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Overview

1. Introduction to the main themes : high dimensional parametric PDEs

2. Sparse polynomial approximation for a model example

3. Other models

4. Towards sparse polynomial algorithms
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Parametric/Stochastic PDEs

We are interested in PDE’s of the general form

D(u, y) = 0,

where D is a partial differential operator, u is the unknown and y = (yj )j=1,...,d is a
parameter vector of dimension d >> 1 or d =∞ ranging in some domain U.

We assume well-posedness of the solution in some Banach space V for every y ∈ U,

y 7→ u(y)

is the solution map from U to V .

Solution manifold M := {u(y) : y ∈ U} ⊂ V .

The parameters may be deterministic (control, optimization, inverse problems) or
random (uncertainty modeling and quantification, risk assessment). In the second case
the solution u(y) is a V -valued random variable.

These applications often requires many queries of u(y), and therefore in principle
running many times a numerical solver.

Objective : economical numerical approximation of the map y 7→ u(y).

Related objectives : numerical approximation of scalar quantities of interest
y 7→ Q(y) = Q(u(y)), or of averaged quantities u = E(u(y)) or Q = E(Q(y)).
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Guiding example : elliptic PDEs

We consider the steady state diffusion equation

−div(a∇u) = f on D ⊂ IRm and u|∂D = 0,

set on a domain D ⊂ Rm, where f = f (x) ∈ L2(D) and a ∈ L∞(D)

Lax-Milgram lemma : assuming amin := minx∈D a(x) > 0, unique solution
u ∈ V = H1

0 (D) with

‖u‖V := ‖∇u‖L2(D) ≤
1

amin
‖f ‖V ′ .

Proof of the estimate : multiply equation by u and integrate

amin‖u‖2
V ≤

∫
D
a∇u · ∇u = −

∫
D
u div(a∇u) =

∫
D
uf ≤ ‖u‖V ‖f ‖V ′ .

We may extend this theory to the solution of the weak (or variational) formulation∫
D
a∇u · ∇v = 〈f , v〉, v ∈ V = H1

0 (D),

if f ∈ V ′ = H−1(D)
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Parametrization

Assume diffusion coefficients in the form of an expansion

a = a(y) = a +
∑
j≥1

yjψj , y = (yj )j≥1 ∈ U,

with d >> 1 or d =∞ terms, where a and (ψj )j≥1 are functions from L∞,

Note that a(y) is a function for each given y . We may also write

a = a(x , y) = a(x) +
∑
j≥1

yjψj (x), x ∈ D, y ∈ U,

where x and y are the spatial and parametric variable, respectively. Likewise, the
corresponding solution u(y) is a function x 7→ u(y , x) for each given y . We often
ommit the reference to the spatial variable.

Up to a change of variable, we assume that all yj range in [−1, 1], therefore

y ∈ U = [−1, 1]d or [−1, 1]N.

Uniform ellipticity assumption :

(UEA) 0 < r ≤ a(x , y) ≤ R, x ∈ D, y ∈ U

Then the solution map is bounded from U to V := H1
0 (D), that is, u ∈ L∞(U,V ) :

‖u(y)‖V ≤ Cr :=
‖f ‖V ′

r
, y ∈ U,



Parametrization

Assume diffusion coefficients in the form of an expansion

a = a(y) = a +
∑
j≥1

yjψj , y = (yj )j≥1 ∈ U,

with d >> 1 or d =∞ terms, where a and (ψj )j≥1 are functions from L∞,

Note that a(y) is a function for each given y . We may also write

a = a(x , y) = a(x) +
∑
j≥1

yjψj (x), x ∈ D, y ∈ U,

where x and y are the spatial and parametric variable, respectively. Likewise, the
corresponding solution u(y) is a function x 7→ u(y , x) for each given y . We often
ommit the reference to the spatial variable.

Up to a change of variable, we assume that all yj range in [−1, 1], therefore

y ∈ U = [−1, 1]d or [−1, 1]N.

Uniform ellipticity assumption :

(UEA) 0 < r ≤ a(x , y) ≤ R, x ∈ D, y ∈ U

Then the solution map is bounded from U to V := H1
0 (D), that is, u ∈ L∞(U,V ) :

‖u(y)‖V ≤ Cr :=
‖f ‖V ′

r
, y ∈ U,



Parametrization

Assume diffusion coefficients in the form of an expansion

a = a(y) = a +
∑
j≥1

yjψj , y = (yj )j≥1 ∈ U,

with d >> 1 or d =∞ terms, where a and (ψj )j≥1 are functions from L∞,

Note that a(y) is a function for each given y . We may also write

a = a(x , y) = a(x) +
∑
j≥1

yjψj (x), x ∈ D, y ∈ U,

where x and y are the spatial and parametric variable, respectively. Likewise, the
corresponding solution u(y) is a function x 7→ u(y , x) for each given y . We often
ommit the reference to the spatial variable.

Up to a change of variable, we assume that all yj range in [−1, 1], therefore

y ∈ U = [−1, 1]d or [−1, 1]N.

Uniform ellipticity assumption :

(UEA) 0 < r ≤ a(x , y) ≤ R, x ∈ D, y ∈ U

Then the solution map is bounded from U to V := H1
0 (D), that is, u ∈ L∞(U,V ) :

‖u(y)‖V ≤ Cr :=
‖f ‖V ′

r
, y ∈ U,



Example of parametrization : piecewise constant coefficients

Assume that a is piecewise constant over a partition {D1, . . . ,Dd } of D, and such that
on each Dj the value of a varies on [c − cj , c + cj ] for some c > 0 and 0 < cj < c.

Then a natural parametrization is

a(y) = a +

d∑
j=1

yjψj , a = c, ψj = cjχDj
,

with y = (yj )j=1,...,d ∈ U = [−1, 1]d .
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Example of parametrization : Karhunen-Loeve representation

Assume a = (a(x))x∈D is a random process with average

a(x) = E(a(x)),

and covariance function

Ca(x , z) = E
(
ã(x)ã(z)

)
, ã := a − a, x , z ∈ D.

Define the integral operator by

Tv(x) =

∫
D
Ca(x , z)v(z)dz ,

self-adjoint, positive and compact in L2(D). Therefore it admits an L2 orthonormal
basis (ϕj )j≥1 of eigenfunctions, associated to eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0, such
that λn → 0 as n→ +∞.

Karhunen-Loeve (KL) decomposition (a.k.a. principal component analysis) :

a = a +
∑
j≥1

ξjϕj , ξj :=

∫
D
a(x)ϕj (x)dx .
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Properties of KL representation

The ξj are centered and decorelated scalar random variables, with

E(ξj ) = 0, E(ξiξj ) = 0 if j 6= i , E(|ξj |2) = λj .

If the random process a is bounded, then the variables ξj have bounded range
|ξj | ≤ cj , so that with yj := ξj/cj and ψj := cjϕj we may also write

a = a +
∑
j≥1

yjψj , y = (yj )j≥1 ∈ U = [−1, 1]N.

The KL representation is optimal for trunctation in mean-square L2(D)-error :

inf
dim(E)=J

E(‖ã − PE ã‖2
L2 ),

is attained by E = EJ := span{ψ1, . . . , ψJ } with

E(‖ã − PEJ ã‖
2
L2 ) = E

(
‖
∑
j>J

yjψj‖2
L2

)
=
∑
j>J

λj .

Case of a stationary process : Ca(x , z) = κ(x − z), that is T is a convolution operator.
If D is the m-dimensional 2π-periodic torus, the KL basis is of Fourier type

x 7→ ϕk (x) := (2π)−m/2e ikẋ , k ∈ Zm.
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E(‖ã − PE ã‖2
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Model reduction

Objective : fast approximate computation of y 7→ u(y) for many queries of y .

Vehicle : separable (low rank) approximations of the form

u(x , y) ≈ un(x , y) :=
n∑

k=1

vk (x)φk (y),

where vk : D → R with vk ∈ V and φk : U → R. Equivalently

un(y) :=
n∑

k=1

vkφk (y) =
n∑

k=1

φk (y)vk ∈ Vn := span{v1, . . . , vn} ⊂ V , y ∈ U.

Thus we approximate simultaneously all solutions u(y) in the same n-dimensional
space Vn ⊂ V .

By the way, this is what we do when we use a finite element solver :

y 7→ uh(y) ∈ Vh ⊂ V .

So what’s new here ?

Accurate solutions may require Vh of very large dimension Nh = dim(Vh) >> 1 and
each query y 7→ uh(y) is expensive.

We hope to achieve same order of accuracy n << Nh by a choice of Vn adapted to the
parametric problem. In practice the functions v1, . . . , vn are typically picked from such
a finite element space Vh, so that un(y) ∈ Vh for all y but actually belongs to the
much smaller space Vn ⊂ Vh.
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Measure of performance

1. Uniform sense
‖u − un‖L∞(U,V ) := sup

y∈U
‖u(y) − un(y)‖V ,

2. Mean-square sense, for some measure µ on U,

‖u − un‖2
L2(U,V ,µ)

:=

∫
U
‖u(y) − un(y)‖2

V dµ(y).

If µ is a probability measure, and y randomly distributed according to this measure,
we have

‖u − un‖2
L2(U,V ,µ)

= E(‖u(y) − un(y)‖2
V ).

Note that we always have

E(‖u(y) − un(y)‖2
V ) ≤ ‖u − un‖2

L∞(U,V ).

A “worst case” estimate is always above an “average” estimate.
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L∞(U,V ).

A “worst case” estimate is always above an “average” estimate.
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Optimal spaces ?

Best n-dimensional space for approximation in the uniform sense : the space Fn one
that reaches the Kolmogorov n-width of the solution manifold in the V norm

dn = dn(M) := inf
dim(E)≤n

sup
v∈M

min
w∈E
‖v − w‖V = inf

dim(E)≤n
sup
y∈U

min
w∈E
‖u(y) − w‖V .

Best n-dimensional space for approximation in the mean-square sense : principal
component analysis in V (instead of L2 with KL basis). Consider an orthonormal basis
(ek )k≥1 of V and decompose

u(y) :=
∑
k≥1

uk (y)ek , uk (y) := 〈u(y), ek 〉V .

Introduce the infinite correlation matrix M = (E(ukul ))k,l≥1. It has eigenvalues
(λk )k≥1 and associated eigenvectors gk = (gk,l )l∈N which form an orthonormal basis
of `2(N). The best space is

Gn := span{v1, . . . , vn}, vk :=
∑
l≥1

gk,lel ,

and has performance

ε2
n := inf

dim(E)≤n
E
(

min
w∈E
‖u(y) − w‖2

V

)
=
∑
k>n

λk ≤ d2
n .
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Realistic strategies

The optimal spaces Fn and Gn are usually out of reach. There are two main
computational approaches to realistically design the approximation un =

∑n
k=1 vkφk .

1. Expand formally the solution map y 7→ u(y) in a given “basis” (φk )k≥1 of high
dimensional functions

u(y) =
∑
k≥1

vkφk (y),

where vk ∈ V are viewed as the coefficients in this expansion.

Compute these coefficients for k = 1, . . . , n approximately by some numerical
procedure.

Main representative (this lecture) : Polynomial methods (the φk are multivariate
polynomials).

2. Compute first a “good” basis {v1, . . . , vn} and define Vn as their span. Then, for any
given instance y , compute un(y) ∈ Vn by a numerical method.

Main representative : Reduced Bases (RB) methods emulate the n-width spaces Fn for
uniform, or L∞(U,V ), approximation. Proper Orthogonal Decompositions (POD)
methods emulate the principal component spaces Gn for mean-square, or L2(U,V , µ),
approximation.
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Remarks

In the second approach, the functions vk are typically computed in an heavy offline
stage, then for any given y , the computation of un(y) is done in a cheap online stage.

The first approach gives immediate access to the approximation un for all values of y
since the functions vk and φk are both precomputed offline, the online stage is then a
trivial recombination.

Other important distinction : intrusive versus non-intrusive methods. The latter are
based on post-processing individual solution instances

u(y i ), y i ∈ U, i = 1, . . . ,m.

They may benefit of a pre-existing numerical solver viewed as a blackbox and do not
necessarily require full knowledge of PDE model.

In practice, the vk are typically chosen in a discrete (finite element) space Vh ⊂ V ,
with Nh = dim(Vh) >> n. Equivalently, we apply the above technique to the discrete
solution map y 7→ uh(y) ∈ Vh. The error may thus be decomposed into the finite
element discretization error and the model reduction error.
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How to defeat the curse of dimensionality ?

The map y 7→ u(y) is high dimensional, or even infinite dimensional y = (yj )j≥1.

We are thus facing the curse of dimensionality when trying to approximate it with
conventional discretization tools in the y variable (Fourier series, finite elements).

A general function of d variable with m bounded derivatives cannot be approximated
in L∞ with rate better than n−m/d where n is the number of degrees of freedom.

A possible way out : exploit anisotropic features in the function y 7→ u(y).

The PDE is parametrized by a function a (diffusion coefficient, velocity, domain
boundary) and yj are the coordinates of a in a certain basis representation
a = a +

∑
j≥1 yjψj .

If the ψj decays as j → +∞ (for instance if a has some smoothness) then the variable
yj are less active for large j .

We shall see that in certain relevant instances, this mechanism allows to break the
curse of dimensionality by using suitable expansions : we obtain approximation rates
O(N−s ) that are independent of d in the sense that they hold when d =∞.

One key tool for obtaining such result is the concept of sparse approximation.
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Sparse approximation in `q spaces : Stechkin’s lemma

Consider sequences d = (dν)ν∈F in `q(F) where F is a countable index set.

Best n-term approximation : we seek to approximate d by a sequence supported on a
set of size n.

Best choice : dn defined by leaving dν unchanged for the n largest |dν| and setting the
others to 0.

Lemma : for 0 < p < q ≤∞, one has

d ∈ `p(F)⇒ ‖d − dn‖`q ≤ C (n + 1)−s , s =
1

p
−

1

q
, C := ‖d‖`p .

Proof : introduce (d∗k )k≥1 the decreasing rearrangement of (|dν|)ν∈F , and combine

‖d − dn‖q`q =
∑
k>n

|d∗k |
q =
∑
k>n

|d∗k |
q−p |d∗k |

p ≤ Cp |d∗n+1|
q−p

with

(n + 1)|d∗n+1|
p ≤

n+1∑
k=1

|d∗k |
p ≤ Cp .

Note that a large value of s corresponds to a value p < 1 (non-convex spaces).
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From sequence approximation to Banach space valued function approximation

If a V -valued u has an expansion of the form u(y) =
∑
ν∈F uνφν(y), in a given basis

(φν)ν∈F , we use Stechkin’s lemma to study the approximation of u by

un :=
∑
ν∈Λn

uνφν,

where Λn ⊂ F corresponds to the n-largest ‖uν‖V .

If supy∈U |φν(y)| = 1, then by triangle inequality

‖u − un‖L∞(U,V ) ≤
∑
ν/∈Λn

‖uνφν‖L∞(U,V ) =
∑
ν/∈Λn

‖uν‖V ,

If (φν)ν∈F is an orthonormal basis of L2(U, µ), then by Parseval equality

‖u − un‖2
L2(U,V ,µ)

=
∑
ν/∈Λn

‖uν‖2
V ,

For concrete choices of bases a relevant question is thus : what smoothness properties
of a function ensure that its coefficient sequence belongs to `p for small values of p ?

In the case of wavelet bases, such properties are characterized by Besov spaces.

In our present setting of high-dimensional functions y 7→ u(y) we shall rather use
tensor-product polynomial bases instead of wavelet bases. Sparsity properties will
follow to the anisotropic features of these functions.
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Return to the main guiding example

Steady state diffusion equation

−div(a∇u) = f on D ⊂ IRm and u|∂D = 0,

where f = f (x) ∈ L2(D) and the diffusion coefficients are given by

a = a(x , y) = a(x) +
∑
j≥1

yjψj (x),

where a and the (ψj )j≥1 are given functions and y ∈ U := [−1, 1]N. Uniform ellipticity
assumption :

(UEA) 0 < r ≤ a(x , y) ≤ R, x ∈ D, y ∈ U.

Equivalent expression of (UEA) : ā ∈ L∞(D) and∑
j≥1

|ψj (x)| ≤ ā(x) − r , x ∈ D,

or ∥∥∥∥∥
∑

j≥1 |ψj |

a

∥∥∥∥∥
L∞(D)

≤ θ < 1.

Lax-Milgram : solution map is well-defined from U to V := H1
0 (D) with uniform bound

‖u(y)‖V ≤ Cr :=
‖f ‖V ′

r
, y ∈ U, where ‖v‖V := ‖∇v‖L2 .
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Sparse polynomial approximations using Taylor series

We consider the expansion of u(y) =
∑
ν∈F tνyν, where

yν :=
∏
j≥1

y
νj
j and tν :=

1

ν!
∂νu|y=0 ∈ V with ν! :=

∏
j≥1

νj ! and 0! := 1.

where F is the set of all finitely supported sequences of integers (finitely many
νj 6= 0). The sequence (tν)ν∈F is indexed by countably many integers.

ν

1

ν3

2

ν

Objective : identify a set Λ ⊂ F with #(Λ) = n such that u is well approximated by
the partial expansion

uΛ(y) :=
∑
ν∈Λ

tνy
ν.



Best n-term approximation

A-priori choices for Λ have been proposed, e.g. (anisotropic) sparse grid defined by
restrictions of the type

∑
j αjνj ≤ A(n) or

∏
j (1 + βjνj ) ≤ B(n).

Instead we want to choose Λ optimally adapted to u. By triangle inequality we have

‖u − uΛ‖L∞(U,V ) = sup
y∈U
‖u(y) − uΛ(y)‖V ≤ sup

y∈U

∑
ν/∈Λ
‖tνyν‖V =

∑
ν/∈Λ
‖tν‖V

Best n-term approximation in `1(F) norm : use Λ = Λn index set of n largest ‖tν‖V .

Stechkin lemma : if (‖tν‖V )ν∈F ∈ `p(F) for some p < 1, then for this Λn,∑
ν/∈Λn

‖tν‖V ≤ Cn−s , s :=
1

p
− 1, C := ‖(‖tν‖V )‖`p .

Question : do we have (‖tν‖V )ν∈F ∈ `p(F) for some p < 1 ?



Best n-term approximation

A-priori choices for Λ have been proposed, e.g. (anisotropic) sparse grid defined by
restrictions of the type

∑
j αjνj ≤ A(n) or

∏
j (1 + βjνj ) ≤ B(n).

Instead we want to choose Λ optimally adapted to u. By triangle inequality we have

‖u − uΛ‖L∞(U,V ) = sup
y∈U
‖u(y) − uΛ(y)‖V ≤ sup

y∈U

∑
ν/∈Λ
‖tνyν‖V =

∑
ν/∈Λ
‖tν‖V

Best n-term approximation in `1(F) norm : use Λ = Λn index set of n largest ‖tν‖V .

Stechkin lemma : if (‖tν‖V )ν∈F ∈ `p(F) for some p < 1, then for this Λn,∑
ν/∈Λn

‖tν‖V ≤ Cn−s , s :=
1

p
− 1, C := ‖(‖tν‖V )‖`p .

Question : do we have (‖tν‖V )ν∈F ∈ `p(F) for some p < 1 ?



Best n-term approximation

A-priori choices for Λ have been proposed, e.g. (anisotropic) sparse grid defined by
restrictions of the type

∑
j αjνj ≤ A(n) or

∏
j (1 + βjνj ) ≤ B(n).

Instead we want to choose Λ optimally adapted to u. By triangle inequality we have

‖u − uΛ‖L∞(U,V ) = sup
y∈U
‖u(y) − uΛ(y)‖V ≤ sup

y∈U

∑
ν/∈Λ
‖tνyν‖V =

∑
ν/∈Λ
‖tν‖V

Best n-term approximation in `1(F) norm : use Λ = Λn index set of n largest ‖tν‖V .

Stechkin lemma : if (‖tν‖V )ν∈F ∈ `p(F) for some p < 1, then for this Λn,∑
ν/∈Λn

‖tν‖V ≤ Cn−s , s :=
1

p
− 1, C := ‖(‖tν‖V )‖`p .

Question : do we have (‖tν‖V )ν∈F ∈ `p(F) for some p < 1 ?



Best n-term approximation

A-priori choices for Λ have been proposed, e.g. (anisotropic) sparse grid defined by
restrictions of the type

∑
j αjνj ≤ A(n) or

∏
j (1 + βjνj ) ≤ B(n).

Instead we want to choose Λ optimally adapted to u. By triangle inequality we have

‖u − uΛ‖L∞(U,V ) = sup
y∈U
‖u(y) − uΛ(y)‖V ≤ sup

y∈U

∑
ν/∈Λ
‖tνyν‖V =

∑
ν/∈Λ
‖tν‖V

Best n-term approximation in `1(F) norm : use Λ = Λn index set of n largest ‖tν‖V .

Stechkin lemma : if (‖tν‖V )ν∈F ∈ `p(F) for some p < 1, then for this Λn,∑
ν/∈Λn

‖tν‖V ≤ Cn−s , s :=
1

p
− 1, C := ‖(‖tν‖V )‖`p .

Question : do we have (‖tν‖V )ν∈F ∈ `p(F) for some p < 1 ?



One main result

Theorem (Cohen-DeVore-Schwab, 2011) : under the uniform ellipticity assumption
(UAE), then for any p < 1,

(‖ψj‖L∞ )j>0 ∈ `p(N)⇒ (‖tν‖V )ν∈F ∈ `p(F).

Interpretations :

(i) The Taylor expansion of u(y) inherits the sparsity properties of the expansion of
a(y) into the ψj .

(ii) We approximate u(y) in L∞(U,V ) with algebraic rate O(n−s ) despite the curse of
(infinite) dimensionality, due to the fact that yj is less influencial as j gets large.

(iii) The solution manifold M := {u(y) ; y ∈ U} is uniformly well approximated by the
n-dimensional space Vn := span{tν : ν ∈ Λn}. Its n-width satisfies the bound

dn(M)V ≤ max
y∈U

dist(u(y),Vn)V ≤ max
y∈U
‖u(y) − uΛn (y)‖V ≤ Cn−s .

Such approximation rates cannot be proved for the usual a-priori choices of Λ.

Same result for more general linear equations Au = f with affine operator
dependance : A = A +

∑
j≥1 yjAj uniformly invertible over y ∈ U, and

(‖Aj‖V→W )j≥1 ∈ `p(N), as well as other models.
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Idea of proof : extension to complex variable

Estimates on ‖tν‖V by complex analysis : extend u(y) to u(z) with z = (zj ) ∈ C|| IN.

Uniform ellipticity
∑

j≥1 |ψj | ≤ a − r implies that with a(z) = a +
∑

j≥1 zjψj ,

0 < r ≤ <(a(x , z)) ≤ |a(x , z)| ≤ 2R, x ∈ D,

for all z ∈ U := {|z | ≤ 1}N = ⊗j≥1{|zj | ≤ 1}.

Lax-Milgram theory applies : ‖u(z)‖V ≤ C0 =
‖f ‖V∗

r
for all z ∈ U .

The function u 7→ u(z) is holomorphic in each variable zj at any z ∈ U : its first
derivative ∂zj u(z) is the unique solution to∫

D
a(z)∇∂zj u(z) · ∇v = −

∫
D
ψj∇u(z) · ∇v , v ∈ V .

Note that ∇ is with respect to spatial variable x ∈ D.

Extended domains of holomorphy : if ρ = (ρj )j≥0 is any positive sequence such that
for some δ > 0 ∑

j≥1

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D,

then u is holomorphic with uniform bound ‖u(z)‖ ≤ Cδ =
‖f ‖V∗
δ

in the polydisc

Uρ := ⊗j≥1{|zj | ≤ ρj },

If δ < r , we can take ρj > 1.



Idea of proof : extension to complex variable

Estimates on ‖tν‖V by complex analysis : extend u(y) to u(z) with z = (zj ) ∈ C|| IN.

Uniform ellipticity
∑

j≥1 |ψj | ≤ a − r implies that with a(z) = a +
∑

j≥1 zjψj ,

0 < r ≤ <(a(x , z)) ≤ |a(x , z)| ≤ 2R, x ∈ D,

for all z ∈ U := {|z | ≤ 1}N = ⊗j≥1{|zj | ≤ 1}.

Lax-Milgram theory applies : ‖u(z)‖V ≤ C0 =
‖f ‖V∗

r
for all z ∈ U .

The function u 7→ u(z) is holomorphic in each variable zj at any z ∈ U : its first
derivative ∂zj u(z) is the unique solution to∫

D
a(z)∇∂zj u(z) · ∇v = −

∫
D
ψj∇u(z) · ∇v , v ∈ V .

Note that ∇ is with respect to spatial variable x ∈ D.

Extended domains of holomorphy : if ρ = (ρj )j≥0 is any positive sequence such that
for some δ > 0 ∑

j≥1

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D,

then u is holomorphic with uniform bound ‖u(z)‖ ≤ Cδ =
‖f ‖V∗
δ

in the polydisc

Uρ := ⊗j≥1{|zj | ≤ ρj },

If δ < r , we can take ρj > 1.



Idea of proof : extension to complex variable

Estimates on ‖tν‖V by complex analysis : extend u(y) to u(z) with z = (zj ) ∈ C|| IN.

Uniform ellipticity
∑

j≥1 |ψj | ≤ a − r implies that with a(z) = a +
∑

j≥1 zjψj ,

0 < r ≤ <(a(x , z)) ≤ |a(x , z)| ≤ 2R, x ∈ D,

for all z ∈ U := {|z | ≤ 1}N = ⊗j≥1{|zj | ≤ 1}.

Lax-Milgram theory applies : ‖u(z)‖V ≤ C0 =
‖f ‖V∗

r
for all z ∈ U .

The function u 7→ u(z) is holomorphic in each variable zj at any z ∈ U : its first
derivative ∂zj u(z) is the unique solution to∫

D
a(z)∇∂zj u(z) · ∇v = −

∫
D
ψj∇u(z) · ∇v , v ∈ V .

Note that ∇ is with respect to spatial variable x ∈ D.

Extended domains of holomorphy : if ρ = (ρj )j≥0 is any positive sequence such that
for some δ > 0 ∑

j≥1

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D,

then u is holomorphic with uniform bound ‖u(z)‖ ≤ Cδ =
‖f ‖V∗
δ

in the polydisc

Uρ := ⊗j≥1{|zj | ≤ ρj },

If δ < r , we can take ρj > 1.



Idea of proof : extension to complex variable

Estimates on ‖tν‖V by complex analysis : extend u(y) to u(z) with z = (zj ) ∈ C|| IN.

Uniform ellipticity
∑

j≥1 |ψj | ≤ a − r implies that with a(z) = a +
∑

j≥1 zjψj ,

0 < r ≤ <(a(x , z)) ≤ |a(x , z)| ≤ 2R, x ∈ D,

for all z ∈ U := {|z | ≤ 1}N = ⊗j≥1{|zj | ≤ 1}.

Lax-Milgram theory applies : ‖u(z)‖V ≤ C0 =
‖f ‖V∗

r
for all z ∈ U .

The function u 7→ u(z) is holomorphic in each variable zj at any z ∈ U : its first
derivative ∂zj u(z) is the unique solution to∫

D
a(z)∇∂zj u(z) · ∇v = −

∫
D
ψj∇u(z) · ∇v , v ∈ V .

Note that ∇ is with respect to spatial variable x ∈ D.

Extended domains of holomorphy : if ρ = (ρj )j≥0 is any positive sequence such that
for some δ > 0 ∑

j≥1

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D,

then u is holomorphic with uniform bound ‖u(z)‖ ≤ Cδ =
‖f ‖V∗
δ

in the polydisc

Uρ := ⊗j≥1{|zj | ≤ ρj },

If δ < r , we can take ρj > 1.



Estimate on the Taylor coefficients

Use Cauchy formula. In 1 complex variable if z 7→ u(z) is holomorphic and bounded in
a neighbourhood of disc {|z | ≤ b}, then for all z in this disc

u(z) =
1

2iπ

∫
|z ′|=b

u(z ′)

z − z ′
dz ′,

which leads by n differentiation at z = 0 to |u(n)(0)| ≤ n!b−n max|z|≤b |u(z)|.

This yields exponential convergence rate b−n = exp(−cn) of Taylor series for 1-d
holomorphic functions. Curse of dimensionality : in d dimension, this yields
sub-exponential rate exp(−cn1/d ) where n is the number of retained terms.

Recursive application of this to all variables zj such that νj 6= 0, with b = ρj gives

‖∂νu|z=0‖V ≤ Cδν!
∏
j≥1

ρ
−νj
j ,

and thus
‖tν‖V ≤ Cδ

∏
j≥1

ρ
−νj
j = Cδρ

−ν,

for any sequence ρ = (ρj )j≥1 such that∑
j≥1

ρj |ψj (x)| ≤ a(x) − δ.
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Optimization

Since ρ is not fixed we have

‖tν‖V ≤ Cδ inf
{
ρ−ν : ρ s.t.

∑
j≥1

ρj |ψj (x)| ≤ a(x) − δ, x ∈ D
}
.

We do not know the general solution to this problem, except in particular case, for
example when the ψj have disjoint supports.

Instead design a particular choice ρ = ρ(ν) satisfying the constraint with δ = r/2, for
which we prove that

(‖ψj‖L∞ )j≥1 ∈ `p(N)⇒ (ρ(ν)−ν)ν∈F ∈ `p(F),

therefore proving the main theorem.
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A simple case

Assume that the ψj have disjoint supports. Then we maximize separately the ρj so that∑
j≥1

ρj |ψj (x)| ≤ a(x) −
r

2
, x ∈ D,

which leads to

ρj := min
x∈D

a(x) − r
2

|ψj (x)|
.

We have, with δ = r
2

,

‖tν‖V ≤ Cδρ
−ν = Cδb

ν,

where b = (bj ) and

bj := ρ
−1
j = max

x∈D

|ψj (x)|

a(x) − r
2

≤
‖ψj‖L∞
R − r

2

.

Therefore b ∈ `p(N). From (UEA), we have |ψj (x)| ≤ a(x) − r and thus ‖b‖`∞ < 1.
We finally observe that

b ∈ `p(N) and ‖b‖`∞ < 1⇔ (bν)ν∈F ∈ `p(F).

Proof : factorize ∑
ν∈F

bpν =
∏
j≥1

∑
n≥0

bpnj =
∏
j≥1

1

1 − bpj
.
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Improved summability results

One defect of the previous result is that it depends on the ψj only through ‖ψj‖L∞ ,
without taking their support into account.Improved results can be obtained, without
relying on complex variable, by better exploiting the specific structure of PDE.

Recursive formula for the Taylor coefficients : with ej = (0, . . . , 0, 1, 0, . . . ) the
Kroeneker sequence of index j , the coefficient tν is solution to∫

D
ā∇tν∇v = −

∑
j : νj 6=0

∫
D
ψj∇tν−ej∇v , v ∈ V .

We introduce the quantities

dν :=

∫
D
a|∇tν|2 and dν,j :=

∫
D
|ψj | |∇tν|2.

Recall that (UEA) implies that

∥∥∥∥∑
j≥1 |ψj |

a

∥∥∥∥
L∞(D)

≤ θ < 1. In particular

∑
j≥1

dν,j ≤ θdν.

We use here the equivalent norm ‖v‖2
V :=

∫
D a|∇v |2.

Lemma : under (UEA), one has
∑
ν∈F dν =

∑
ν∈F ‖tν‖2

V <∞.
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Proof

Taking v = tν in the recursion gives

dν =

∫
D
a|∇tν|2 = −

∑
j : νj 6=0

∫
D
ψj∇tν−ej∇tν.

Apply Young’s inequality on the right side gives

dν ≤
∑

j : νj 6=0

(1

2

∫
D
|ψj | |∇tν|2 +

1

2

∫
D
|ψj | |∇tν−ej |

2
)
=

1

2

∑
j : νj 6=0

dν,j +
1

2

∑
j : νj 6=0

dν−ej ,j .

The first sum is bounded by θdν, therefore(
1 −

θ

2

)
dν ≤

1

2

∑
j : νj 6=0

dν−ej ,j .

Now summing over all |ν| = k gives(
1 −

θ

2

) ∑
|ν|=k

dν ≤
1

2

∑
|ν|=k

∑
j : νj 6=0

dν−ej ,j =
1

2

∑
|ν|=k−1

∑
j≥1

dν,j ≤
θ

2

∑
|ν|=k−1

dν.

Therefore
∑

|ν|=k dν ≤ κ
∑

|ν|=k−1 dν with κ := θ
2−θ

< 1, and thus
∑
ν∈F dν <∞.
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Rescaling

Now let ρ = (ρj )j≥1 be any sequence with ρj > 1 such that
∑

j≥1 ρj |ψj | ≤ a − δ for

some δ > 0, or equivalently such that

∥∥∥∥∑
j≥1 ρj |ψj |

a

∥∥∥∥
L∞(D)

≤ θ < 1.

Considered the rescaled solution map ũ(y) = u(ρy) where ρy := (ρjyj )j≥1 which is the
solution of the same problem as u with ψj replaced by ρjψj .

Since (UEA) holds for for these rescaled functions, the previous lemma shows that∑
ν∈F
‖t̃ν‖2

V <∞,
where

t̃ν :=
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ν!
∂νũ(0) =

1

ν!
ρν∂νu(0) = ρνtν.

This therefore gives the weighted `2 estimate∑
ν∈F

(ρν‖tν‖V )2 ≤ C <∞.
In particular, we retrieve the estimate ‖tν‖V ≤ Cρ−ν that was obtained by the
complex variable approach, however the above estimate is stronger.
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An alternate summability result

Applying Hölder’s inequality gives∑
ν∈F
‖tν‖pV ≤

(∑
ν∈F

(ρν‖tν‖V )2
)p/2(∑

ν∈F
ρ−qν

)1−p/2
,

with q = 2p
2−p

> p, or equivalently 1
q
= 1

p
− 1

2
.

The sum in second factor is finite provided that (ρ−1
j )j≥1 ∈ `q . Therefore, the

following result holds.

Theorem (Bachmayr-Cohen-Migliorati, 2015) : Let p and q be such that 1
q
= 1

p
− 1

2
.

Assume that there exists a sequence ρ = (ρj )j≥1 of numbers larger than 1 such that∑
j≥1

ρj |ψj | ≤ a − δ,

for some δ > 0 and
(ρ−1

j )j≥1 ∈ `q .

Then (‖tν‖V )ν∈F ∈ `p(F).

The above conditions ensuring `p summability of (‖tν‖V )ν∈F are significantly weaker
than those in the first summability theorem especially for locally supported ψj .
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Disjoint supports

Assume that the ψj have disjoint supports.

Then with δ = r
2

, we choose

ρj := min
x∈D

a(x) − r
2

|ψj (x)|
> 1.

so that
∑

j≥1 ρj |ψj | ≤ a − δ holds.

We have

bj := ρ
−1
j =

|ψj (x)|

a(x) − r
2

≤
‖ψj‖L∞
R − r

2

.

Thus in this case, our result gives for any 0 < q <∞,

(‖ψj‖L∞ )j≥1 ∈ `q(N)⇒ (‖tν‖V )ν∈F ∈ `p(F),

with 1
q
= 1

p
− 1

2
.

Similar improved results if the ψj have supports with limited overlap, such as wavelets.

No improvement in the case of globally supported functions, such as typical KL bases.
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Other models

Model 1 : same PDE but no affine dependence, e.g. a(x , y) = a(x) + (
∑

j≥0 yjψj (x))
2.

Assuming that a(x) ≥ r > 0 guarantees ellipticity uniformly over y ∈ U.

Model 2 : similar problems + non-linearities, e.g.

g(u) − div(a∇u) = f on D = D(y) u|∂D = 0,

with same assumptions on a and f . Well-posedness in V = H1
0 (D) for all f ∈ V ′ is

ensured for certain nonlinearities, e.g. g(u) = u3 of u5 in dimension m = 3 (V ⊂ L6).

Model 3 : PDE’s on domains with parametrized boundaries, e.g.

−∆v = f on D = Dy u|∂D = 0.

where the boundary of Dy is parametrized by y , e.g.

Dy := {(x1, x2) ∈ R2 : 0 < x1 < 1 and 0 < x2 < b(x1, y)},

where b = b(x , y) = b(x) +
∑

j yjψj (x) satisfies 0 < r < b(x , y) < R. We transport

this problem on the reference domain [0, 1]2 and study

u(y) := v(y) ◦ φy , φy : [0, 1]2 → Dy , φy (x1, x2) := (x1, x2b(x1, y)).

which satisfies a diffusion equation with coefficient a = a(x , y) non-affine in y .
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Polynomial approximation for these models

In contrast to our guiding example (which we refer to as model 0), bounded
holomorphic extension is generally not feasible in a complex domain containing the
polydisc U = ⊗j≥1{|zj | ≤ 1}. For this reason,Taylor series are not expected to
converge.

Instead we consider the tensorized Legendre expansion

u(y) =
∑
ν∈F

vνLν(y),

where Lν(y) :=
∏

j≥1 Lνj (yj ) and (Lk )k≥0 are the Legendre polynomials normalized in

L2
(
[−1, 1], dt

2

)
.

Thus (Lν)ν∈F is an orthonormal basis for L2(U,V , µ) where µ := ⊗j≥1
dyj
2

is the
uniform probability measure and we have

vν =

∫
U
u(y)Lν(y)dµ(y).

We also consider the L∞-normalized Legendre polynomials Pk = (1 + 2k)−1/2Lk and
their tensorized version Pν, so

u(y) =
∑
ν∈F

wνPν(y),

where wν :=
(∏

j≥1(1 + νj )
1/2

)
vν.
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Main result

Theorem (Chkifa-Cohen-Schwab, 2013) : For models 0, 1, 2 and 3, and for any p < 1,

(‖ψj‖X )j>0 ∈ `p(N)⇒ (‖vν‖V )ν∈F and (‖wν‖V )ν∈F ∈ `p(F).

with X = L∞ for models 0, 1, 2, and X = W 1,∞ for model 3.

By the same application of Stechkin’s argument as for Taylor expansions, best n-term
truncations for the L∞ normalized expansion converge rate O(n−s ) in L∞(U,V )
where s = 1

p
− 1.

Best n-term truncations for the L2 normalized expansion converge rwith ate O(n−r ) in
L2U,V , µ) where r = 1

p
− 1

2
.

In the particular case of our guiding example, model 0, we can obtain improved
summability results for Legendre expansions, similar to Taylor expansions.

Key ingredient in the proof of the above theorem : estimates of Legendre coefficients
for holomorphic functions in a “small” complex neighbourhood of U.
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Taylor vs Legendre expansions

In one variable :

- If u is holomorphic in an open neighbourhood of the disc {|z | ≤ b} and bounded by
M on this disc, then the n-th Taylor coefficient of u is bounded by

|tn | :=

∣∣∣∣∣u(n)(0)n!

∣∣∣∣∣ ≤ Mb−n

- If u is holomorphic in an open neighbourhood of the domain Eb limited by the ellipse
of semi axes of length (b + b−1)/2 and (b − b−1)/2, for some b > 1, and bounded by
M on this domain, then the n-th Legendre coefficent wn of u is bounded by

|wn | ≤ Mb−n(1 + 2n)φ(b), φ(b) :=
πb

b − 1

b

10−1

b−b

10−1

2

b+b
−1

2

−1



A general assumption for sparsity of Legendre expansions

We say that the solution to a parametric PDE D(u, y) = 0 satisfies the
(p, ε)-holomorphy property if and only if there exist a sequence (cj )j≥1 ∈ `p(N), a
constant ε > 0 and C0 > 0, such that : for any sequence ρ = (ρj )j≥1 such that ρj > 1
and ∑

j≥1

(ρj − 1)cj ≤ ε,

the solution map has a complex extension

z 7→ u(z),

of the solution map that is holomorphic with respect to each variable on a domain of
the form Oρ = ⊗j≥1Oρj where Oρj is an open neigbourhood of the elliptical domain
Eρj , with bound

sup
z∈Eρ

‖u(z)‖V ≤ C0,

where Eρ = ⊗j≥1Eρj .

Under such an assumption, one has (up to additional harmless factors) an estimate of
the form

‖wν‖V ≤ C0 inf
{
ρ−ν ; ρ s.t.

∑
j≥1

(ρj − 1)cj ≤ ε
}
,

allowing us to prove that (‖wν‖V )ν∈F ∈ `p(F).
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A general framework for establishing the (p, ε)-holomorphy assumption

Assume a general problem of the form

P(u, a) = 0,

with a = a(y) = a +
∑

j≥1 yjψj , where

P : V × X →W ,

with V ,X ,W a triplet of complex Banach spaces, and a and ψj are functions in X .

Theorem (Chkifa-Cohen-Schwab, 2013) : assume that

(i) The problem is well posed for all a ∈ Q = a(U) with solution u(y) = u(a(y)) ∈ V .

(ii) The map P is differentiable (holomorphic) from X × V to W .

(iii) For any a ∈ Q, the differential ∂uP(u(a), a) is an isomorphism from V to W

(iv) One has (‖ψj‖X )j≥1 in `p(N) for some 0 < p < 1,

Then, for ε > 0 small enough, the (p, ε)-holomorphy property holds.
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Idea of proof

Based on the holomorphic Banach valued version of the implicit function theorem (see
e.g. Dieudonné).

1. For any a ∈ Q = {a(y) : y ∈ U} we can find a εa > 0 such that the map a→ u(a)
has an holomorphic extension on the ball B(a, εa) := {ã ∈ X : ‖ã − a‖X < εa}.

2. Using the decay properties of the ‖ψj‖X , we find that Q is compact in X . It can be
covered by a finite union of balls B(ai , εai ), for i = 1, . . . ,M.

3. Thus a→ u(a) has an holomorphic extension on a complex neighbourhood N of Q
of the form

N = ∪Mi=1B(ai , εai ).

4. For ε small enough, one proves that if
∑

j≥1(ρj − 1)cj ≤ ε with cj := ‖ψj‖L then

with Oρ = ⊗j≥1Oρj where Ob := {z ∈ C : dist(z , [−1, 1])C ≤ b − 1} is a
neighborhood of Eb, one has

z ∈ Oρ ⇒ a(z) ∈ N .

This gives holomorphy of z 7→ a(z) 7→ u(z) = u(a(z)) in each variable for z ∈ Oρ.



Lognormal coefficients

We assume diffusion coefficients are given by

a = exp(b),

with b a random function defined by an affine expansion of the form

b = b(y) =
∑
j≥1

yjψj ,

where (ψj ) is a given family of functions from L∞(D) and y = (yj )j≥1 a sequence of
i.i.d. standard Gaussians N (0, 1) variables.

Thus y ranges in U = RN equipped with the probabilistic structure (U,B(U), γ) where
B(U) is the cylindrical Borel Σ-algebra and γ the tensorized Gaussian measure.

Commonly used stochastic model for diffusion in porous media.

The solution u(y) is well defined in V for those y ∈ U such that b(y) ∈ L∞(D), with

‖u(y)‖V ≤
1

amin(y)
‖f ‖V ′ ≤ exp(‖b(y)‖L∞ )‖f ‖V ′ .
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Affine Gaussian representations

Given a centered Gaussian process (b(x))x∈D with covariance function
Cb(x , z) = E(b(x)b(z)), one frequently consider the Karhunen-Loeve expansion,

b =
∑
j≥1

ξjϕj ,

where ξj are i.i.d. N (0, σ2
j ) and (ϕj )j≥1 are L2(D)-orthonormal, and normalize

ψj = σjϕj and yj = σ
−1
j ξj ,

so that b =
∑

j≥1 yjψj . However, other representations may be relevant.

Example : b the Brownian bridge on D = [0, 1] defined by Cb(x , z) := min{x , z} − xz.

1. Normalized KL : ψj (x) =
√

2
πj

sin(πjx).

2. Levy-Ciesielski representation : uses Schauder basis (primitives of Haar system)

ψl,k (x) := 2−l/2ψ(2lx − k), k = 0, . . . , 2l − 1, l ≥ 0, ψ(x) :=
1

2
(1 − |2x − 1|)+.

Then with coarse to fine ordering ψj = ψl,k for j = 2l + k, one has b =
∑

j≥1 yjψj .
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Main theoretical questions

1. Integrability : under which conditions is y 7→ u(y) Bochner measurable with values
in V and satifies for 0 ≤ k <∞.

‖u‖k
Lk (U,V ,γ)

= E(‖u(y)‖kV ) <∞,
In view of ‖u(y)‖V ≤ exp(‖b(y)‖L∞ )‖f ‖V ′ , this holds if E(exp(k‖b(y)‖L∞ ) <∞.

2. Approximability : if u ∈ L2(U,V , γ), consider the multivariate Hermite expansion

u =
∑
ν∈F

uνHν, Hν(y) :=
∏
j≥1

Hνj (yj ) and uν :=

∫
U
u(y)Hν(y)dγ(y)

where F is the set of finitely supported integer sequences ν = (νj )j≥1.

Best n-term approximation : un =
∑
ν∈Λn

uνHν, with Λn indices of n largest ‖uν‖V .

Stechkin lemma : if (‖uν‖V )ν∈F ∈ `p(F) for some 0 < p < 2 then

‖u − un‖L2(U,V ,γ) ≤ Cn−s , s :=
1

p
−

1

2
, C := ‖(‖uν‖V )ν∈F‖`p
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Existing results

Integrability : sufficient conditions for u ∈ Lk (U,V , γ) for all 0 ≤ k <∞ are known.

1. Smoothness : Cb ∈ Cα(D × D) for some α > 0 (Charrier).

2. Summability :
∑

j≥1 ‖ψj‖L∞ <∞ (Schwab-Gittelson-Hoang)

3.
∑

j≥1 ‖ψj‖2−δ
L∞ ‖ψj‖δCα <∞ for some 0 < δ < 1 (Dashti-Stuart)

Approximability : first available result is as follows.

Theorem (Hoang-Schwab, 2014) : for any 0 < p ≤ 1, if (j‖ψj‖L∞ ) ∈ `p(N) then
(‖uν‖V ) ∈ `p(F).

Remarks :

The condition (j‖ψj‖L∞ ) ∈ `p(N) is strong, compared to L2-integrability conditions.

It typically imposes high order of smoothness of the covariance function.

For example it is not satified by KL or Schauder representation of Brownian bridge.

Condition based on ‖ψj‖L∞ . Can we better exploit the support properties ?
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Improved summability result

Theorem (Bachmayr-Cohen-DeVore-Migliorati, 2015) :

Let 0 < p < 2 and define q := q(p) = 2p
2−p

> p (or equivalently 1
q
= 1

p
− 1

2
).

Assume that there exists a positive sequence ρ = (ρj )j≥1 such that

(ρ−1
j )j≥1 ∈ `q(N) and sup

x∈D

∑
j≥1

ρj |ψj (x)| <∞.
Then y 7→ u(y) is measurable and belongs Lk (U,V , γ) for all 0 ≤ k <∞ and

(‖uν‖V )ν∈F ∈ `p(F).

Remarks :

Similar result for the Taylor and Legendre coefficients for the affine parametric model
a(y) = a +

∑
j≥1 yjψj however by different arguments.

Proof is rather specific to the linear diffusion equation (yet extensions possible).

The above conditions for `p summability of (‖uν‖V )ν∈F are weaker than `p

summability of (j‖ψj‖L∞ )j≥1 especially for locally supported ψj .
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The case of the Brownian bridge

KL representation :

Globally supported functions ψj (x) =
√

2
πj

sin(πjx).

The decay of (‖ψj‖L∞ )j≥1 is not sufficient to apply our results.

No provable approximability by best n-term Hermite series.

Schauder representation :

Wavelet type functions with decay in scale ‖ψλ‖L∞ ∼ 2−l/2.

This allows to apply our result ρλ = 2βl , for any β < 1
2

.

Our result imply that (‖uν‖V )ν∈F ∈ `p(F) for any p such that 1
2
> 1

p
− 1

2
.

In particular, best n-term Hermite approximations satisfy

‖u − uΛn‖L2(U,V ,γ) ≤ Cn−s , s =
1

p
−

1

2
<

1

2
.
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Main ingredient in the proof of the main result

1. Relate Hermite coefficients uν and partial derivatives ∂µu. Base on 1-d Rodrigues

formula : Hn(t) =
(−1)n√

n!

g(n)(t)
g(t)

, where g(t) := (2π)−1/2 exp(−t2/2). After some

computation this leads to weighted `2 identity for any sequence ρ := (ρj )j≥1.

∑
‖µ‖`∞≤r

ρ2µ

µ!

∫
U
‖∂µu(y)‖2

V dγ(y) =
∑
ν∈F

bν‖uν‖2
V ,

where bν :=
∑
‖µ‖`∞≤r

(ν
µ

)
ρ2µ.

2. Prove finiteness of left hand side
∑
‖µ‖`∞≤r

ρ2µ

µ!

∫
U ‖∂

µu(y)‖2
V dγ(y) when

sup
x∈D

∑
j≥1

ρj |ψj (x)| =: K < Cr := r−1/2ln 2.

Use PDE :
∫
D a(y)∇∂µu(y) · ∇v = −

∑
ν≤µ, ν6=µ

(µ
ν

) ∫
D ψ

µ−νa(y)∇∂νu(y) · ∇v .

3. Derive `p estimate by mean of Hölder’s inequality :(∑
ν∈F
‖uν‖pV

)1/p
≤

(∑
ν∈F

bν‖uν‖2
V

)1/2(∑
ν∈F

b
−q/2
ν

)1/q
.

We prove that the second factor is finite if (ρ−1
j )j≥1 ∈ `q(N) and r such that 2

r+1
< p.
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From approximation results to numerical methods

The results so far are approximation results. They say that for several models of
parametric PDEs, the solution map y 7→ u(y) can be accurately approximate (with
rate n−s for some s > 0) by multivariate polynomials having n terms.

These polynomials are computed by best n-term truncation of Taylor or Legendre or
Hermite series, but this is not feasible in practical numercial methods.

Problem 1 : the best n-term index sets Λn are computationally out of reach. Their
identification would require the knowledge of all coefficients in the expansion.

Objective : identify non-optimal yet good sets Λn.

Problem 2 : the exact polynomial coefficients tν (or vν, wν, uν) of u for the indices
ν ∈ Λn cannot be computed exactly.

Objective : numerical strategy for approximately computing polynomial coefficients.
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Numerical methods : strategies to build the sets Λn

(i) Non-adaptive, based on the available a-priori estimates for the ‖tν‖V (or ‖vν‖V ,
‖wν‖V , ‖uν‖V ). Take Λn to be the set corresponding to the n largest such estimates.

(ii) Adaptive, based on a-posteriori information gained in the computation
Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn · · · .
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Adaptive vs non-adaptive

Adaptive methods are known to converge better than non-adaptive ones, but their
analysis is more difficult.

A test case for linear-affine model in dimension d = 64 : comparison between the
approximation performance with Λn given by standard choices {supνj ≤ k} (black) or
{
∑
νj ≤ k} (purple) and by anisotropic choices based on a-priori bounds (blue) or

adaptively generated (green).
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Highest polynomial degree for Λ1000 with different choices : 1, 2, 162 and 114.



Downward closed index sets

For adaptive algorithms it is critical that the index chosen sets are downward closed

ν ∈ Λ and µ ≤ ν⇒ µ ∈ Λ,

where µ ≤ ν means that µj ≤ νj for all j ≥ 1.

Such sets are also called lower sets. This property does not generally holds for the sets
corresponding to the n largest estimates, however the same convergence rates as
proved in the approximation theorems, can be proved when imposing such a structure.

If Λ is downward closed, we consider the polynomial space

PΛ = span{y → yν : ν ∈ Λ} = span{Lν : ν ∈ Λ} = span{Hν : ν ∈ Λ}

and its V -valued version

VΛ := {
∑
ν∈Λ

vνy
ν : vν ∈ V } = V ⊗ PΛ.

After having selected Λn we search for a computable approximation of u in VΛn .

Note that dim(VΛn ) =∞. In practice we use VΛn,h = Vh ⊗ PΛn which has dimension

dim(VΛn,h) = dim(Vh) dim(PΛn ) = Nhn <∞.
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Strategies to build the polynomial approximation : intrusive methods

1. Galerkin method : based on a space-parameter variational form (test the parametric
PDE on arbitrary y 7→ v(y) and integrate both in x and y). Example for model 0 :
find u ∈ L2(U,V , µ) such that for all v ∈ L2(U,V , µ),

A(u, v) :=

∫
U

∫
D
a(x , y)∇u(x , y)∇v(x , y)dxdµ(y) =

∫
U
〈f , v(y)〉dµ(y) =: L(v),

The problem is coercive in L2(U,V , µ). Galerkin formulation : find un ∈ VΛn such that

A(un, vn) = L(vn), vn ∈ VΛn .

Cea’s lemma gives error estimate

‖u − un‖L2(U,V ,µ) ≤ (R/r)1/2 min
v∈VΛn

‖u − v‖L2(U,V ,µ).

After space discretization, Galerkin problem in VΛn,h gives a (nNh)× (nNh) system.

Lognormal case : lack of coervivity, Galerkin method needs some massaging.

2. Exact computation of the Taylor coefficients ‖tν‖V , based on the recursive formula.

After space discretization, sequence of n systems of size Nh × Nh.

Adaptive algorithms with optimal theoretical guarantees exist for both method 1
(Gittelson-Schwab) and 2 (Chkifa-Cohen-DeVore-Schwab).

These methods apply to other models, however mainly confined to linear PDEs, with
affine parameter dependence.
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Strategies to build the polynomial approximation : non-intrusive methods

Based on snapshots u(y i ) where y i ∈ U for i = 1, . . . ,m..

1. Pseudo spectral methods : computation of
∑
ν∈Λn

vνLν by quadrature

vν =

∫
U
u(y)Lν(y)dµ(y) ≈

m∑
i=1

wiu(y
i )Lν(y

i ).

2. Interpolation : with m = n = #(Λn) = dim(PΛn ) search for a unique polynomial
un = IΛnu ∈ VΛn such that

un(y
i ) = u(y i ), i = 1, . . . , n.

3. Least-squares : with m ≥ n, search for polynomial un ∈ VΛn minimizing

m∑
i=1

‖u(y i ) − un(y
i )‖2

V .

4. Underdetermined least-squares : with m < n search for a polynomial un ∈ VΛn

minimizing
m∑
i=1

‖u(y i ) − un(y
i )‖2

V + π(un),

where π is a penalization functional. Compressed sensing : take for π the (weighted) `1

sum of V -norms of Legendre coefficients of un (promote sparse solutions).



Strategies to build the polynomial approximation : non-intrusive methods

Based on snapshots u(y i ) where y i ∈ U for i = 1, . . . ,m..

1. Pseudo spectral methods : computation of
∑
ν∈Λn

vνLν by quadrature

vν =

∫
U
u(y)Lν(y)dµ(y) ≈

m∑
i=1

wiu(y
i )Lν(y

i ).

2. Interpolation : with m = n = #(Λn) = dim(PΛn ) search for a unique polynomial
un = IΛnu ∈ VΛn such that

un(y
i ) = u(y i ), i = 1, . . . , n.

3. Least-squares : with m ≥ n, search for polynomial un ∈ VΛn minimizing

m∑
i=1

‖u(y i ) − un(y
i )‖2

V .

4. Underdetermined least-squares : with m < n search for a polynomial un ∈ VΛn

minimizing
m∑
i=1

‖u(y i ) − un(y
i )‖2

V + π(un),

where π is a penalization functional. Compressed sensing : take for π the (weighted) `1

sum of V -norms of Legendre coefficients of un (promote sparse solutions).



Strategies to build the polynomial approximation : non-intrusive methods

Based on snapshots u(y i ) where y i ∈ U for i = 1, . . . ,m..

1. Pseudo spectral methods : computation of
∑
ν∈Λn

vνLν by quadrature

vν =

∫
U
u(y)Lν(y)dµ(y) ≈

m∑
i=1

wiu(y
i )Lν(y

i ).

2. Interpolation : with m = n = #(Λn) = dim(PΛn ) search for a unique polynomial
un = IΛnu ∈ VΛn such that

un(y
i ) = u(y i ), i = 1, . . . , n.

3. Least-squares : with m ≥ n, search for polynomial un ∈ VΛn minimizing

m∑
i=1

‖u(y i ) − un(y
i )‖2

V .

4. Underdetermined least-squares : with m < n search for a polynomial un ∈ VΛn

minimizing
m∑
i=1

‖u(y i ) − un(y
i )‖2

V + π(un),

where π is a penalization functional. Compressed sensing : take for π the (weighted) `1

sum of V -norms of Legendre coefficients of un (promote sparse solutions).



Strategies to build the polynomial approximation : non-intrusive methods

Based on snapshots u(y i ) where y i ∈ U for i = 1, . . . ,m..

1. Pseudo spectral methods : computation of
∑
ν∈Λn

vνLν by quadrature

vν =

∫
U
u(y)Lν(y)dµ(y) ≈

m∑
i=1

wiu(y
i )Lν(y

i ).

2. Interpolation : with m = n = #(Λn) = dim(PΛn ) search for a unique polynomial
un = IΛnu ∈ VΛn such that

un(y
i ) = u(y i ), i = 1, . . . , n.

3. Least-squares : with m ≥ n, search for polynomial un ∈ VΛn minimizing

m∑
i=1

‖u(y i ) − un(y
i )‖2

V .

4. Underdetermined least-squares : with m < n search for a polynomial un ∈ VΛn

minimizing
m∑
i=1

‖u(y i ) − un(y
i )‖2

V + π(un),

where π is a penalization functional. Compressed sensing : take for π the (weighted) `1

sum of V -norms of Legendre coefficients of un (promote sparse solutions).



Advantages of non-intrusive methods

Applicable to a broad range of models, in particular non-linear PDEs.

Adaptive algorithms seem to work well for the interpolation and least squares
approach, however with no theoretical guarantees.

Additional prescriptions for non-intrusive methods :

(i) Progressive : enrichment Λn → Λn+1 requires only one or a few new snapshots.

(ii) Stable : moderate growth with n of the Lebesgue constant relative to the
interpolation operator.

Main issue : how to best choose the point y i ?
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Conclusions

The curse of dimensionality can be “defeated” by exploiting both smoothness and
anisotropy in the different variables.

For certain models, this can be achieved by sparse polynomial approximations.

The way we parametrize the problem, or represent its solution, is crucial.

Adaptive algorithms with optimal theoretical guarantees are still to be developed, in
particular for non-intrusive approaches (interpolation, collocation, least-squares).
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