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Overview

1. Introduction to the main themes : high dimensional parametric PDEs
2. Sparse polynomial approximation for a model example

3. Other models

4. Towards sparse polynomial algorithms
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Parametric/Stochastic PDEs

We are interested in PDE’s of the general form
D(U, y) =0,

where D is a partial differential operator, u is the unknown and y = (y;)j—1,....4 is a
parameter vector of dimension d >> 1 or d = co ranging in some domain U.



Parametric/Stochastic PDEs

We are interested in PDE’s of the general form
D(Ll, y) =0,

where D is a partial differential operator, u is the unknown and y = (y;)j—1,....4 is a
parameter vector of dimension d >> 1 or d = co ranging in some domain U.

We assume well-posedness of the solution in some Banach space V for every y € U,
y — uly)
is the solution map from U to V.

Solution manifold M :={u(y) : y € U} C V.



Parametric/Stochastic PDEs

We are interested in PDE’s of the general form
D(Ll, }/) =0,

where D is a partial differential operator, u is the unknown and y = (y;)j—1,....4 is a
parameter vector of dimension d >> 1 or d = co ranging in some domain U.

We assume well-posedness of the solution in some Banach space V for every y € U,

y — uly)
is the solution map from U to V.
Solution manifold M :={u(y) : ye U} C V.

The parameters may be deterministic (control, optimization, inverse problems) or
random (uncertainty modeling and quantification, risk assessment). In the second case
the solution u(y) is a V-valued random variable.



Parametric/Stochastic PDEs

We are interested in PDE’s of the general form
D(Ll, }/) =0,

where D is a partial differential operator, u is the unknown and y = (y;)j—1,....4 is a
parameter vector of dimension d >> 1 or d = co ranging in some domain U.

We assume well-posedness of the solution in some Banach space V for every y € U,

y — uly)
is the solution map from U to V.
Solution manifold M :={u(y) : ye U} C V.

The parameters may be deterministic (control, optimization, inverse problems) or
random (uncertainty modeling and quantification, risk assessment). In the second case
the solution u(y) is a V-valued random variable.

These applications often requires many queries of u(y), and therefore in principle
running many times a numerical solver.

Objective : economical numerical approximation of the map y — u(y).



Parametric/Stochastic PDEs

We are interested in PDE’s of the general form
D(Ll, }/) =0,

where D is a partial differential operator, u is the unknown and y = (y;)j—1,....4 is a
parameter vector of dimension d >> 1 or d = co ranging in some domain U.

We assume well-posedness of the solution in some Banach space V for every y € U,

y — uly)
is the solution map from U to V.
Solution manifold M :={u(y) : ye U} C V.

The parameters may be deterministic (control, optimization, inverse problems) or
random (uncertainty modeling and quantification, risk assessment). In the second case
the solution u(y) is a V-valued random variable.

These applications often requires many queries of u(y), and therefore in principle
running many times a numerical solver.

Objective : economical numerical approximation of the map y — u(y).

Related objectives : numerical approximation of scalar quantities of interest
y = Q(y) = Q(u(y)), or of averaged quantities u = E(u(y)) or Q@ = E(Q(y)).
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We consider the steady state diffusion equation

—div(aVu) =f on D C R™ and ujpp =0,
set on a domain D C R™, where f = f(x) € L?(D) and a € L>(D)
Lax-Milgram lemma : assuming amin := mingep a(x) > 0, unique solution

u € V = H}(D) with
1

lullv = IVull2p) < Iy

min

Proof of the estimate : multiply equation by u and integrate
aminllul|3 < J aVu-Vu= fj udiv(aVu) :J uf < |lullvIIfllv:.
D D D
We may extend this theory to the solution of the weak (or variational) formulation
[ aVu-Vv={(f,v), ve&V=HD),
JD

if fe V! =H1(D)



Parametrization

Assume diffusion coefficients in the form of an expansion

a=aly)=a+ Zyjlbj, y=(ylj>1 €U,
j>1

with d >> 1 or d = co terms, where 3 and (;);>1 are functions from L*°,



Parametrization

Assume diffusion coefficients in the form of an expansion

a=aly)=a+ Zyjlbj, y=(ylj>1 €U,
j>1

with d >> 1 or d = co terms, where 3 and (;);>1 are functions from L*°,

Note that a(y) is a function for each given y. We may also write
a:a(xyy]ZE(X)J"Zijj(X)s XED,yEU,
jz1

where x and y are the spatial and parametric variable, respectively. Likewise, the
corresponding solution u(y) is a function x — u(y, x) for each given y. We often
ommit the reference to the spatial variable.



Parametrization

Assume diffusion coefficients in the form of an expansion

a=aly)=a+ Zyjlbj, y=(ylj>1 €U,
j>1

with d >> 1 or d = co terms, where 3 and (;);>1 are functions from L*°,

Note that a(y) is a function for each given y. We may also write

a:a(xyy]ZE(X)J"Zijj(X)s XED,yEU,
j=1

where x and y are the spatial and parametric variable, respectively. Likewise, the
corresponding solution u(y) is a function x — u(y, x) for each given y. We often
ommit the reference to the spatial variable.

Up to a change of variable, we assume that all y; range in [—1,1], therefore
y € U=[-1,1%0r [-1,1]".
Uniform ellipticity assumption :
(UEA) O<r<alx,y) <R, xeD,yeU
Then the solution map is bounded from U to V := Hé(D], that is, u € L*®(U, V) :

v
r )

lu)llv < G = y e U,



Example of parametrization : piecewise constant coefficients

Assume that a is piecewise constant over a partition {Dj,..., Dy} of D, and such that
on each Dj the value of a varies on [c — ¢,c+ cj} for some ¢ >0 and 0 < ¢ <c.




Example of parametrization : piecewise constant coefficients

Assume that a is piecewise constant over a partition {Dj,..., Dy} of D, and such that
on each Dj the value of a varies on [c — ¢,c+ cj} for some ¢ >0 and 0 < ¢ <c.

Then a natural parametrization is

d
a()/):g‘i'zijjv a=c, L‘)j:CjXDj»

Jj=1

with y = (yj)j-1,....d € U =[-1,1]%.
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Example of parametrization : Karhunen-Loeve representation

Assume a = (a(x))xep is a random process with average

and covariance function
Ci(x,z) = E(é[x)é(z))‘ a:=a—a x,z€D.

Define the integral operator by

Tv(x) = JD Ca(x, z)v(z)dz,

self-adjoint, positive and compact in L2(D). Therefore it admits an L2 orthonormal
basis (@;);>1 of eigenfunctions, associated to eigenvalues A\; > A2 > --- > 0, such

that A\, — 0 as n — +oo.

Karhunen-Loeve (KL) decomposition (a.k.a. principal component analysis) :

a=3a+ Z oy, &= JD a(x)@j(x)dx.

jz1
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E(&) =0, E(&&)=0 if j#i, E(&P) =A;.

If the random process a is bounded, then the variables &; have bounded range
[&;] < ¢j, so that with y; := &;/c; and ) := ¢j@; we may also write
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The KL representation is optimal for trunctation in mean-square L2(D)-error :

inf  E(||3d— Pg3|?
anrt (Il £all72),

is attained by E = E; := span{i{y, ..., } with

= =12 2
Bl - Pe,al2) =E(Il Y ywil%) = A
j>J j>J
Case of a stationary process : C,(x,z) = k(x — z), that is T is a convolution operator.

If D is the m-dimensional 27-periodic torus, the KL basis is of Fourier type

x = @i(x) = (2m) ™2 ke z™,



Model reduction

Objective : fast approximate computation of y — u(y) for many queries of y.

Vehicle : separable (low rank) approximations of the form

n
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Thus we approximate simultaneously all solutions u(y) in the same n-dimensional
space V,, C V.
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Vehicle : separable (low rank) approximations of the form

n

ulx,y) & un(x,y) == D vi(x)bkly),

k=1
where vi : D — R with v, € V and ¢, : U — R. Equivalently

n

up(y) == Z vikdbi(y) = Zd)k(y)vk € Vp :=span{v,...,vp} C V, ye€U.
k=1 k=1

Thus we approximate simultaneously all solutions u(y) in the same n-dimensional
space V,, C V.

By the way, this is what we do when we use a finite element solver :
y = uh[y] eV,CV.
So what's new here?

Accurate solutions may require V), of very large dimension Ny = dim(V}) >> 1 and
each query y — up(y) is expensive.

We hope to achieve same order of accuracy n << N}, by a choice of V), adapted to the
parametric problem. In practice the functions vi,..., v, are typically picked from such
a finite element space V}, so that up(y) € V), for all y but actually belongs to the
much smaller space V,, C V.



1. Uniform sense

Measure of performance

llu = unlloo(u,vy = sup |luly) = ua(y)llv,
yeu
2. Mean-square sense, for some measure pon U,

=l g = | 9) = I sy,
we have

If wis a probability measure, and y randomly distributed according to this measure,

lu—unllZ2 ) = Ellluly) — un0)IR).
Note that we always have

E(lluly) = un)}) < llu— tnllfee y,v)-

A "worst case” estimate is always above an “average” estimate.

«O>r «Fr <
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v
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Measure of performance

1. Uniform sense
lu = unllreo(u,vy = sup [luly) — un(y)llv,
yeU

2. Mean-square sense, for some measure @ on U,

=l g = | ) = enty) ).
If 1 is a probability measure, and y randomly distributed according to this measure,
we have

llu = unll2 0 = Eluly) = un()13)-

Note that we always have
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A "worst case” estimate is always above an “average” estimate.



Optimal spaces ?

Best n-dimensional space for approximation in the uniform sense : the space F, one
that reaches the Kolmogorov n-width of the solution manifold in the V norm
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Optimal spaces ?

Best n-dimensional space for approximation in the uniform sense : the space F, one
that reaches the Kolmogorov n-width of the solution manifold in the V norm

dp =dp(M):= inf  sup min|lv—w|y = _inf sup min |u(y) —wly.
dim(E)<nyc M weEE dim(E)<nyecyweE

Best n-dimensional space for approximation in the mean-square sense : principal
component analysis in V (instead of L? with KL basis). Consider an orthonormal basis
(ex)k>1 of V and decompose

uly) = uly)er, uly) = (uly), en)v.

k>1

Introduce the infinite correlation matrix M = (E(uxu;))k,/>1. It has eigenvalues
(Ak)k>1 and associated eigenvectors g = (gk,1)ien which form an orthonormal basis
of £2(N). The best space is

ni=span{vi,..., vp}, Vg = z 8k, 1€l
>1

and has performance

2 . . 2 2
er = inf E(mm u —w ) = g A < d5.
" dim(E)<n weEH ) v = k= "n



Realistic strategies
The optimal spaces F, and G, are usually out of reach. There are two main
computational approaches to realistically design the approximation u, = Y | _; vkdx.

1. Expand formally the solution map y +— u(y) in a given “basis” (¢d)x>1 of high
dimensional functions
uly) =D vkbily),
k>1
where v, € V are viewed as the coefficients in this expansion.

Compute these coefficients for k = 1,..., n approximately by some numerical
procedure.

Main representative (this lecture) : Polynomial methods (the ¢ are multivariate
polynomials).
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The optimal spaces F, and G, are usually out of reach. There are two main
computational approaches to realistically design the approximation u, = Y | _; vkdx.

1. Expand formally the solution map y +— u(y) in a given “basis” (¢d)x>1 of high
dimensional functions
uly) =D vkbily),
k>1
where v, € V are viewed as the coefficients in this expansion.

Compute these coefficients for k = 1,..., n approximately by some numerical
procedure.

Main representative (this lecture) : Polynomial methods (the ¢ are multivariate
polynomials).

2. Compute first a “good” basis {v1, ..., vy} and define V), as their span. Then, for any
given instance y, compute up(y) € V, by a numerical method.

Main representative : Reduced Bases (RB) methods emulate the n-width spaces F, for
uniform, or L (U, V), approximation. Proper Orthogonal Decompositions (POD)
methods emulate the principal component spaces G, for mean-square, or L?(U, V, 1),
approximation.



Remarks

In the second approach, the functions vy are typically computed in an heavy offline
stage, then for any given y, the computation of up(y) is done in a cheap online stage.

The first approach gives immediate access to the approximation u, for all values of y
since the functions v, and ¢, are both precomputed offline, the online stage is then a

trivial recombination.
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necessarily require full knowledge of PDE model.



Remarks

In the second approach, the functions vy are typically computed in an heavy offline
stage, then for any given y, the computation of up(y) is done in a cheap online stage.

The first approach gives immediate access to the approximation u, for all values of y
since the functions v, and ¢, are both precomputed offline, the online stage is then a
trivial recombination.

Other important distinction : intrusive versus non-intrusive methods. The latter are
based on post-processing individual solution instances

ulyh), yleu, i=1,...,m.

They may benefit of a pre-existing numerical solver viewed as a blackbox and do not
necessarily require full knowledge of PDE model.

In practice, the v are typically chosen in a discrete (finite element) space V), C V,
with N = dim(V}) >> n. Equivalently, we apply the above technique to the discrete
solution map y — up(y) € V. The error may thus be decomposed into the finite
element discretization error and the model reduction error.



How to defeat the curse of dimensionality ?

The map y — u(y) is high dimensional, or even infinite dimensional y = (y;);>1.

We are thus facing the curse of dimensionality when trying to approximate it with
conventional discretization tools in the y variable (Fourier series, finite elements).

A general function of d variable with m bounded derivatives cannot be approximated
in L% with rate better than n~™/9 where n is the number of degrees of freedom.
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O(N~*) that are independent of d in the sense that they hold when d = co.



How to defeat the curse of dimensionality ?

The map y — u(y) is high dimensional, or even infinite dimensional y = (y;);>1.

We are thus facing the curse of dimensionality when trying to approximate it with
conventional discretization tools in the y variable (Fourier series, finite elements).

A general function of d variable with m bounded derivatives cannot be approximated
in L% with rate better than n~™/9 where n is the number of degrees of freedom.

A possible way out : exploit anisotropic features in the function y — u(y).

The PDE is parametrized by a function a (diffusion coefficient, velocity, domain
boundary) and y; are the coordinates of a in a certain basis representation

a=2a+3 ;o ;.

If the 1; decays as j — +oo (for instance if a has some smoothness) then the variable
yj are less active for large j.

We shall see that in certain relevant instances, this mechanism allows to break the
curse of dimensionality by using suitable expansions : we obtain approximation rates
O(N~*) that are independent of d in the sense that they hold when d = co.

One key tool for obtaining such result is the concept of sparse approximation.
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Consider sequences d = (dv)ver in L9(F) where F is a countable index set.

Best n-term approximation : we seek to approximate d by a sequence supported on a
set of size n.

Best choice : d,, defined by leaving dv unchanged for the n largest |dy| and setting the
others to 0.
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Sparse approximation in {9 spaces : Stechkin's lemma

Consider sequences d = (dv)ver in L9(F) where F is a countable index set.

Best n-term approximation : we seek to approximate d by a sequence supported on a
set of size n.

Best choice : d,, defined by leaving dv unchanged for the n largest |dy| and setting the
others to 0.

Lemma : for 0 < p < g < o0, one has

deP(F)=|ld—dnllee < C(n+1)"°, s=

v C=ld]lee.

T =
Q |~

Proof : introduce (d})x>1 the decreasing rearrangement of (|dv|)ve 7, and combine

ld—dallfe = >_ldg17 =3 |di |9 Pld; 1P < CPldy, 477

k>n k>n
with
n+1
(n+1)ldy P < Y ldIP < CP.
k=1

Note that a large value of s corresponds to a value p < 1 (non-convex spaces).



From sequence approximation to Banach space valued function approximation

If a V-valued u has an expansion of the form u(y) = Zve]—‘ uy v (y), in a given basis
(d+)ver, we use Stechkin's lemma to study the approximation of u by

Up = Z Uv‘bvy

VEA,

where A, C F corresponds to the n-largest ||uv||v.
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From sequence approximation to Banach space valued function approximation

If a V-valued u has an expansion of the form u(y) = Zve]—‘ uy v (y), in a given basis
(d+)ver, we use Stechkin's lemma to study the approximation of u by

Up = Z Uv‘bvy

VEA,
where A, C F corresponds to the n-largest ||uv||v.
If sup,cy |[dv(y)] = 1, then by triangle inequality
o= tnlliseuvy < Y Nuvdvliowv) = Y lluvllv,
vEA, VEAn

If (dv)ver is an orthonormal basis of L2(U, 1), then by Parseval equality

2 2
”uiu"HLZ(U,V,p.) = Z HUV”V)
vEAp

For concrete choices of bases a relevant question is thus : what smoothness properties
of a function ensure that its coefficient sequence belongs to {P for small values of p?
In the case of wavelet bases, such properties are characterized by Besov spaces.

In our present setting of high-dimensional functions y — u(y) we shall rather use
tensor-product polynomial bases instead of wavelet bases. Sparsity properties will
follow to the anisotropic features of these functions.



Return to the main guiding example

Steady state diffusion equation
—div(aVu) =f on D C R™ and upp =0,
where f = f(x) € L?(D) and the diffusion coefficients are given by

a=alx,y) =3(x)+ Y ybj(x),
j=1
where 3 and the (;);>; are given functions and y € U = [—1, 1]N. Uniform ellipticity

assumption :
(UEA) O0<r<alx,y) <R, xeD,yeU.



Return to the main guiding example

Steady state diffusion equation
—div(aVu) =f on D C R™ and upp =0,

where f = f(x) € L?(D) and the diffusion coefficients are given by

a=alx,y) = +ZyJII)J

j=1

where 3 and the (;);>; are given functions and y € U = [—1, 1]N. Uniform ellipticity
assumption :
(UEA) O0<r<alx,y) <R, xeD,yeU.

Equivalent expression of (UEA) : 3 € L°°(D) and

or

<0<l
L (D)

H ZJ‘Z]_ |11)J‘

Lax-Milgram : solution map is well-defined from U to V := Hé(D) with uniform bound

Hva
)

lu)llv < G- y € U, where [v]ly = Vv]|.



Sparse polynomial approximations using Taylor series

We consider the expansion of u(y) = Zve]—' tvyY, where
v; 1 .
y¥i= ];{yj Tand by = 2 0Vu, o €V with V= gvjl and 0!:=1.
ji> j>

where F is the set of all finitely supported sequences of integers (finitely many
v;j # 0). The sequence (tv)yeF is indexed by countably many integers.

— |V
= ® S

L 4 " 4 " 4
identify a set A C F with #(A) = n such that u is well approximated by

ualy) =D tvy".

VEA

Objective :
the partial expansion



Best n-term approximation

A-priori choices for A have been proposed, e.g. (anisotropic) sparse grid defined by
restrictions of the type Zj a;v; < A(n) or ]_[j(l +B;vj) < B(n).
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Instead we want to choose A optimally adapted to u. By triangle inequality we have
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Best n-term approximation in {}(F) norm : use A = A, index set of n largest ||ty |y.

Stechkin lemma : if (||tv||v)ver € €P(F) for some p < 1, then for this Ap,

1
> vl <Cn ey si==—1, C:=||(lItv]lv)llee-
VEA, P

Question : do we have (||tv]|v)ver € (P(F) for some p <17



One main result

Theorem (Cohen-DeVore-Schwab, 2011) : under the uniform ellipticity assumption
(UAE), then for any p < 1,

(il )j=0 € LP(N) = ([Itv]lv)ver € P (F).
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Theorem (Cohen-DeVore-Schwab, 2011) : under the uniform ellipticity assumption
(UAE), then for any p < 1,

(1bjllise)j=0 € C(N) = (Itv[|lv)ver € (F).
Interpretations :

(i) The Taylor expansion of u(y) inherits the sparsity properties of the expansion of
a(y) into the ;.

(if) We approximate u(y) in L®°(U, V) with algebraic rate O(n~*) despite the curse of
(infinite) dimensionality, due to the fact that y; is less influencial as j gets large.

(iii) The solution manifold M :={u(y); y € U} is uniformly well approximated by the
n-dimensional space V), := span{ty : v € Ap}. Its n-width satisfies the bound

dn(M)y < maxdist(u(y), Va)v < max|lu(y) —up,(y)llv < Cn*.
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One main result

Theorem (Cohen-DeVore-Schwab, 2011) : under the uniform ellipticity assumption
(UAE), then for any p < 1,

(sl )j=0 € PN) = ([tvllv)ver € P(F).

Interpretations :

(i) The Taylor expansion of u(y) inherits the sparsity properties of the expansion of
a(y) into the ;.

(if) We approximate u(y) in L®°(U, V) with algebraic rate O(n~*) despite the curse of
(infinite) dimensionality, due to the fact that y; is less influencial as j gets large.

(iii) The solution manifold M :={u(y); y € U} is uniformly well approximated by the
n-dimensional space V), := span{ty : v € Ap}. Its n-width satisfies the bound

dn(M)y < maxdist(u(y), Va)v < max|lu(y) —up,(y)llv < Cn*.
yeu yeu

Such approximation rates cannot be proved for the usual a-priori choices of A.

Same result for more general linear equations Au = f with affine operator
dependance : A=A+ Zj21yjAj uniformly invertible over y € U, and
(lAjllv—w)j>1 € LP(N), as well as other models.
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Idea of proof : extension to complex variable

Estimates on ||tv||y by complex analysis : extend u(y) to u(z) with z = (z) € € N,
Uniform ellipticity Zj>1 [;| <a—r implies that with a(z) =3+ ZJ->1 zj);,
0 < r<%NRalx,z)) <la(x,z)| < 2R, x€ D,

for all z € U =={lz| < 1} = ®;>1{lz| < 1}.

Lax-Milgram theory applies : ||u(z)||ly < G = Ifllve gor a1l 2 ceu.

r

The function u +— u(z) is holomorphic in each variable z; at any z € U : its first
derivative 6zju(z) is the unique solution to

J a(z)Vazj u(z) - Vv = —J PY;Vu(z)- Vv, veV.
D D

Note that V is with respect to spatial variable x € D.



Idea of proof : extension to complex variable

Estimates on ||tv||y by complex analysis : extend u(y) to u(z) with z = (z) € € N,
Uniform ellipticity Zj>1 [;| <a—r implies that with a(z) =3+ ZJ->1 zj);,
0 < r<%NRalx,z)) <la(x,z)| < 2R, x€ D,

for all z € U =={lz| < 1} = ®;>1{lz| < 1}.

Lax-Milgram theory applies : ||u(z)||ly < G = Ifllve gor a1l 2 ceu.

r

The function u +— u(z) is holomorphic in each variable z; at any z € U : its first
derivative 6zju(z) is the unique solution to

J a(z)Vazj u(z) - Vv = —J PY;Vu(z)- Vv, veV.
D D

Note that V is with respect to spatial variable x € D.

Extended domains of holomorphy : if p = (p;);>0 is any positive sequence such that
for some 6 >0

D pilbj(x)<a(x) =8, x €D,

Jj=1

then u is holomorphic with uniform bound ||u(z)|| < G5 = “fHEV* in the polydisc

Up = ®j>1{lzjl < pjly

If & < r, we can take p; > 1.



Estimate on the Taylor coefficients

Use Cauchy formula. In 1 complex variable if z — u(z) is holomorphic and bounded in
a neighbourhood of disc {|z| < b}, then for all z in this disc

u(z) = J ulz’) 40

2iTt |z/|=b z—2z'

which leads by n differentiation at z = 0 to |u(™ (0)| < n!b—" max|,|<p [u(z)].
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This yields exponential convergence rate b~ " = exp(—cn) of Taylor series for 1-d
holomorphic functions. Curse of dimensionality : in d dimension, this yields
sub-exponential rate exp(—cn'/9) where n is the number of retained terms.



Estimate on the Taylor coefficients

Use Cauchy formula. In 1 complex variable if z — u(z) is holomorphic and bounded in
a neighbourhood of disc {|z| < b}, then for all z in this disc

u(z) = J u(z’) dz’,

2iTt |z/|=b z—2z'

which leads by n differentiation at z = 0 to |u(™ (0)| < n!b—" max|,|<p [u(z)].

This yields exponential convergence rate b~ " = exp(—cn) of Taylor series for 1-d
holomorphic functions. Curse of dimensionality : in d dimension, this yields
sub-exponential rate exp(—cn'/9) where n is the number of retained terms.

Recursive application of this to all variables z; such that v; # 0, with b = p; gives
v,
||aVU\z:0||v < C5‘V! H pj J)

jz1

and thus Y
ltvllv < G [ [e; ™ =Cop™,
j>1

for any sequence p = (p;);>1 such that

Z pjlb;(x)I < 3a(x) —b.

jz1



Optimization
Since p is not fixed we have

ltv]lv < Csinf{p™"

p st Y pjhb(x) <3(x) -8, xe D}

jz1
We do not know the general solution to this problem, except in particular case, for
example when the 1; have disjoint supports.
which we prove that

Instead design a particular choice p = p(v) satisfying the constraint with & = r/2, for

([bjll)j>1 € CPN) = (p(v) Y )ver € P(F),
therefore proving the main theorem.
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Optimization

Since p is not fixed we have

Itvllv < Gsinf{p™™ : p st Y pjlbj(x)] <3(x) =8, x€ D}
j=1

We do not know the general solution to this problem, except in particular case, for

example when the 1; have disjoint supports.

Instead design a particular choice p = p(v) satisfying the constraint with & = r/2, for
which we prove that

([[Wjlle)j>1 € LP(N) = (p(V) ™Y )ver € P(F),

therefore proving the main theorem.
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A simple case
Assume that the 1; have disjoint supports. Then we maximize separately the p; so that

_ r
ZPJN)J | <3a(x )_E»XED)

j=1
which leads to
a(x) — 3
pj = min ————=,
x€D [h;(x)]
We have, with § = é
ltvllv < Csp™Y = Csb”,
where b = (b;) and
b= p ! = max 7|1|)j(X)\ < llbjl oo .
J xe€D 3(x) — 5 R—%

Therefore b € P(N). From (UEA), we have ;(x)| < 3(x) — r and thus ||b[[¢e < 1.



A simple case
Assume that the 1; have disjoint supports. Then we maximize separately the p; so that

_ r
ZPJN)J | <3a(x )_E»XED)

jz1
which leads to
a(x) — 3
pj = min ————=,
YED [y (x|
We have, with § = é
ltvllv < Csp™Y = Csb”,
where b = (b;) and
bj = p7! = max 77@]-()(” < [jlee .
J xe€D 3(x) — 5 R—7%

Therefore b € P(N). From (UEA), we have ;(x)| < 3(x) — r and thus ||b[[¢e < 1.
We finally observe that

b e (P(N) and bl < 1& (bY)ver € (P(F).

Proof : factorize
> b= bP" =

veF j>1n>0 J>1




Improved summability results

One defect of the previous result is that it depends on the ; only through [[;|[ e,
without taking their support into account.Improved results can be obtained, without
relying on complex variable, by better exploiting the specific structure of PDE.
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Kroeneker sequence of index j, the coefficient t is solution to
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We introduce the quantities
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D D

Recall that (UEA) implies that Hw <0 < 1. In particular
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We use here the equivalent norm [|v||2, := [, a[Vv[.



Improved summability results

One defect of the previous result is that it depends on the ; only through [[;|[ e,
without taking their support into account.Improved results can be obtained, without
relying on complex variable, by better exploiting the specific structure of PDE.

Recursive formula for the Taylor coefficients : with ¢; = (0,...,0,1,0,...) the
Kroeneker sequence of index j, the coefficient t is solution to

J AVt Vv=— Y J P;Vty Vv, vEV.
b jivj#0" P

We introduce the quantities

dy ::J 3Vty? and dy ::J ;| IVt 2.
D D

Recall that (UEA) implies that Hw <0 < 1. In particular
L (D)
Y dy, < 0dy.
=1

We use here the equivalent norm [|v||2, := [, a[Vv[.

Lemma : under (UEA), one has 3~ - dv =3 > )13, < oo.



Proof
Taking v =ty in the recursion gives

v =J AV 2 = —
D

Z J ijtv—eJVtv
jivi#0’P
Apply Young's inequality on the right side gives
dyv <

1 2
< Y (5] waver+
J: vj#0 b

1
J N)JHVtV Ej‘2> o 5 Z V,j + Z dy_ &
The first sum is bounded by 0d,, therefore

(1-3)h <3 3 day

J: vj#0

J:vj#0

jv%O

Now summing over all |v| = k gives

[vl=k

(EHPICES D UL

[vl=kj: vj#0

LY ety oa
Therefore Z\v\:k dy < KZh 1 dv with &

\v\ k—1j>1 |[v|=k—1

5= < 1, and thus Zve]—‘d‘/ < 00

«O>r «Fr <
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Proof

Taking v = ty in the recursion gives

dV:J AVt > =— Z J Y Viy—e Vty.
D J: vj #0

Apply Young's inequality on the right side gives

1 , 1 N 1
< 3 (5] WvePG | wive?) =3 5 dytg X deg
J:VﬁéO Jj: ‘VJ'750 j VJ#O

The first sum is bounded by 0dy, therefore
0 1
(17 E)dv <3 S dve
Jivj#0

Now summing over all |v| = k gives

(1—7)Zdy 72 > dygy= Z Zd,_2 S dv

|v|=k |v|=kj: v;#0 \v\ k—1j>1 |v|=k—1

\ /\

Therefore Z\v\:k dy < KZ\v\:k—l dy with kK := % < 1, and thus Zve]—' dy < co.



Rescaling

Now let p = (p;)j>1 be any sequence with p; > 1 such that Zj>1 pjlb;| <3 — o for

some & > 0, or equivalently such that ‘M <0<l

Le(D)

Considered the rescaled solution map @i(y) = u(py) where py := (p;y;)j>1 which is the
solution of the same problem as u with 1; replaced by p;;.



Rescaling

Now let p = (p;)j>1 be any sequence with p; > 1 such that Zj>1 pjlb;| <3 — o for

some & > 0, or equivalently such that ‘M <0<l

Le(D)

Considered the rescaled solution map @i(y) = u(py) where py := (p;y;)j>1 which is the
solution of the same problem as u with 1; replaced by p;;.

Since (UEA) holds for for these rescaled functions, the previous lemma shows that
2 BV < oo
veF

where

1 1

ty := —0Y0(0) = —pY0Yu(0) = pVty.
v! v!

This therefore gives the weighted {2 estimate
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Rescaling

Now let p = (p;)j>1 be any sequence with p; > 1 such that Zj>1 pjlb;| <3 — o for

some & > 0, or equivalently such that ‘M <0<l

Le(D)

Considered the rescaled solution map @i(y) = u(py) where py := (p;y;)j>1 which is the
solution of the same problem as u with 1; replaced by p;;.

Since (UEA) holds for for these rescaled functions, the previous lemma shows that
2 BV < oo
veF

where

1 1

ty := —0Y0(0) = —pY0Yu(0) = pVty.
v! v!

This therefore gives the weighted {2 estimate

D> (Yltvllv)* < € < oo.
veF

In particular, we retrieve the estimate ||tv||y < Cp~V that was obtained by the
complex variable approach, however the above estimate is stronger.



An alternate summability result

Applying Holder's inequality gives
p/2 1-p/2
Sledf < (3 e¥lndv®) (3 o)
veF veF vEF

1

with g = i—pp > p, or equivalently é =5 %



An alternate summability result

Applying Holder's inequality gives

2 lIeliy < (Z (p¥lltv v)2)P/2<Z p*qv>1*P/2‘

veF veF veF

with g = i—pp > p, or equivalently % = % — %
The sum in second factor is finite provided that (p;l)jzl € 9. Therefore, the

following result holds.

Theorem (Bachmayr-Cohen-Migliorati, 2015) : Let p and g be such that % = % — %
Assume that there exists a sequence p = (p;);>1 of numbers larger than 1 such that

D pjlbjl<a—s,
jz1

for some & > 0 and
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Then (||tv]|v)ver € P(F).



An alternate summability result

Applying Holder's inequality gives

Z HtVHP s (Z (P Ity \/)2)p/2<Z p*qv>17p/2‘

vEF vEF veEF

with g = i—pp > p, or equivalently % = % — %
The sum in second factor is finite provided that (p;l)jzl € 9. Therefore, the

following result holds.

Theorem (Bachmayr-Cohen-Migliorati, 2015) : Let p and g be such that % = % — %
Assume that there exists a sequence p = (p;);>1 of numbers larger than 1 such that
Z pilbjl <a—3,
j=1

for some & > 0 and
(Pfl)jzl e .

Then (||tv]|v)ver € P(F).

The above conditions ensuring {P summability of (||tv||\v)veF are significantly weaker
than those in the first summability theorem especially for locally supported ;.
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Disjoint supports

Assume that the 1{; have disjoint supports.

Then with 6 = £, we choose

r
2

so that Zj>1 pjlb;l <3 — 5 holds.

We have
_ ;i (x)] [I; ]l oo
bj::pjlzfijilgijii'
a(x) — 3 R—3

Thus in this case, our result gives for any 0 < g < oo,

([[Wjllz)j>1 € 9N) = (Itv[lv)ver € P(F),

with L =11
q p 2
Similar improved results if the \; have supports with limited overlap, such as wavelets.

No improvement in the case of globally supported functions, such as typical KL bases.



Other models

Model 1 : same PDE but no affine dependence, e.g. a(x,y) = a(x) + (Zj>0 yjd)j(x))Q.
Assuming that a(x) > r > 0 guarantees ellipticity uniformly over y € U.
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ensured for certain nonlinearities, e.g. g(u) = v of v® in dimension m =3 (V C L).



Other models

Model 1 : same PDE but no affine dependence, e.g. a(x,y) = a(x) + (Zj>0 yjd)j(x))Q.
Assuming that a(x) > r > 0 guarantees ellipticity uniformly over y € U.

Model 2 : similar problems + non-linearities, e.g.
g(u) —div(aVu) =f on D= D(y) upp =0,

with same assumptions on a and f. Well-posedness in V = H&(D) forall f € V'is
ensured for certain nonlinearities, e.g. g(u) = v of v® in dimension m =3 (V C L).

Model 3 : PDE’s on domains with parametrized boundaries, e.g.
—Av=f on D=Dy upp=0.
where the boundary of D, is parametrized by y, e.g.
Dy ={(x1,x2) € R? : 0<x; <1 and 0< x < b(x1,y)},

where b = b(x,y) = b(x) + 2 ¥ibj(x) satisfies 0 < r < b(x,y) < R. We transport
this problem on the reference domain [0, 1]2 and study

u(y) = V(y) o ¢y» d)y : [0) 1]2 — Dyv d’y(leXZ) = (X17X2b(X1)y))-

which satisfies a diffusion equation with coefficient a = a(x, y) non-affine in y.



Polynomial approximation for these models

In contrast to our guiding example (which we refer to as model 0), bounded
holomorphic extension is generally not feasible in a complex domain containing the
polydisc U = ®;>1{lzj] < 1}. For this reason, Taylor series are not expected to
converge.



Polynomial approximation for these models

In contrast to our guiding example (which we refer to as model 0), bounded
holomorphic extension is generally not feasible in a complex domain containing the
polydisc U = ®;>1{lzj] < 1}. For this reason, Taylor series are not expected to
converge.
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Thus (Lv)ver is an orthonormal basis for L2(U, V, 1) where p := ®j>15 @i 4 is the
uniform probability measure and we have

vy = J uly) Ly (y)duly).
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In contrast to our guiding example (which we refer to as model 0), bounded
holomorphic extension is generally not feasible in a complex domain containing the
polydisc U = ®;>1{lzj] < 1}. For this reason, Taylor series are not expected to
converge.

Instead we consider the tensorized Legendre expansion

= Z vv Ly (y),

veF
where Ly (y) := Hj>1 ij (yj) and (Li)k>0 are the Legendre polynomials normalized in

(1, %)

Thus (Lv)ver is an orthonormal basis for L2(U, V, 1) where p := ®j>15 @i 4 is the
uniform probability measure and we have

vy = J uly) Ly (y)duly).
U

We also consider the L*>°-normalized Legendre polynomials Py = (1 + 2k)~1/2[, and
their tensorized version P-, so
= Z wy Py (y),

vEF

where wy = (Hj21(1 + Vj)1/2> vy



Main result
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with X = L for models 0, 1, 2, and X = W1* for model 3.



Main result

Theorem (Chkifa-Cohen-Schwab, 2013) : For models 0, 1, 2 and 3, and for any p < 1,
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Main result

Theorem (Chkifa-Cohen-Schwab, 2013) : For models 0, 1, 2 and 3, and for any p < 1,

(Ibjlix)j=0 € tP(N) = ([lwllv)ver and ([[wy|v)ver € P(F).
with X = L for models 0, 1, 2, and X = W1* for model 3.

By the same application of Stechkin's argument as for Taylor expansions, best n-term
truncations for the L°° normalized expansion converge rate O(n—*) in L*°(U, V)
where s = % —1.

Best n-term truncations for the L2 normalized expansion converge rwith ate O(n™") in

12U, V, i) where r = % — %

In the particular case of our guiding example, model 0, we can obtain improved
summability results for Legendre expansions, similar to Taylor expansions.

Key ingredient in the proof of the above theorem : estimates of Legendre coefficients
for holomorphic functions in a “small” complex neighbourhood of U.



Taylor vs Legendre expansions

In one variable :

- If u is holomorphic in an open neighbourhood of the disc {|z| < b} and bounded by
M on this disc, then the n-th Taylor coefficient of u is bounded by

< Mb~"

[tn| ==

u((0)

- If u is holomorphic in an open neighbourhood of the domain &, limited by the ellipse
of semi axes of length (b+ b~1)/2 and (b— b~1)/2, for some b > 1, and bounded by
M on this domain, then the n-th Legendre coefficent w, of u is bounded by

lwn| < Mb™"(1 + 2n)(b), ¢(b) =




A general assumption for sparsity of Legendre expansions

We say that the solution to a parametric PDE D(u, y) = 0 satisfies the
(p, €)-holomorphy property if and only if there exist a sequence (¢;);j>1 € ¢P(N), a
constant ¢ > 0 and Cp > 0, such that : for any sequence p = (p;j);j>1 such that p; > 1

and
D (pi—1g <,
j>1

the solution map has a complex extension

z— u(z),

of the solution map that is holomorphic with respect to each variable on a domain of
the form Op = ®;>10p; where Op; is an open neigbourhood of the elliptical domain
5pj, with bound

sup [lu(z)[lv < Co,
ze&p

where £y = ®;>1&;.
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We say that the solution to a parametric PDE D(u, y) = 0 satisfies the
(p, €)-holomorphy property if and only if there exist a sequence (¢;);j>1 € ¢P(N), a
constant ¢ > 0 and Cp > 0, such that : for any sequence p = (p;j);j>1 such that p; > 1

and
D (pi—1g <,
j>1

the solution map has a complex extension

z— u(z),

of the solution map that is holomorphic with respect to each variable on a domain of
the form Op = ®;>10p; where Op; is an open neigbourhood of the elliptical domain
Ep;, with bound

sup [lu(z)|lv < Go,

zelp
where £y = ®;>1&;.

Under such an assumption, one has (up to additional harmless factors) an estimate of
the form

Iwvlly < Goinf{p™ ; p st. Y (pj—1)g < e},
j>1

allowing us to prove that (||wy||v)ver € (P(F).
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Assume a general problem of the form
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with V, X, W a triplet of complex Banach spaces, and 3 and ; are functions in X.



A general framework for establishing the (p, ¢)-holomorphy assumption

Assume a general problem of the form
Plu,a) =0,

with a = a(y) =3+ 3 ;5 yj\b;, where

PV xX— W,
with V, X, W a triplet of complex Banach spaces, and 3 and ; are functions in X.
Theorem (Chkifa-Cohen-Schwab, 2013) : assume that
(i) The problem is well posed for all a € Q = a(U) with solution u(y) = u(a(y)) € V.
(ii) The map P is differentiable (holomorphic) from X x V to W.
(iii) For any a € Q, the differential 0,P(u(a), a) is an isomorphism from V to W
(iv) One has (|[W;]|x)j>1 in €P(N) for some 0 < p < 1,

Then, for ¢ > 0 small enough, the (p, ¢)-holomorphy property holds.



Idea of proof

Based on the holomorphic Banach valued version of the implicit function theorem (see
e.g. Dieudonné).

1. For any a € Q ={a(y) : y € U} we can find a €; > 0 such that the map a — u(a)
has an holomorphic extension on the ball B(a,e,) :={3 € X : ||a— a||x < €a}-

2. Using the decay properties of the [[\;]|x, we find that @ is compact in X. It can be
covered by a finite union of balls B(aj, ¢5,), for i =1,..., M.

3. Thus a — u(a) has an holomorphic extension on a complex neighbourhood N of @

of the form
N =UM, B(aj, e2).

4. For ¢ small enough, one proves that if Zj>1(9j —1)¢ < e with ¢ := |||, then
with Op = ®j>10,; where Op:={z € C : dist(z, [-L,1)c <b—1}isa
neighborhood of &, one has

z€0p = alz) EN.

This gives holomorphy of z — a(z) — u(z) = u(a(z)) in each variable for z € O,.



Lognormal coefficients

We assume diffusion coefficients are given by
a = exp(b),

with b a random function defined by an affine expansion of the form

b=bly) = ybj

jz1

where (;) is a given family of functions from L°°(D) and y = (y;);>1 a sequence of
i.i.d. standard Gaussians N'(0,1) variables.
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Lognormal coefficients

We assume diffusion coefficients are given by
a = exp(b),
with b a random function defined by an affine expansion of the form
b=bly) = ybj
j>1

where (;) is a given family of functions from L°°(D) and y = (y;);>1 a sequence of
i.i.d. standard Gaussians N'(0,1) variables.

Thus y ranges in U = RN equipped with the probabilistic structure (U, B(U),y) where
B(U) is the cylindrical Borel X-algebra and vy the tensorized Gaussian measure.

Commonly used stochastic model for diffusion in porous media.

The solution u(y) is well defined in V for those y € U such that b(y) € L°°(D), with

lu)llv < £y < exp(l[by) o)l Fllv -

1
Amin (y)



Affine Gaussian representations

Given a centered Gaussian process (b(x))xep with covariance function
Cp(x,z) = E(b(x)b(z)), one frequently consider the Karhunen-Loeve expansion,

b= Z E—.j(Pj)

jz1
where &; are i.i.d. N(0, GJ?) and (@;j)j>1 are L2(D)-orthonormal, and normalize
Pj=0jp; and y;= GIIEJ',

so that b = Zj>1 yj\b;. However, other representations may be relevant.
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Affine Gaussian representations

Given a centered Gaussian process (b(x))xep with covariance function
Cp(x,z) = E(b(x)b(z)), one frequently consider the Karhunen-Loeve expansion,

b= Z E—.j(Pj)

j>1
where &; are i.i.d. N(0, GJ?) and (@;j)j>1 are L2(D)-orthonormal, and normalize
¥ =0j9; and y; =07,
so that b = ZjZl yj\b;. However, other representations may be relevant.
Example : b the Brownian bridge on D = [0, 1] defined by Cp(x,z) := min{x, z} — xz.
1. Normalized KL : 1;(x) = ){—f sin(7gx).

2. Levy-Ciesielski representation : uses Schauder basis (primitives of Haar system)
—172,p, (o I 1
ﬂ)/,k(X) =2 P(2'x—k), k=0,...,22 =1, />0, P(x):= 5(1_|2X_1U+

Then with coarse to fine ordering \; =, , for j = 2/ + k, one has b = Zj>1 yib;.
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1. Integrability : under which conditions is y + u(y) Bochner measurable with values
in V and satifies for 0 < k < oo.
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Main theoretical questions

1. Integrability : under which conditions is y + u(y) Bochner measurable with values
in V and satifies for 0 < k < oo.

HUIIIZk(U‘V‘Y) = ]E(Hu(y)”,\(/) < 09,

In view of [lu(y)llv < exp([|b(y)]lc=)[Ifllv/, this holds if E(exp(k|b(y)||1=) < co.
2. Approximability : if u € L2(U, V,7v), consider the multivariate Hermite expansion
u= Y uvh, ) =TTy and o= | ul)Miy)dvy)
veF i>1 u
where F is the set of finitely supported integer sequences v = (v;);>1.
Best n-term approximation : up, = Zve/\,, uvHy, with A, indices of n largest ||uv||v.

Stechkin lemma : if (||uv]v)ver € tP(F) for some 0 < p < 2 then

lu—unll2uvy) < Cn7° 0 si= C=lluvllv)verlle

T~
N | =



Existing results

Integrability : sufficient conditions for u € LX(U, V,v) for all 0 < k < co are known.
1. Smoothness : C, € C*(D x D) for some « > 0 (Charrier).

2. Summability : 3 ;- [[bj]li < oo (Schwab-Gittelson-Hoang)

3. Y o1 IW)lI7C 1Wj]|&a < oo for some 0 < & < 1 (Dashti-Stuart)
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Existing results

Integrability : sufficient conditions for u € LX(U, V,v) for all 0 < k < co are known.
1. Smoothness : C, € C*(D x D) for some « > 0 (Charrier).

2. Summability : 3 ;- [[bj]li < oo (Schwab-Gittelson-Hoang)

3. Y o1 IW)lI7C 1Wj]|&a < oo for some 0 < & < 1 (Dashti-Stuart)

Approximability : first available result is as follows.

Theorem (Hoang-Schwab, 2014) : for any 0 < p < 1, if (j||Wj]|r) € €P(N) then
(luvllv) € €P(F).

Remarks :

The condition (j|| ;|1 ) € ¢P(N) is strong, compared to L2-integrability conditions.
It typically imposes high order of smoothness of the covariance function.

For example it is not satified by KL or Schauder representation of Brownian bridge.

Condition based on [[1j|| . Can we better exploit the support properties ?



Improved summability result

Theorem (Bachmayr-Cohen-DeVore-Migliorati, 2015) :
Let 0 < p < 2 and define g .= q(p) = % > p (or equivalently % = % — %)

Assume that there exists a positive sequence p = (p;);>1 such that

(pjfl)‘el € (9(N) and sup Z pjlb;(x)| < oo.
><€Dj21

Then y — u(y) is measurable and belongs LX(U, V,v) for all 0 < k < oo and
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Improved summability result

Theorem (Bachmayr-Cohen-DeVore-Migliorati, 2015) :
Let 0 < p < 2 and define g .= q(p) = i—pp > p (or equivalently % = % — %)

Assume that there exists a positive sequence p = (p;);>1 such that

(pj?l)jZI € (9(N) and sup Z pjlb;(x)| < oo.
><€Dj21

Then y — u(y) is measurable and belongs LX(U, V,v) for all 0 < k < oo and

(lluvllv)ver € P(F).

Remarks :

Similar result for the Taylor and Legendre coefficients for the affine parametric model
aly) =3+ 3 ;51 yj\b; however by different arguments.

Proof is rather specific to the linear diffusion equation (yet extensions possible).

The above conditions for (P summability of (||uv||v)ver are weaker than (P
summability of (j|[\||r>);j>1 especially for locally supported ;.



The case of the Brownian bridge

KL representation :
Globally supported functions \;(x) = %JE sin(7x).
The decay of (|[W;||iec)j>1 is not sufficient to apply our results.

No provable approximability by best n-term Hermite series.



The case of the Brownian bridge

KL representation :
Globally supported functions \;(x) = %JE sin(7x).
The decay of (|[W;||iec)j>1 is not sufficient to apply our results.

No provable approximability by best n-term Hermite series.

Schauder representation :
Wavelet type functions with decay in scale |[Wy ]|z ~ 27772,

This allows to apply our result py = 2P/, for any f < %
Our result imply that (||uv||v)ver € €P(F) for any p such that % > % — %

In particular, best n-term Hermite approximations satisfy

lu—un,llizuvy) <Cn % s=——



Main ingredient in the proof of the main result

1. Relate Hermite coefficients uy and partial derivatives 0" u. Base on 1-d Rodrigues
—1)" (n) ) —

formula : H,(t) = (\ﬁ)l gg(t()t' . where g(t) := (2r1)~1/2 exp(—t2/2). After some

computation this leads to weighted (2 identity for any sequence p := (pj)j>1-
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Main ingredient in the proof of the main result

1. Relate Hermite coefficients uy and partial derivatives 0" u. Base on 1-d Rodrigues
—1)" (n) ) —

formula : H,(t) = (\ﬁ)l gg(t()t' . where g(t) := (2r1)~1/2 exp(—t2/2). After some

computation this leads to weighted (2 identity for any sequence p := (pj)j>1-

2p
P
> | It aviv) = 3 bl

el geo <r ™ veF

where by =3 <, (::)ph"

2
2. Prove finiteness of left hand side ZHMH(oo<r p;TH Sy ¥ u(y)II3, dy(y) when

sup D i)l =K < G :=r'In2.
j>1
Use PDE : [ aly)Voruly) - Vv =—% o, o, (%) [p 0" Yaly)VaVuly) - Vv.

3. Derive {P estimate by mean of Hdlder's inequality :

(S 1li2) " < (3 sllul) " (X 6772) ",
veEF vEF

veEF

We prove that the second factor is finite if (p;l)jzl € (9(N) and r such that -= < p.
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From approximation results to numerical methods

The results so far are approximation results. They say that for several models of
parametric PDEs, the solution map y — u(y) can be accurately approximate (with
rate n~° for some s > 0) by multivariate polynomials having n terms.

These polynomials are computed by best n-term truncation of Taylor or Legendre or
Hermite series, but this is not feasible in practical numercial methods.

Problem 1 : the best n-term index sets A, are computationally out of reach. Their
identification would require the knowledge of all coefficients in the expansion.

Objective : identify non-optimal yet good sets Aj.

Problem 2 : the exact polynomial coefficients ty (or vy, wy, uy) of u for the indices
v € A, cannot be computed exactly.

Objective : numerical strategy for approximately computing polynomial coefficients.
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[lwv|lv, ||uv|lv)- Take An to be the set corresponding to the n largest such estimates.
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Numerical methods :

strategies to build the sets A,

(i) Non-adaptive, based on the available a-priori estimates for the ||tv|v (or |[vv||v,
[lwv|lv, ||uv|lv)- Take An to be the set corresponding to the n largest such estimates.

(ii) Adaptive, based on a-posteriori information gained in the computation

AMCAC---CAp---.
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Adaptive vs non-adaptive

Adaptive methods are known to converge better than non-adaptive ones, but their
analysis is more difficult.

A test case for linear-affine model in dimension d = 64 : comparison between the
approximation performance with A, given by standard choices {sup v; < k} (black) or
{3~ v;j < k} (purple) and by anisotropic choices based on a-priori bounds (blue) or
adaptively generated (green).

-

™~

~
-

\ogm(supremum error)

o o5 1 5o 25
109, (#A)

Highest polynomial degree for Ajpoo with different choices : 1, 2, 162 and 114.
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P =span{y — y” : v € A} =span{Ly : v € A} =span{Hy : v € A}
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For adaptive algorithms it is critical that the index chosen sets are downward closed
veA and p<v=peA,

where 1 < v means that u; < v; for all j > 1.

Such sets are also called lower sets. This property does not generally holds for the sets
corresponding to the n largest estimates, however the same convergence rates as
proved in the approximation theorems, can be proved when imposing such a structure.

If A is downward closed, we consider the polynomial space
P =span{y — y” : v € A} =span{Ly : v € A} =span{Hy : v € A}
and its V-valued version

VA ::{Z vwyY vy € V=V QPA.
vEA

After having selected A, we search for a computable approximation of uin V.
Note that dim(Vx,) = co. In practice we use Vp, » = Vj, ® PA, which has dimension

dim(Va, n) = dim(Vj,)dim(PA, ) = Nyn < co.
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1. Galerkin method : based on a space-parameter variational form (test the parametric
PDE on arbitrary y — v(y) and integrate both in x and y). Example for model O :
find u € L2(U, V, u) such that for all v € L2(U, V, ),
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The problem is coercive in L2(U, V, u). Galerkin formulation : find u, € VA, such that
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Cea’s lemma gives error estimate

2 .
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After space discretization, Galerkin problem in VA, p, gives a (nN,) x (nNj) system.
Lognormal case : lack of coervivity, Galerkin method needs some massaging.

2. Exact computation of the Taylor coefficients ||tv ||y, based on the recursive formula.
After space discretization, sequence of n systems of size Ny X Nj.

Adaptive algorithms with optimal theoretical guarantees exist for both method 1
(Gittelson-Schwab) and 2 (Chkifa-Cohen-DeVore-Schwab).

These methods apply to other models, however mainly confined to linear PDEs, with
affine parameter dependence.
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Based on snapshots u(y’) where y' € U fori=1,...,m

1. Pseudo spectral methods : computation of Zve/\,, vy Ly by quadrature

VV:JU ()Lvly Zw, Ly(y').

2. Interpolation : with m = n = #(A,) = dim(PP,,) search for a unique polynomial
up = Ipn,u € Vp, such that

3. Least-squares : with m > n, search for polynomial u, € VA, minimizing

> lluly™) = ualy"If3-
i=1

4. Underdetermined least-squares : with m < n search for a polynomial u, € V,
minimizing

D luly™) = unlyIy + melun),
i=1

where 7 is a penalization functional. Compressed sensing : take for 7t the (weighted) ¢!
sum of V-norms of Legendre coefficients of u, (promote sparse solutions).
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Applicable to a broad range of models, in particular non-linear PDEs.

Adaptive algorithms seem to work well for the interpolation and least squares
approach, however with no theoretical guarantees.
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Applicable to a broad range of models, in particular non-linear PDEs.

Adaptive algorithms seem to work well for the interpolation and least squares
approach, however with no theoretical guarantees.

Additional prescriptions for non-intrusive methods :
(i) Progressive : enrichment A, — Ap11 requires only one or a few new snapshots.

(ii) Stable : moderate growth with n of the Lebesgue constant relative to the
interpolation operator.

Main issue : how to best choose the point y'?
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The curse of dimensionality can be “defeated” by exploiting both smoothness and
anisotropy in the different variables.

For certain models, this can be achieved by sparse polynomial approximations.
The way we parametrize the problem, or represent its solution, is crucial.

Adaptive algorithms with optimal theoretical guarantees are still to be developed, in
particular for non-intrusive approaches (interpolation, collocation, least-squares).
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