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Objectives

In presenting the multilevel Monte Carlo method, I hope to emphasise:

the simplicity of the idea

its flexibility – it’s not prescriptive, more an approach

there are lots of people working on a variety of applications

In doing this, I will focus on ideas rather than lots of numerical results.
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Monte Carlo method

In stochastic models, we often have

ω −→ S −→ P

random input intermediate variables scalar output

The Monte Carlo estimate for E[P ] is an average of N independent
samples ω(n):

Y = N−1
N∑

n=1

P(ω(n)).

This is unbiased, E[Y ]=E[P ], and the Central Limit Theorem proves that
as N → ∞ the error becomes Normally distributed with variance N−1

V[P ].
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Monte Carlo method

In many cases, this is modified to

ω −→ Ŝ −→ P̂

random input intermediate variables scalar output

where Ŝ , P̂ are approximations to S ,P , in which case the MC estimate

Ŷ = N−1
N∑

n=1

P̂(ω(n))

is biased, and the Mean Square Error is

E[ (Ŷ −E[P ])2] = N−1
V[P̂] +

(
E[P̂]− E[P ]

)2

Greater accuracy requires larger N and smaller weak error E[P̂ ]−E[P ].
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SDE Path Simulation

My interest was in SDEs (stochastic differential equations) for finance,
which in a simple one-dimensional case has the form

dSt = a(St , t) dt + b(St , t)dWt

Here dWt is the increment of a Brownian motion – Normally distributed
with variance dt.

This is usually approximated by the simple Euler-Maruyama method

Ŝtn+1 = Ŝtn + a(Ŝtn , tn) h + b(Ŝtn , tn)∆Wn

with uniform timestep h, and increments ∆Wn with variance h.

In simple applications, the output of interest is a function of the final value:

P̂ ≡ f (ŜT )

Mike Giles (Oxford) Multilevel Monte Carlo 5 / 39



SDE Path Simulation

Geometric Brownian Motion: dSt = r St dt + σ St dWt

t
0 0.5 1 1.5 2

S

0.5

1

1.5

coarse path
fine path

Mike Giles (Oxford) Multilevel Monte Carlo 6 / 39



SDE Path Simulation

Two kinds of discretisation error:

Weak error:
E[P̂ ]− E[P ] = O(h)

Strong error: (
E

[
sup
[0,T ]

(
Ŝt−St

)2
])1/2

= O(h1/2)

For reasons which will become clear, I prefer to use the Milstein
discretisation for which the weak and strong errors are both O(h).
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SDE Path Simulation

The Mean Square Error is

N−1
V[P̂] +

(
E[P̂ ]− E[P ]

)2
≈ a N−1 + b h2

If we want this to be ε2, then we need

N = O(ε−2), h = O(ε)

so the total computational cost is O(ε−3).

To improve this cost we need to

reduce N – variance reduction or Quasi-Monte Carlo methods

reduce the cost of each path (on average) – MLMC

Mike Giles (Oxford) Multilevel Monte Carlo 8 / 39



Two-level Monte Carlo

If we want to estimate E[P̂1] but it is much cheaper to simulate P̂0 ≈ P̂1,
then since

E[P̂1] = E[P̂0] + E[P̂1−P̂0]

we can use the estimator

N−1
0

N0∑

n=1

P̂
(0,n)
0 + N−1

1

N1∑

n=1

(
P̂
(1,n)
1 − P̂

(1,n)
0

)

Benefit: if P̂1−P̂0 is small, its variance will be small, so won’t need many
samples to accurately estimate E[P̂1−P̂0], so cost will be reduced greatly.
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Multilevel Monte Carlo

Natural generalisation: given a sequence P̂0, P̂1, . . . , P̂L

E[P̂L] = E[P̂0] +

L∑

ℓ=1

E[P̂ℓ−P̂ℓ−1]

we can use the estimator

N−1
0

N0∑

n=1

P̂
(0,n)
0 +

L∑

ℓ=1

{
N−1
ℓ

Nℓ∑

n=1

(
P̂
(ℓ,n)
ℓ − P̂

(ℓ,n)
ℓ−1

)}

with independent estimation for each level of correction
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Multilevel Monte Carlo

If we define

C0,V0 to be cost and variance of P̂0

Cℓ,Vℓ to be cost and variance of P̂ℓ−P̂ℓ−1

then the total cost is
L∑

ℓ=0

Nℓ Cℓ and the variance is
L∑

ℓ=0

N−1
ℓ Vℓ.

Using a Lagrange multiplier µ2 to minimise the cost for a fixed variance

∂

∂Nℓ

L∑

k=0

(
Nk Ck + µ2N−1

k
Vk

)
= 0

gives
Nℓ = µ

√
Vℓ/Cℓ =⇒ Nℓ Cℓ = µ

√
Vℓ Cℓ
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Multilevel Monte Carlo

Setting the total variance equal to ε2 gives

µ = ε−2

(
L∑

ℓ=0

√
Vℓ Cℓ

)

and hence, the total cost is

L∑

ℓ=0

Nℓ Cℓ = ε−2

(
L∑

ℓ=0

√
VℓCℓ

)2

in contrast to the standard cost which is approximately ε−2 V0 CL.

The MLMC cost savings are therefore approximately:

VL/V0, if
√
VℓCℓ increases with level

C0/CL, if
√
VℓCℓ decreases with level
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Multilevel Path Simulation
With SDEs, level ℓ corresponds to approximation using Mℓ timesteps,
giving approximate payoff P̂ℓ at cost Cℓ = O(h−1

ℓ ).

Simplest estimator for E[P̂ℓ−P̂ℓ−1] for ℓ>0 is

Ŷℓ = N−1
ℓ

Nℓ∑

n=1

(
P̂
(n)
ℓ −P̂

(n)
ℓ−1

)

using same driving Brownian path for both levels.

Analysis gives MSE =

L∑

ℓ=0

N−1
ℓ Vℓ +

(
E[P̂L]−E[P ]

)2

To make RMS error less than ε

choose Nℓ ∝
√

Vℓ/Cℓ so total variance is less than 1
2 ε

2

choose L so that
(
E[P̂L]−E[P ]

)2
< 1

2 ε
2
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Multilevel Path Simulation

For Lipschitz payoff functions P ≡ f (ST ), we have

Vℓ ≡ V

[
P̂ℓ−P̂ℓ−1

]
≤ E

[
(P̂ℓ−P̂ℓ−1)

2
]

≤ K 2
E

[
(ŜT ,ℓ−ŜT ,ℓ−1)

2
]

=

{
O(hℓ), Euler-Maruyama

O(h2ℓ ), Milstein

and hence

Vℓ Cℓ =

{
O(1), Euler-Maruyama

O(hℓ), Milstein
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MLMC Theorem

(Slight generalisation of version in 2008 Operations Research paper)

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo samples,
each costing Cℓ, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂ℓ−P ]

∣∣∣ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =





E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≤ c2 N
−1
ℓ 2−β ℓ

iv) E[Cℓ] ≤ c3 2
γ ℓ
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and Nℓ for which the multilevel estimator

Ŷ =

L∑

ℓ=0

Ŷℓ,

has a mean-square-error with bound E

[(
Ŷ − E[P ]

)2]
< ε2

with an expected computational cost C with bound

C ≤





c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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MLMC Theorem

Two observations of optimality:

MC simulation needs O(ε−2) samples to achieve RMS accuracy ε.
When β > γ, the cost is optimal — O(1) cost per sample on average.

(Would need multilevel QMC to further reduce costs)

When β < γ, another interesting case is when β = 2α, which

corresponds to E[Ŷℓ] and
√

E[Ŷ 2
ℓ ] being of the same order as ℓ → ∞.

In this case, the total cost is O(ε−γ/α), which is the cost of a single
sample on the finest level — again optimal.
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MLMC generalisation

The theorem is for scalar outputs P , but it can be generalised to
multi-dimensional (or infinite-dimensional) outputs with

i)
∥∥∥E[P̂ℓ−P ]

∥∥∥ ≤ c1 2
−α ℓ

ii) E[Ŷℓ] =





E[P̂0], ℓ = 0

E[P̂ℓ−P̂ℓ−1], ℓ > 0

iii) V[Ŷℓ] ≡ E

[∥∥∥Ŷℓ − E[Ŷℓ]
∥∥∥
2
]
≤ c2 N

−1
ℓ 2−β ℓ

Original multilevel research by Heinrich in 1999 did this for parametric
integration, estimating g(λ) ≡ E[f (x , λ)] for a finite-dimensional r.v. x .
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MLMC work on SDEs

Milstein discretisation for path-dependent options – G (2008)

numerical analysis – G, Higham, Mao (2009), Avikainen (2009),
G, Debrabant, Rößler (2012)

financial sensitivities (“Greeks”) – Burgos (2011)

jump-diffusion models – Xia (2011)

Lévy processes – Dereich (2010), Marxen (2010), Dereich &
Heidenreich (2011), Xia (2013), Kyprianou (2014)

American options – Belomestny & Schoenmakers (2011)

Milstein in higher dimensions without Lévy areas – G, Szpruch (2014)

adaptive timesteps – Hoel, von Schwerin, Szepessy, Tempone (2012),
G, Lester, Whittle (2014)
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SPDEs

quite natural application, with better cost savings than SDEs
due to higher dimensionality

range of applications
◮ Graubner & Ritter (Darmstadt) – parabolic
◮ G, Reisinger (Oxford) – parabolic
◮ Cliffe, G, Scheichl, Teckentrup (Bath/Nottingham) – elliptic
◮ Barth, Jenny, Lang, Meyer, Mishra, Müller, Schwab, Sukys, Zollinger

(ETH Zürich) – elliptic, parabolic, hyperbolic
◮ Harbrecht, Peters (Basel) – elliptic
◮ Efendiev (Texas A&M) – numerical homogenization
◮ Vidal-Codina, G, Peraire (MIT) – reduced basis approximation
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Engineering Uncertainty Quantification

Simplest possible example:

3D elliptic PDE, with uncertain boundary data

grid spacing proportional to 2−ℓ on level ℓ

cost is O(2+3ℓ), if using an efficient multigrid solver

2nd order accuracy means that

P̂ℓ(ω)− P(ω) ≈ c(ω) 2−2ℓ

=⇒ P̂ℓ−1(ω)− P̂ℓ(ω) ≈ 3 c(ω) 2−2ℓ

hence, α=2, β=4, γ=3

cost is O(ε−2) to obtain ε RMS accuracy

this compares to O(ε−3/2) cost for one sample on finest level,
so O(ε−7/2) for standard Monte Carlo
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PDEs with Uncertainty

I worked with Rob Scheichl (Bath) and Andrew Cliffe (Nottingham)
on multilevel Monte Carlo for the modelling of oil reservoirs and
groundwater contamination in nuclear waste repositories.

Here we have an elliptic SPDE coming from Darcy’s law:

∇·
(
κ(x)∇p

)
= 0

where the permeability κ(x) is uncertain, and log κ(x) is often modelled as
being Normally distributed with a spatial covariance such as

cov(log κ(x1), log κ(x2)) = σ2 exp(−‖x1−x2‖/λ)
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Elliptic SPDE

A typical realisation of κ for λ = 0.01, σ = 1.
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Elliptic SPDE

Samples of log k are provided by a Karhunen-Loève expansion:

log k(x, ω) =

∞∑

n=0

√
θn ξn(ω) fn(x),

where θn, fn are eigenvalues / eigenfunctions of the correlation function:

∫
R(x, y) fn(y) dy = θn fn(x)

and ξn(ω) are standard Normal random variables.

Numerical experiments truncate the expansion.

(Latest 2D/3D work uses a more efficient FFT construction based on a
circulant embedding.)
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Elliptic SPDE

Decay of 1D eigenvalues
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When λ = 1, can use a low-dimensional polynomial chaos approach,
but it’s impractical for smaller λ.
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Elliptic SPDE

Discretisation:

cell-centred finite volume discretisation on a uniform grid – for rough
coefficients we need to make grid spacing very small on finest grid

each level of refinement has twice as many grid points in each
direction

early numerical experiments used a direct solver for simplicity,
but later work in 3D uses an efficient AMG multigrid solver with
a cost roughly proportional to the total number of grid points

later work also considers other finite element discretisations
– doesn’t make any substantial difference to MLMC treatment
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2D Results

Boundary conditions for unit square [0, 1]2:
– fixed pressure: p(0, x2)=1, p(1, x2)=0
– Neumann b.c.: ∂p/∂x2(x1, 0)=∂p/∂x2(x1, 1)=0

Output quantity – mass flux: −
∫

k
∂p

∂x1
dx2

Correlation length: λ = 0.2

Coarsest grid: h = 1/8 (comparable to λ)

Finest grid: h = 1/128

Karhunen-Loève truncation: mKL = 4000

Cost taken to be proportional to number of nodes
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2D Results
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V[P̂ℓ−P̂ℓ−1] ∼ h2ℓ E[P̂ℓ−P̂ℓ−1] ∼ h2ℓ
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2D Results
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Complexity analysis

Relating things back to the MLMC theorem:

E[P̂ℓ−P ] ∼ 2−2ℓ =⇒ α = 2

Vℓ ∼ 2−2ℓ =⇒ β = 2

Cℓ ∼ 2dℓ =⇒ γ = d (dimension of PDE)

To achieve r.m.s. accuracy ε requires finest level grid spacing h ∼ ε1/2

and hence we get the following complexity:

dim MC MLMC

1 ε−2.5 ε−2

2 ε−3 ε−2(log ε)2

3 ε−3.5 ε−2.5
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Non-geometric multilevel

Almost all applications of multilevel in the literature so far use a geometric
sequence of levels, refining the timestep (or the spatial discretisation for
PDEs) by a constant factor when going from level ℓ to level ℓ+ 1.

Coming from a multigrid background, this is very natural, but it is NOT
a requirement of the multilevel Monte Carlo approach.

All MLMC needs is a sequence of levels with

increasing accuracy

increasing cost

increasingly small difference between outputs on successive levels
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Reduced Basis PDE approximation
Vidal-Codina, Nguyen, G, Peraire (2014) take a fine FE discretisation:

A(ω) u = f (ω)

and use a reduced basis approximation

u ≈
K∑

k=1

vkuk

to obtain a low-dimensional reduced system

Ar (ω) v = fr (ω)

larger K =⇒ greater accuracy at greater cost

in multilevel treatment, Kℓ varies with level

brute force optimisation determines the optimal number of levels,
and reduced basis size on each level
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Other MLMC applications

parametric integration, integral equations (Heinrich)

multilevel QMC (Dick, G, Kuo, Scheichl, Schwab, Sloan)

stochastic chemical reactions (Anderson & Higham, Tempone)

mixed precision computation on FPGAs (Korn, Ritter, Wehn)

MLMC for MCMC (Scheichl, Schwab, Stuart, Teckentrup)

Coulomb collisions in plasma (Caflisch)

nested simulation (Haji-Ali & Tempone, Hambly & Reisinger)

invariant distribution of contractive Markov process (Glynn & Rhee)

invariant distribution of contractive SDEs (G, Lester & Whittle)
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Three MLMC extensions

unbiased estimation – Rhee & Glynn (2015)
◮ randomly selects the level for each sample
◮ no bias, and finite expected cost and variance if β > γ

Richardson-Romberg extrapolation – Lemaire & Pagès (2013)
◮ reduces the weak error, and hence the number of levels required
◮ particularly helpful when β < γ

Multi-Index Monte Carlo – Haji-Ali, Nobile, Tempone (2015)
◮ important extension to MLMC approach, combining MLMC with

sparse grid methods
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Multi-Index Monte Carlo

Standard “1D” MLMC truncates the telescoping sum

E[P ] =
∞∑

ℓ=0

E[∆P̂ℓ]

where ∆P̂ℓ ≡ P̂ℓ − P̂ℓ−1, with P̂−1≡0.

In “2D”, MIMC truncates the telescoping sum

E[P ] =

∞∑

ℓ1=0

∞∑

ℓ2=0

E[∆P̂ℓ1,ℓ2 ]

where ∆P̂ℓ1,ℓ2 ≡ (P̂ℓ1,ℓ2 − P̂ℓ1−1,ℓ2)− (P̂ℓ1,ℓ2−1 − P̂ℓ1−1,ℓ2−1)

Different aspects of the discretisation vary in each “dimension” – for a 2D
PDE, could use grid spacing 2−ℓ1 in direction 1, 2−ℓ2 in direction 2
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Multi-Index Monte Carlo

✲

✻

ℓ1

ℓ2

❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅❅

❡ ❡

❡ ❡

four evaluations for
cross-difference ∆P(3,2)

r r r r r r

r r r r r

r r r r

r r r

r r

r

MIMC truncates the summation in a way which minimises the cost to
achieve a target MSE – quite similar to sparse grids.

Can achieve O(ε−2) complexity for a wider range of SPDE and other
applications than plain MLMC.
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Conclusions

multilevel idea is very simple; key question is how to apply it in
new situations, and perform the numerical analysis

discontinuous output functions can cause problems, but there is
a lot of experience now in coping with this

there are also “tricks” which can be used in situations with poor
strong convergence

being used for an increasingly wide range of applications;
biggest computational savings when coarsest (reasonable)
approximation is much cheaper than finest

currently, getting at least 100× savings for SPDEs and stochastic
chemical reaction simulations

Mike Giles (Oxford) Multilevel Monte Carlo 37 / 39



References

Webpages for my research papers and talks:

people.maths.ox.ac.uk/gilesm/mlmc.html

people.maths.ox.ac.uk/gilesm/slides.html

Webpage for new 70-page Acta Numerica review and MATLAB test codes:

people.maths.ox.ac.uk/gilesm/acta/

– contains references to almost all MLMC research

Mike Giles (Oxford) Multilevel Monte Carlo 38 / 39



MLMC Community
Webpage: people.maths.ox.ac.uk/gilesm/mlmc community.html
Abo Academi (Avikainen) – numerical analysis
Basel (Harbrecht) – elliptic SPDEs, sparse grids
Bath (Kyprianou, Scheichl, Shardlow, Yates) – elliptic SPDEs, MCMC, Lévy-driven SDEs, stochastic chemical modelling
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