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Introduction

Simulation-Based Design under Uncertainty

SIMULATION-BASED DESIGN

-0 An information-seeking and learning process

Y e
A Performance -0- Aleatory uncertainty
, Due to natural/physical randomness; irreducible
/ .
A Uncertainty | —o- Epistemic uncertainty
’ - Due to lack of data and/or knowledge; reducible

Design Process

SOURCES OF UNCERTAINTY THAT AFFECT MODEL PREDICTION
-0~ Epistemic Uncertainty -0~ Aleatory Uncertainty

o- Model bias o- Input variability

o- Parameter uncertainty Operating conditions; manufacturing ...

Due to naturally fixed but unknown model parameters  © Experimental variability

o~ Interpolation uncertainty

Due to lack of data DESIGN UNDER UNCERTAINTY
o- Numerical uncertainty To achieve a design that is
Due to numerical implementations of a model insensitive to uncertainties

Kennedy & O’Hagan, J. Roy. Stat. Soc. B, 63(3), 2001
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Introduction

Multidisciplinary Design Optimization (MDO)

= Requires analyses in
multiple disciplines
Involves multiple subsystems
and/or components

* Fusion SE 2014 image from Ford
Motor Co

* FEA model images provided by Dr.
Lei Shi, Shanghai Jiao Tong
University

* Control system image from
StabiliTrak




> Multidisciplinary Design Optimization (MDO)

- Requires analyses in multiple disciplines & Interdisciplinary couplings

Involves multiple subsystems and/or components o Feed-forward Coupling

-#- CHALLENGE #1 1 > 2
Coupling in analysis and UQ

o~ Feedback Coupling
-2 CHALLENGE #2
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Introduction

Multiple Models with Different Levels of Fidelity

Heterogenous information from different sources (multifidelity simulations and experiments

“High-fidelity” physics-
based CAE model
“Intermediate-fidelity”
\ physics-based CAE model

“High-fidelity”
experiment test

~5-CHALLENGE #3 )I

“Low-fidelity” simplified

handbook equations /
\0 “Intermediate-fidelity”
surrogate model




Introduction

Research Topics

Model-Fusion for Combining Heterogeneous Information

-3~ Both hierarchical and nonhierarchical rankings of fidelity

Managing Couplings and Information Complexity

-5 Multidisciplinary statistical sensitivity analysis (MSSA)
-0- Multidisciplinary uncertainty analysis (MUA)

Resource Allocation for Reducing Epistemic Uncertainty in MDO

- How to design paths of information seeking actions

-0~ Decision making meta-optimization problem



> Spatial Random Process Based Model Uncertainty Quantification

—0-  Any pair of random variables, Y(x) and Y(x"),

is spatially correlated
-0- Example: Gaussian Process
o Y(x)~GP (m(x),V (X, x'))

S m(x)=hx)'B, V(x,x)=0"’ exp{—

Introduction
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A Tests / High-fidelity model
---- 95% PI (prediction interval)



TOPIC 1
Model Fusion for Combining
Heterogeneous Information

Chen, S, Jiang, Z., Yang, S., Apley, D., and Chen, W., “Nonhierarchical Multi-model Fusion Using Spatial Random
Processes”, International Journal for Numerical Methods in Engineering, 10.1002/nme.5123, 2015.




> Existing Multi-Model Fusion Technigues

Ng, L. W. —T. & M. Eldred, 2012; A. Narayan, D. Xiu, et al., 2014

* Apply low-fidelity information to construct the approximation space for a high-

fidelity surrogate and then compute a high-fidelity reconstruction for model
prediction.

* Using stochastic allocation with generalized polynomial chaos approach.

Kennedy & O'Hagan, 2000; Qian, P. Z. & C. J. Wu, 2008; Goh, Bingham, et al. 2013

* Assume the higher-fidelity model to be approximated by its next lower-fidelity model
with a discrepancy, and then construct a multi-model sequential updating framework.

* Apply spatial random process (SRP) to surrogate the responses from different models.

Common Assumption

* The fidelity levels of the simulation models can be clearly identified and then
preliminarily ordered for a hierarchical model updating.



> Lack of Clear Ranking of Model Fidelity in Real Applications

Competitive Simulation Models Complicated Fidelity Models

* Financial predictive models developed by * The levels of mode fidelity are such
different commercial companies. closely similar that cannot be ranked.

d

— Simulator 1
------ Simulator 2

\, ..

— True Physics| ™=

 Climate models arising from different * The levels of mode fidelity change over
research groups. the whole design space.

— Simulator 1 y
----- Simulator 2 S
— True Physics

* ¢

H H
Goal of this work: Develop model fusion techniques with uncertainty quantification
for combining information from multiple models without a clear ranking of fidelity.



> Three Spatial Random Process (SRP) based Approaches

Approach 1: Weighted Sum

y'(x) =y () -e=2 p"y""(x)+6(x)

Assumption: Independency between simulations

and the discrepancy function
Cov(y™(x),5(x))=0, Vi

y'(x): True response

y*(x):  Experimental response
y" M (x): i" simulation model
o(x): Discrepancy function

£ Experimental error

Approach 2: Each Model Individually Corrected
y'(x) =y () -e=y""(x)+5"(x)

Assumption: Independency between the
discrepancy function and the true response

Cov(y'(x),6"(x))=0, Vi

Approach 3: Fully-Correlated Multi-Response

y'(x)=y'(x)-e=y""(x)+5"(x)

Assumption: Simulation models and the
discrepancy functions follow the same spatial
correlation function




Multi-model Fusion Procedure (lllustration of Approach 1)

Covariance Calculation Multi-model Fusion Flowchart

COV( " (x), y" (x! )) e x"e,R"(x,x')
Cov(y*(x),y""(x)) = p'Z"gR" (x,x)

MRGP for I\/Iodels Covariance Calculat|on
. B v (X", XM) (XM, X%)
v (xex") [V (Xe X°)

Data Collection GP for Experiment Test

Hyperparameter Inference via MLE

L(@ld) o [V, " exp{~(d ~HB)" V' (d—HB) /2]

Data Collection

GP Models
Construction

Covariance
Calculation

Hyperparameter
Inference via MILE

Predictions



> Example 1. Similar Model Fidelity

The fidelity levels of = o
simulator 1 and 2 are -

-0.5
| | —— True Physics — "
Slmllar' 1k A Simulator 1 Data % f/}cp‘ Vslld(?tl?nData S b 4
B Simulator 2 Data ] ean Frediction
= . ® Experiment 15 95% P,I : ; ( )
K- 3 samples from Simulator 155 72 7’[ W2 In 0 w2og w2 m
g 1, 7 samples from
L Simulator 2, 3
r observations from
'g experiment <
(¢B]
= a
o Exp. Validation Data” i -1k o Exp. Validation Data’ i
Mean Prediction O Mean Prediction o
95% PI t (C) 95% PI t (d)
159 /2 7 32 2n -1.5% /2 7 3n/2 on

Approach1 Approach2 Approach3
RMSE 0.1530 0.1636 0.1573
u-pooling 0.0805 0.0786 0.0924




Validation Metrics

Root-mean-square error (RMSE)

U-pooling

- > U =F (Y (x))
9
(/]
=
s
L]
e
é ECDF
-
CDF 1

Ferson, S., W.L. Oberkampf, and L. Ginzburg, Model validation and predictive capability for the thermal challenge problem. Computer
Methods in Applied Mechanics and Engineering, 2008. 197(29): p. 2408-2430.



> Example 2: Range-Dependent Model Fidelity

4 M — True Physics
A Smulator 1 Data
n B Simulator 2 Data
2" ® Experiment |

= €% Simulator 2 is better
=0
K- - than simulator 1. /
0 -~
— ]
s Simulator 1 is better ® [
T’ -2 than simulator 2. d
k-
s (a) .
_4' r r r r -
0 2 4 6 8 10

X

~5= The fidelity levels of both simulator 1 and 2 change over the design space
-0~ 5 samples from each simulator, 4 observations from experiment



Example 2: Range-Dependent Model Fidelity

u —— True Physics

A Simulator 1 Data
[ B Simulator 2 Data

® Experiment ’

A
-4 r
0 2 4 6 8 10
X
4 T 1
O Exp. Validation Data”
Mean Prediction
2 95% PI
=<
o~ 0
>
2 (O))
I
0 2 4 6 8
X

O Exp. Validation Data’
Mean Prediction
95% PI

O Exp. Validation Data”
Mean Prediction
95% PI1

O Exp. Validation Data”

Mean Prediction
95% PI

O  Exp. Validation Data"
Mean Prediction

95% P1

Approach 1 with

Approach 2 Approach 3

Approach 1 with

Approach 1 with

0.01<w’<50 0.01<e’<10 0.01<a’<5
RMSE 0.5692 0.3329 0.3542 0.2996
u-pooling 0.0797 0.0952 0.0966 0.0823
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Example 3: Fluidized-Bed Processes

Used in the food industry to tune the effect of functional ingredients and additives.
Important thermo-dynamic response: steady-state outlet air temperature.

First studied by Dewettinck et al., 1999; employed by Reese et al., 2004; Qian et al., 2008.

V; : Fluid velocity of the fluidization air

T, : Temperature of the air from the pump
R; : Flow rate of the coating solution

P, : Pressure of atomization air

T, : Room temperature

H, : Room humidity Input Variables

Y™, : Least accurate model because of its neglecting both heat losses and inlet airflow
Y™, : Intermediately accurate model taking those heat losses in the process

Hierarchical Model Resources

Y € : Most accurate experiment test
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Example 3: Fluidized-Bed Processes (Results)

70— : : 70— L L 70— : :
g (a) Approach 1 g (b) Approach 2 g (c) Approach 3
60 60F 60
8 ,O'/ 8 ,,O’ 8 ’o/
(av] ’,r/’ < Q//’ [av] > -7
< 50 e 9 50! s 50 Pl
5 12 5 gt 5 12
3 40 A 3 40- T 3 40 o
5: /,9,0’ _____ — S: ’/on' _____ =x a:: /’Q,O' _____ =
e O Validation Data -~ © Validation Data L O Validation Data
30— , , , , : 308 , ; : : , 30— , , ; : :
35 40 45 50 55 60 35 40 45 50 55 60 35 40 45 50 55 60
Observed air temp. Observed air temp. Observed air temp.
1 L L 1 L L L 1 : :
(d) Approach 1 (e) Approach 2 (f) Approach 3
0.8} - 0.8+ 0.8+
o, 0.6 o, 0.6 (0.6
- A ’ -
S , S © 04
0.2f . o — Empirical CDF of u| 7 0.2¢ —— Empirical CDF of u | | 0.2 —— Empirical CDF of u |
/// """ CDF of U(0,1) /,/ _____ CDF of U(0,1) AT CDF of U(0,1)
0 , , , , 2 : : : : 0= , , : :
0 02 04 06 08 % 02 04 06 08 0 02 04 06 08
u-value u-value u-value
Approach1 Approach2 Approach3 Qian and Wu’s approach
RMSE 0.7402 0.6884 0.6925 /
u-pooling 0.1210 0.0706 0.1410 /
SRMSE 0.0177 0.0163 0.0169 0.020




Topic 2
Managing Coupling and
nformation Complexity in MDO

Jiang, Z., German, B., and Chen, W., “Multidisciplinary Statistical Sensitivity Analysis Considering
both Aleatory and Epistemic Uncertainties"”, AIAA Journal, doi: 10.2514/1.J054464, 2015.

Jiang, Z., Li., W., Apley, D., and Chen, W., “A Spatial-Random-Process Based Multidisciplinary System
Uncertainty Propagation Approach with Model Uncertainty”, Journal of Mechanical Design, 2015.




> A Multidisciplinary System

System Quantities of Interest (QOIs): yys

i

System Analysis g

=
)
v
: System Analysis B
=) YL$
V1 Disciplinary outputs 9 vy,
E’ u.; Discipline i u;.
(] Discipline 1 u;, Discipline 2 —> ——>
= - >
: s N
o Uz, I I
Ol
9 1 1
4 O N O AN
omm X
E /\ X1 X Xs A Xl S
B
=
= A | Aleatory Uncertainty | B | Epistemic Model Uncertainty

Z is used to stand both disciplinary output yi and linking variables ui.



>  Multidisciplinary Statistical Sensitivity Analysis (MSSA)

VARIANCE-BASED SENSITIVITY INDICES Impact of Aleatory Uncertainty

Var, (EZ’X~i (Y‘ Xi))
Uncertainty of XX, = MSI(X;)= Var(Y)

QOl Y X1 Z, XNi ))

interaction Var E. (Y
= TSI(X,)=1- o (B
Var(Y)
' Impact of Epistemic Model Uncertainty
X
2

Var, (EZNk’X (Y‘Zk))

= MSI(Z,)= Var(Y)
Var, «(E, (Y|Z_,.X
-+ TSI(Z,)=1- (Var((Y) ))

Challenges in SSA of model uncertainty

e Traditional Sobol’s method considers stochastic inputs as scalar variables

e Z are stochastic functional responses over model inputs.

* Nested situation where model uncertainty (Z) is a function of aleatory uncertainty (X)

Multidisciplinary UP & SSA



> Separating Model Uncertainty in Disciplinary SRP
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Updated model (prediction mean)

Quantified uncertainty
(zero-mean random process)

Experiment =— ye (X) = S\/e (X) + Z (X) —

DISCIPLINARY UNCERTAINTY QUANTIFICATION TO AVOID NESTED SIMULATIONS IN SSA

u (X|9 sau ) u (X|9 39“ )+Zu| (X|9 39 )

 Analytically derived
yi (x;,x,u5) =¥ (x, X, u)) + Z; (x;,x,,u) multidisciplinary uncertainty
propagation (MUA)



> SRP-Based Multidisciplinary Uncertainty Analysis (MUA) Methoa

DISCIPLINARY UNCERTAINTY QUANTIFICATION

A MATRIX FORM
o AW -p)~BX-p,)+Z,, ¥y -p,~(EA'B+F)(X-p,)+EA'Z, +Z,

ll (XM s’u ) ll (X|9 s’u')+Zui (Xi9xsﬁu~ei)
= System Analysis g ¥i (X, X, u5) = ¥7 (X, X, u) + Zy (X, X, u)
a Evaluation of means of linking
o¥ Yi variables and disciplinary outputs
A. u.; Discipline i u;. v
= —> —> Evaluation of (co)variance of
b linking variables u
- }
= I I Evaluation of (co)variance of
-— disciplinary outputs y
2 l
.‘a from the structure of SRP (co)variance of system QOls
=
s

uui- ~ ﬁ?(uxi ’ uxs’ uu'i )9 uyi = y?(uXi ’ uXS ’ "lu-i )’
T, ~(A'B)Z(A'B) +(A)L,(A). Z ~(EA'B+F)Z, (EA'B+F) +(EA")Z, (EA") +X,.




> (Case Study: An Aircraft Design Problem

SyStem QOls Design variables

$va -total acquisition cost Noise variables
< Algigne -maximum time aloft ° Linking variables
7 A,, -Ground areaimaged by sensor T acq Disciplinary outputs
3 System QOls
a Cost
> i
> = iy g
] T $ar $ Atflight T $ v
E P
— : » or Airframe and Way
% Engine W SFC> Performance — Payload
.2 A A A I I I A A I A A I
2
= OPRE€[8,12]  Se[250,350] C,€[0.7,0.9] 6€[15,30] a~.-(0,0.05%)
= ® AT~.(0,102) @

o
@® heg[22500,27500] @

® P.,€[2050] @
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Multidisciplinary UP & SSA

Sensitivity Analysis for both Aleatory and Epistemic Uncertainties

Aleatory Uncertainty: 6~7%

Epistemic Uncertainty: 5%



Topic 3
Resource Allocation for

Reduction of Epistemic Uncertainty in
Multidisciplinary Design

Jiang, Z., Chen, S., Apley, D., and Chen, W., “Resource Allocation for Reduction of Epistemic
Uncertainty in Simulation-based Multidisciplinary Design”, ASME 2015 International Design
Engineering Technical Conferences & Computers and Information in Engineering Conference,

IDETC2015-47302, August 2-4, Boston, MA, 2015.




> Introduction
OBJECTIVE

-3~ To improve the global modeling capability of a multidisciplinary system

Such that the epistemic uncertainty of system QOls is acceptable over the input space.

Resources: Experiments and/or simulations : :
Simulation models

in the system

RESEARCH QUESTIONS R
' Response 1
7~ Where in the input space of a multidisciplinary | Input space
system shall we allocate more resources? i

' Response 2

-0~ To what disciplinary response(s) shall we allocate Response 3

more resources?

—=- Which type of resource shall we allocate,
experiments or simulations?

Resource Allocation

\ Asmplmary inputs

. and/or shared inputs



Resource Allocation

> A Sequential Resource Allocation Strategy

SRP-Based

EEEL]l 2 START: Emulators with Uncertainty Quantified

\ 4
Updating Disciplinary
Emulators

1

I Which (simulations vs. experiments)

I What (disciplinary responses)

I Where (sampling locations)

Decision Making
for Resource Allocation

SRP: Spatial-Random-Process
MUA: Multidisciplinary Uncertainty Analysis
MSSA: Multidisciplinary Statistical Sensitivity Analysis

Input Space Exploring

I Generate samples over the input space

Assess the aggregated epistemic uncertainty
of Y45 at each point

MUA

Evaluate whether uncertainty
of Y, is acceptable

@ — 3

Evaluate the impdct of epistemic uncertainty

MSSA

from disciplinary'responses at each point

W\

\/Var sys X, 4>X)
dx. dx, / ” dx, dx,

7(de’ S

ind ? s




> Which (simulations vs. experiments): A Preposterior Analysis
AFTER SELECTING LOCATIONS AND RESPONSES...

Resource Allocation

Decision made in previous steps:

To allocate resources to selected N; locations for response Z,
and N,/ locations for response L etc.

v

Suggest an affordable resource allocation plan

e.g., conducting experiments at N;, locations and simulations
at (N, — N..) locations for response Z; similarly for L etc.

v

Monte Carlo loop

Generate hypothetical data
I}

Update the emulators
3

Evaluate the reduced uncertainty of y. .

v
Evaluate the “expected” reduced uncertainty of y. .

v
No [ Is the reduced uncertainty |Yes
of y. .acceptable?

Suggest another resource allocation plan

\ 4




> (Case Study: Electronic Packaging

X<, X X, X . Yer Y7 X1, X5 X5, X
2 TP ‘ Electrical - : Thermal ) b
] Discipline Discipline
= P Yir Yi2o Y13 .
= A
:ITD System QOlI Yi
[\ ]
o
E * http://www.eng.buffalo.edu/Research/MODEL/mdo.test.orig/class2prob3.html
o
E X; Heat sink width (m) y;  Negative of watt density (watts/m?)
- X, Heat sink length (m) y,  Current in resistor #1 (amps)
3 X5 Fin length (m) ys  Current in resistor #2 (amps)
(- 4 X, Fin width (m) Yo  Power dissipation in resistor #1 (watts)
Xs Nominal resistance #1 at temperature 20 °C (QQ) y,  Power dissipation in resistor #2 (watts)
X, Temperature coefficient of electrical resistance #1 (°K-1) y,; Component temperature of resistor #1 (°C)
X, Nominal resistance #2 at temperature 20 °C (QQ) Y, Component temperature of resistor #2 (°C)
Xs Temperature coefficient of electrical resistance #2 (°K-1) y,;; Heat sink volume (m?3)




> Uncertainty Quantification

Resource Allocation

1ST ITERATION

-0~ Model UQ: 40 experiments + 40 simulations



> Selection of Input settings

1ST ITERATION

-0~ Selection of input settings (from 2,000 samples) and responses

Resource Allocation

a=10%
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Resource Allocation

Preposterior Analysis to Decide the Type of Resources to Allocate

DECISION (15T ITERATION)

(1) Allocate simulations of y,, to points #2, 3, 10;
(2) Allocate simulations of Yy, to points #6~9;

(3) Allocate experiments of y,, to points #1, 5;
(4) Allocate experiment of Y, to point #4.



> Subsequent Four Iterations (24 simulations + 10 experiments)
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Summary

MODEL FUSION

—O- Approaches can handle both hierarchical and non-hierarchical rankings of fidelity
-0- Multiple approaches work equally well with reasonable assumptions

MULTIDISCIPLINARY UNCERTAINTY PROPAGATION AND SENSITIVITY ANALYSIS

-0- Considers both aleatory and epistemic uncertainties
-0 Utilizes the structure of SRP emulators, which allows for analytical derivation
&~ Decomposed disciplinary analyses, provide useful information for resource allocation

RESOURCE ALLOCATION FOR REDUCTION OF EPISTEMIC UNCERTAINTY

—5- Breaks a complex decision making problem into a sequential process

Conclusions

-0~ Considers not only physical experiments but also simulations
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