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DESIGN UNDER UNCERTAINTY
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Simulation-Based Design under Uncertainty

To achieve a design that is 

insensitive to uncertainties

Uncertainty

Design Process

Performance

SIMULATION-BASED DESIGN

An information-seeking and learning process

Epistemic uncertainty

Due to lack of data and/or knowledge; reducible

Aleatory uncertainty

Due to natural/physical randomness; irreducible 

SOURCES OF UNCERTAINTY THAT AFFECT MODEL PREDICTION

Model bias

Parameter uncertainty

Due to naturally fixed but unknown model parameters

Interpolation uncertainty

Due to lack of data

Numerical uncertainty

Due to numerical implementations of a model

Epistemic Uncertainty

• Kennedy & O’Hagan, J. Roy. Stat. Soc. B, 63(3), 2001

Aleatory Uncertainty

Input variability

Operating conditions; manufacturing …

Experimental variability
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Multidisciplinary Design Optimization (MDO)

• Fusion SE 2014 image from Ford 
Motor Co

• FEA model images provided by Dr. 
Lei Shi, Shanghai Jiao Tong 
University

• Control system image from 
StabiliTrak

Requires analyses in 

multiple disciplines

Involves multiple subsystems 

and/or components
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Multidisciplinary Design Optimization (MDO)

Interdisciplinary couplings

Feed-forward Coupling

1 2

1 2

Feedback Coupling

Requires analyses in multiple disciplines

Involves multiple subsystems and/or components

CHALLENGE #1
Coupling in analysis and UQ

CHALLENGE #2
Dynamic decision making in resource allocation



CHALLENGE #3
Heterogenous information from different sources (multifidelity simulations and experiments)
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Multiple Models with Different Levels of Fidelity

“High-fidelity” 
experiment test

“High-fidelity” physics-
based CAE model

“Intermediate-fidelity” 
surrogate model

“Low-fidelity” simplified 
handbook equations

“Intermediate-fidelity” 
physics-based CAE model



Resource Allocation for Reducing Epistemic Uncertainty in MDO

Model-Fusion for Combining Heterogeneous Information
Both hierarchical and nonhierarchical rankings of fidelity

Decision making meta-optimization problem

How to design paths of information seeking actions

Managing Couplings and Information Complexity

Multidisciplinary uncertainty analysis (MUA)

Multidisciplinary statistical sensitivity analysis (MSSA)
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Research Topics



Any pair of random variables, Y(x) and Y(x’), 

is spatially correlated

Example: Gaussian Process
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Spatial Random Process Based Model Uncertainty Quantification



TOPIC 1
Model Fusion for Combining 
Heterogeneous Information

Chen, S., Jiang, Z., Yang, S., Apley, D., and Chen, W., “Nonhierarchical Multi-model Fusion Using Spatial Random 
Processes”, International Journal for Numerical Methods in Engineering, 10.1002/nme.5123, 2015.



• The fidelity levels of the simulation models can be clearly identified and then
preliminarily ordered for a hierarchical model updating.

Ng, L. W. –T. & M. Eldred, 2012;   A. Narayan, D. Xiu, et al., 2014
• Apply low-fidelity information to construct the approximation space for a high-

fidelity surrogate and then compute a high-fidelity reconstruction for model
prediction.

• Using stochastic allocation with generalized polynomial chaos approach.

Kennedy & O'Hagan, 2000;   Qian, P. Z. & C. J. Wu, 2008; Goh, Bingham, et al. 2013

• Assume the higher-fidelity model to be approximated by its next lower-fidelity model
with a discrepancy, and then construct a multi-model sequential updating framework.

• Apply spatial random process (SRP) to surrogate the responses from different models.

Common Assumption
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Existing Multi-Model Fusion Techniques



Goal of this work: Develop model fusion techniques with uncertainty quantification
for combining information from multiple models without a clear ranking of fidelity.

Complicated Fidelity Models

• The levels of mode fidelity are such
closely similar that cannot be ranked.

Competitive Simulation Models

• Financial predictive models developed by
different commercial companies.

• Climate models arising from different
research groups.

• The levels of mode fidelity change over
the whole design space.

 

 

Simulator 1
Simulator 2
True Physics

 

 

Simulator 1
Simulator 2
True Physics
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Lack of Clear Ranking of Model Fidelity in Real Applications



Approach 1: Weighted Sum
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Assumption: Independency between simulations
and the discrepancy function
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Three Spatial Random Process (SRP) based Approaches
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Approach 2: Each Model Individually Corrected
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Assumption: Independency between the
discrepancy function and the true response
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Approach 3: Fully-Correlated Multi-Response
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Assumption: Simulation models and the
discrepancy functions follow the same spatial
correlation function
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Multi-model Fusion Procedure (Illustration of Approach 1)

Covariance Calculation

Hyperparameter Inference via MLE

Data Integration via MVN (multivariate normal dist)
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Data Collection

GP Models 
Construction

Covariance 
Calculation

Data Integration via 
MVN

Hyperparameter 
Inference via MLE

Predictions

GP for Experiment Test

Covariance CalculationMRGP for Models

Data Collection

Multi-model Fusion Flowchart
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0 /2  3/2 2

Exp. Validation Data*

Mean Prediction
95% PI (b)
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Exp. Validation Data*

Mean Prediction
95% PI (c)
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0 /2  3/2 2

Exp. Validation Data*

Mean Prediction
95% PI (d)

Approach 1 Approach 2 Approach 3
RMSE 0.1530 0.1636 0.1573

u-pooling 0.0805 0.0786 0.0924

The fidelity levels of

simulator 1 and 2 are

similar.

3 samples from Simulator

1, 7 samples from

Simulator 2, 3

observations from

experiment
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Example 1: Similar Model Fidelity
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Validation Metrics

Root-mean-square error (RMSE)
 
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m e
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Ferson, S., W.L. Oberkampf, and L. Ginzburg, Model validation and predictive capability for the thermal challenge problem. Computer 
Methods in Applied Mechanics and Engineering, 2008. 197(29): p. 2408-2430.
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True Physics
Simulator 1 Data
Simulator 2 Data
Experiment

(a)

Simulator 1 is better
than simulator 2.

Simulator 2 is better
than simulator 1.

The fidelity levels of both simulator 1 and 2 change over the design space

5 samples from each simulator, 4 observations from experiment
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Example 2: Range-Dependent Model Fidelity
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Exp. Validation Data*

Mean Prediction
95% PI

(c)
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Mean Prediction
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Exp. Validation Data*

Mean Prediction
95% PI

(b)

Approach 1 with 
0.01<<50 Approach 2 Approach 3 Approach 1 with 

0.01<<10
Approach 1 with 

0.01<<5
RMSE 0.5692 0.3329 0.3542 0.3598 0.2996

u-pooling 0.0797 0.0952 0.0966 0.1035 0.0823
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Example 2: Range-Dependent Model Fidelity
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Example 3: Fluidized-Bed Processes

• Used in the food industry to tune the effect of functional ingredients and additives.

• Important thermo-dynamic response: steady-state outlet air temperature.

• First studied by Dewettinck et al., 1999; employed by Reese et al., 2004; Qian et al., 2008.

• Vf : Fluid velocity of the fluidization air

• Ta : Temperature of the air from the pump

• Rf : Flow rate of the coating solution

• Pa : Pressure of atomization air

• Tr : Room temperature

• Hr : Room humidity

• Ym
1 : Least accurate model because of its neglecting both heat losses and inlet airflow

• Ym
2 : Intermediately accurate model taking those heat losses in the process

• Y e : Most accurate experiment test

Input Variables

Hierarchical Model Resources
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Example 3: Fluidized-Bed Processes (Results)
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(d) Approach 1 (e) Approach 2 (f) Approach 3
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(a) Approach 1
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(b) Approach 2
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Validation Data

(c) Approach 3

Approach 1 Approach 2 Approach 3 Qian and Wu’s approach
RMSE 0.7402 0.6884 0.6925 /

u-pooling 0.1210 0.0706 0.1410 /
SRMSE 0.0177 0.0163 0.0169 0.020



Topic 2
Managing Coupling and 
Information Complexity in MDO

Jiang, Z., German, B., and Chen, W., “Multidisciplinary Statistical Sensitivity Analysis Considering 
both Aleatory and Epistemic Uncertainties", AIAA Journal, doi: 10.2514/1.J054464, 2015.

Jiang, Z., Li., W., Apley, D., and Chen, W., “A Spatial-Random-Process Based Multidisciplinary System 
Uncertainty Propagation Approach with Model Uncertainty”, Journal of Mechanical Design, 2015.



A Multidisciplinary System
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Disciplinary outputs

System Quantities of Interest (QOIs): 𝐲𝐬𝐲𝐬

System Analysis

𝐱1 𝐱2

Discipline 1 Discipline 2

BB

𝐱𝑠

𝐲1 𝐲2

𝐮21

B

Aleatory Uncertainty Epistemic Model UncertaintyA B

𝐮𝑖∙

𝐱𝑖

Discipline i

𝐲𝑖

𝐱𝑠

𝐮∙𝑖

System Analysis

Z is used to stand both disciplinary output yi and linking variables ui.



Multidisciplinary Statistical Sensitivity Analysis (MSSA)

VARIANCE-BASED SENSITIVITY INDICES

Uncertainty of 

QOI Y X1

X2
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Impact of Aleatory Uncertainty

Impact of Epistemic Model  Uncertainty

Challenges in SSA of model uncertainty
• Traditional Sobol’s method considers stochastic inputs as scalar variables
• Z are stochastic functional responses over model inputs.
• Nested situation where model uncertainty (Z) is a function of aleatory uncertainty (X)



Separating Model Uncertainty in Disciplinary SRP
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ˆ( ) ( ) ( )e ey y Z x x xExperiment

Updated model (prediction mean)

Quantified uncertainty
(zero-mean random process)
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TO AVOID NESTED SIMULATIONS IN SSA

• Analytically derived 
multidisciplinary uncertainty 
propagation (MUA)



SRP-Based Multidisciplinary Uncertainty Analysis (MUA) Method
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Evaluation of means of linking 
variables and disciplinary outputs

Evaluation of (co)variance of
linking variables u

Evaluation of (co)variance of
disciplinary outputs y

Evaluation of mean and 
(co)variance of system QOIs



Case Study: An Aircraft Design Problem

S∈[250,350] CL∈[0.7,0.9]

$AF

Weng, SFC

OPR∈[8,12] q∈[15,30]

h∈[22500,27500]
PPL∈[20,50]

AAV

WPL

$PL

Pprop

Dtflight

$eng

$acq

Noise variables
Linking variables
Disciplinary outputs
System QOIs

a~N(0,0.052)

DT~N(0,102)

Design variables

Engine Airframe and 
Performance

Cost

Payload
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Dtflight
AAV

$acq -total acquisition cost

-maximum time aloft

-Ground area imaged by sensor

System QOIs



Sensitivity Analysis for both Aleatory and Epistemic Uncertainties

Aleatory Uncertainty: 6~7% Epistemic Uncertainty: 5%
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Topic 3
Resource Allocation for
Reduction of Epistemic Uncertainty in 
Multidisciplinary Design

Jiang, Z., Chen, S., Apley, D., and Chen, W., “Resource Allocation for Reduction of Epistemic 
Uncertainty in Simulation-based Multidisciplinary Design”, ASME 2015 International Design 

Engineering Technical Conferences & Computers and Information in Engineering Conference, 

IDETC2015-47302, August 2-4, Boston, MA, 2015.



Introduction

OBJECTIVE
To improve the global modeling capability of a multidisciplinary system

Such that the epistemic uncertainty of system QOIs is acceptable over the input space.

RESEARCH QUESTIONS

Where in the input space of a multidisciplinary 

system shall we allocate more resources?

Which type of resource shall we allocate, 

experiments or simulations?

To what disciplinary response(s) shall we allocate 

more resources?

x1
x2

Input space
Response 1

Response 2

Response 3

Resources: Experiments and/or simulations

x1, x2: Disciplinary inputs 
and/or shared inputs

Simulation models 
in the system
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Input Space Exploring

END
Yes

No

Generate samples over the input space 

Assess the aggregated epistemic uncertainty 
of Ysys at each point

Evaluate whether uncertainty 
of Ysys is acceptable

Evaluate the impact of epistemic uncertainty 
from disciplinary responses at each pointDecision Making

for Resource Allocation

Where (sampling locations)

What (disciplinary responses)

Which (simulations vs. experiments)

Updating Disciplinary 

Emulators

START: Emulators with Uncertainty QuantifiedSRP-Based

MUA

MSSA

• SRP: Spatial-Random-Process
• MUA: Multidisciplinary Uncertainty Analysis
• MSSA: Multidisciplinary Statistical Sensitivity Analysis

A Sequential Resource Allocation Strategy

sys ind
ind ind

sys ind ind ind
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Which (simulations vs. experiments): A Preposterior Analysis

AFTER SELECTING LOCATIONS AND RESPONSES…

Monte Carlo loop

Decision made in previous steps:

Is the reduced uncertainty 

of ysys acceptable?

Use this 

plan

To allocate resources to selected 𝑁𝐿 locations for response L, 

and 𝑁𝐿′ locations for response L′, etc.

YesNo

Suggest an affordable resource allocation plan

e.g., conducting experiments at 𝑁𝐿𝑒 locations and simulations 

at 𝑁𝐿 − 𝑁𝐿𝑒 locations for response L; similarly for L′, etc.

Generate hypothetical data

Update the emulators

Evaluate the reduced uncertainty of ysys

Evaluate the “expected” reduced uncertainty of ysys

Suggest another resource allocation plan
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Case Study: Electronic Packaging

Electrical 
Discipline

Thermal 
Discipline

y6, y7

y11, y12, y13

x1, x2 x3, x4x5, x6 x7, x8

y1

x1 Heat sink width (m) y1 Negative of watt density (watts/m3)
x2 Heat sink length (m) y4 Current in resistor #1 (amps)
x3 Fin length (m) y5 Current in resistor #2 (amps)
x4 Fin width (m) y6 Power dissipation in resistor #1 (watts)
x5 Nominal resistance #1 at temperature 20 ºC (W) y7 Power dissipation in resistor #2 (watts)
x6 Temperature coefficient of electrical resistance #1 (ºK-1) y11 Component temperature of resistor #1 (ºC)
x7 Nominal resistance #2 at temperature 20 ºC (W) y12 Component temperature of resistor #2 (ºC)
x8 Temperature coefficient of electrical resistance #2 (ºK-1) y13 Heat sink volume (m3)

• http://www.eng.buffalo.edu/Research/MODEL/mdo.test.orig/class2prob3.html

System QOI
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Uncertainty Quantification

1ST ITERATION
Model UQ: 40 experiments + 40 simulations

R
e

s
o

u
rc

e
 A

ll
o

c
a

ti
o

n



Selection of Input settings

1ST ITERATION
Selection of input settings (from 2,000 samples) and responses
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=10%



Preposterior Analysis to Decide the Type of Resources to Allocate

(1) Allocate simulations of y11 to points #2, 3, 10;
(2) Allocate simulations of y12 to points #6~9;
(3) Allocate experiments of y11 to points #1, 5;
(4) Allocate experiment of y12 to point #4.

DECISION (1ST ITERATION)
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Subsequent Four Iterations (24 simulations + 10 experiments)
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MULTIDISCIPLINARY UNCERTAINTY PROPAGATION AND SENSITIVITY ANALYSIS

RESOURCE ALLOCATION FOR REDUCTION OF EPISTEMIC UNCERTAINTY

Decomposed disciplinary analyses, provide useful information for resource allocation

Summary

Utilizes the structure of SRP emulators, which allows for analytical derivation

Considers not only physical experiments but also simulations

Breaks a complex decision making problem into a sequential process

MODEL FUSION
Approaches can handle both hierarchical and non-hierarchical rankings of fidelity

Multiple approaches work equally well with reasonable assumptions

Considers both aleatory and epistemic uncertainties
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Thank You!


