filter can be used to sample from it.
Algorithms that have a low variance of weights have however typically
complexity O(N?). The same is true for the accept/reject method
before.

Suggestions for an efficient O(N) algorithm are in Fearnhead et al.
(2010).
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Smoothing by EnKF

We can also apply the EnKF to the whole path xp.;. We set
Xp.1-1 = (Xg._1_1» Xt ’) and then apply the updates

Xélt = Xélt—1 + Kt(ye + ¢4 — Hx{“_1)
fors=1t,t—1,... where Ky is an estimate of
Cov(Xs, Yi|y1.t-1)Cov( Yy, Yilyr.—1) ™

Alternatively, one can use an ensemble implementation of the
forward/backward method for linear Gaussian state space models. It is

0 8y~ xPTO)

J
X s+1

s|t +1t

where 7 is a permutation of the indices and S‘S is an estimate of
Cov(Xs, Xsi11y1:)(P5, 1)~ 1. (Cosme et al., 2012; Frei, 2013).
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Sequential Monte Carlo: Sampling from moving targets

Particle filter ideas can also be used in other problems where one
wants to sample from a sequence of related distributions =,
t=0,1,...,n.

An important class of such problems occurs if one approximates a
difficult target distribution 7 by a sequence of simpler approximating

distributions 7g, 71, ..., ™ = 7, €.9. by simulated tempering
dr Bt
me(dx) o <d7r0(x)> mo(dx) (0=Bg<B1<...<Bpn=1).

To simplify the notation, assume that all 7; have densities which are
known up to a normalizing constant.
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Sequential sampling

Generalizing the particle filter, we want to approximate 7; by a
sequence of particles (x/) which evolve by propagation and
resampling.

If in the propagation step x! ~ q:(x¢|x_,)dx: (independently for
different j's), then resampling must be with probabilities
o o (X))
t

[ 1 (1) e %) X1

But typically, the integral in the denominator cannot be computed
analytically. One exception is when g; leaves 7;_1 invariant, e.g. a
Metropolis-Hastings transition. But then we move from m;_4 to 7; only
by weighting and resampling. Propagation just does some
rejuvenation by breaking ties from the previous resampling step.
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Resampling pairs of particles

As in the auxiliary particle filter, we consider the pairs (X{—1 , x{) which
have density

1 (Xe—1) Qe(Xe| Xt—1)

and convert them by weighting and resampling to have a distribution
with second marginal ;.

Densities with second marginal 7; have the form

me(Xe)rt—1 (Xe—11xt)
where r;_ is an arbitrary “backward” transition density. Resampling of
(x]) is done with probabilities
m(xr 1 (x_ X))

me1(X_1)aqr(x{1xi_y)

ol
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Choice of the transitions

We are free to choose forward and backward transitions g; and r;_4.

For given gy, the variance of («4}) is minimal if
-1 (Xt—1) Ge (Xt Xe—1)
1 (Xe—1|xt) = ,
G0 = e e ok

bringing us back to the problem at the start. Still, one can approximate
the optimal choice by something which does not involve an integral.

E.g. approximating log 7;_1(Xx;_1) + log g¢(x:|x;_1) by a quadratic
expression in x;_1, will lead to a Gaussian backward density.
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The case of the particle filter

In the particle filter m; = w[, and we do not have an explicit expression
up to a normalizing constant. But if we choose r;_1 implicitly by

Te(Xe)rt-1 (Xe—1[Xt) = Te_1.4e(Xe—1, Xt)
oc 1 (Xe—1)P(Xt| Xt—1)9 (Ve[ Xt)

the resampling probabilities can be computed because the unknown
mi_1 cancels.
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Parameter estimation

We discuss the estimation of static parameters 6 that are present in
the state transition M and/or the observation density g.

In the Bayesian framework we put a prior pg on § and want to
approximately sample from the posterior

p(0]y1.7) o< po(8)p(y1.716)

For filtering or prediction, we need to take the uncertainty about 6 into
account

= /p(Xt|Y1:r,9)P(9\Y1:t)d9: /p(xt,9|y1;1)d9

and similarly for wf. Typically, one tries to sample jointly the state and
the parameter.
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Parameters included in the state: PF

The easiest method is to include 6 as a deterministic component of the
state: 05/ ~ py(6)d6 and
J_ ofi J fj ofi
07 =0y, x¢! ~ M(ax|x’y,0,7)
The particle filter degenerates quickly because there is no rejuvenation
of the #-component. One can avoid this by adding noise to 0;’1,
preferably combined with shrinkage to the mean. But variance of the

noise must go to zero in order that (Of’j) approximates the posterior
p(6]y1:t)-
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Parameters included in the state: EnKF

For parameters 6 in the transition kernel M, the EnKF obtains
information about ¢ through correlations of # and the state in the
prediction distribution. This can be weak compared to information in
the likelihood.

For measurement equations of the form y = H(x, ) + N (0, R) with
known R, information is obtained through correlations of § with H(x, 6).

When the error covariance R depends on 6, a modification of the EnKF
is needed (Frei and K., 2013).
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MCMC for state space models

The standard Metropolis-Hastings algorithm to sample from the
posterior p(8|y1.7) runs as follows: Given the current value 6, propose
a new value

0 ~ q(0'10)do’
and accept it with probability

P po(0)p(y1.716")q(0)6")
a(6.67) = min (1’ 20(0)p0n110)q(]6) >

Otherwise keep the current value 6.

As the number of iterations goes to infinity, the values obtained in this
way are approximately distributed according to the posterior, under
weak conditions on the proposal density q.

However, the likelihood p(y4.7]¢’) is not tractable and thus the
acceptance probability cannot be computed
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Particle MCMC

The likelihood ;

p(yr.710) = T p(vielya:i—1,6)
t=1
is not available, but it can be estimated by running a patrticle filter with
parameter 6 and computing the average of the weights.

A basic result shows that this estimate is unbiased for every fixed y;.r1
Note: Contrary to some claims, the estimate of each factor is not
unbiased in general.

Andrieu & Roberts (2009), Andrieu et al. (2010) have shown that if one
replaces the likelihood p(y;.7|0) by an unbiased non-negative estimate
p(ys.7]6) in the formula for the acceptance probability, the algorithm
still produces samples from the posterior when the number of
iterations tends to infinity. The variance of the estimate p(y1.7|0) does
not have to go to zero, the number of particles is fixed and arbitrary.
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Unbiased estimates for the likelihood are sufficient

Write p(y1.710) = p(y4.7/6, U) where U are the random variables used
to generate the likelihood estimates. W.l.o.g., assume U ~ p(u)du,
independent of . Then

/ plyi.716, u)p(u)du = p(y1.7/0)

Therefore the joint density
po(0)p(y1.716, u)p(u)
p(y1.7)

has marginal p(6|y;.7). It suffices to sample from this density and to
keep only the component 6.

Metropolis Hastings with proposal (¢', U') ~ q(¢’'|6)d¢’p(u')du’ gives
the acceptance probability

(L p @Byl 1))
a(6.6') = min <1’ Po(@)B(y1.716, 1)q(#719) )
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Tuning particle MCMC

Particle MCMC is computer-intensive because each time a new value
0’ is proposed, we need to run a new particle filter.

For implementation, one has to choose the number N of particles and
the proposal q for 6. The latter is usually taken as a Gaussian random
walk with some variance ¥. N determines the computational cost and
N and X together the mixing of the chain and thus the accuracy of the
approximation of the posterior.

Some analysis is possible if one assumes that log p(y;.7/0) is normal
with mean log p(y;.7]0) — 02/(2N) and variance /N (the bias of log
likelihood makes the likelihood unbiased) and that the asymptotic
variance o is independent of 6.

For details, see recent work of Doucet et al. (2015), Sherlock et al.
(2015), Nemeth et al. (2016).
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Summary and Conclusion

@ State space models provide a unified framework for state
prediction and filtering in complex systems.

@ In many applications, the only way to approximate prediction and
filtering distributions is by Monte Carlo.

@ Monte Carlo methods iterate between propagation and updating.
The update step is more difficult, with particle filter and ensemble
Kalman filter as the two basic methods.

@ Particle filter is more general, but degenerates quickly in high
dimensions.

@ Ensemble Kalman filter works well also in high dimensions, but we
do not understand the reasons for this.

@ Estimation of static parameters and improving the ensemble
Kalman filter in high dimensions are the main challenges.

Thank you for your attention!
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