

Reduction of Epistemic Uncertainty in Multifidelity Simulation-Based Multidisciplinary Design

Dr. Wei Chen

Wilson-Cook Professor in Engineering Design

Dr. Zhen Jiang (Ford Research and Innovation Center)

Dr. Shishi Chen (Beijing Institute of Technology)

Professor Daniel W. Apley (Industrial Engineering)

Northwestern University, Evanston, IL, USA

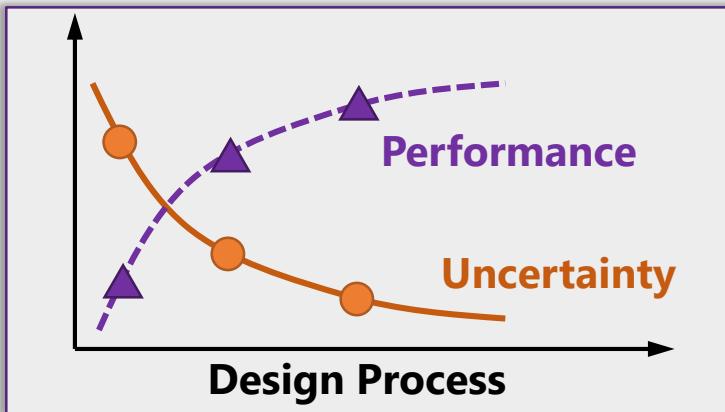
IDEAL

Integrated **DE**sign Automation **L**aboratory

<http://ideal.mech.northwestern.edu>

› Simulation-Based Design under Uncertainty

SIMULATION-BASED DESIGN



- An information-seeking and learning **process**
- **Aleatory uncertainty**
Due to natural/physical randomness; irreducible
- **Epistemic uncertainty**
Due to lack of data and/or knowledge; reducible

SOURCES OF UNCERTAINTY THAT AFFECT MODEL PREDICTION

- **Epistemic Uncertainty**
 - **Model bias**
 - **Parameter uncertainty**
Due to naturally fixed but unknown model parameters
 - **Interpolation uncertainty**
Due to lack of data
 - **Numerical uncertainty**
Due to numerical implementations of a model

- **Aleatory Uncertainty**
 - **Input variability**
Operating conditions; manufacturing ...
 - **Experimental variability**

DESIGN UNDER UNCERTAINTY

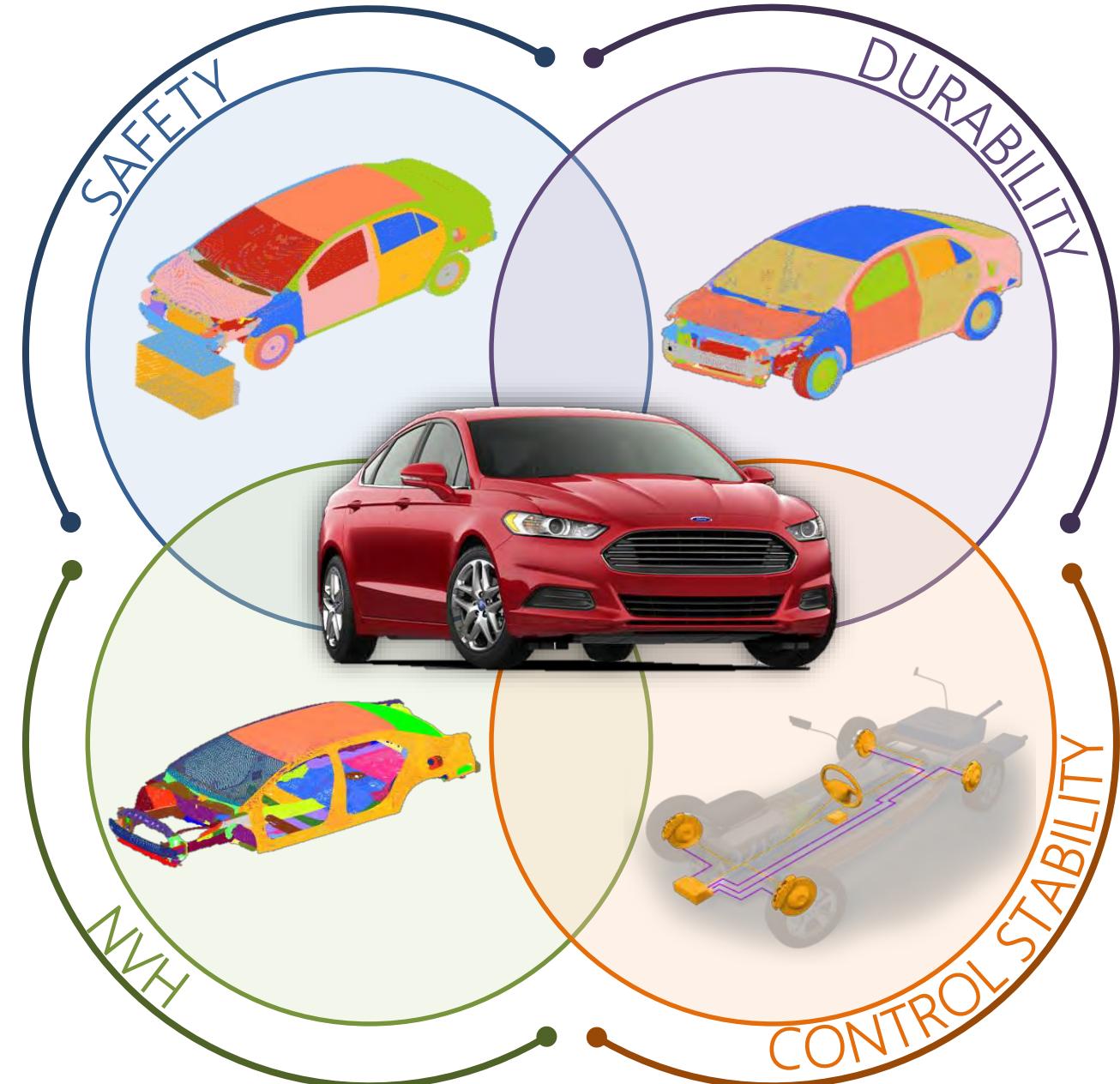
To achieve a design that is insensitive to uncertainties

› Multidisciplinary Design Optimization (MDO)

- **Requires analyses in multiple disciplines**

Involves multiple subsystems and/or components

- Fusion SE 2014 image from Ford Motor Co
- FEA model images provided by Dr. Lei Shi, Shanghai Jiao Tong University
- Control system image from StabiliTrak



› Multidisciplinary Design Optimization (MDO)

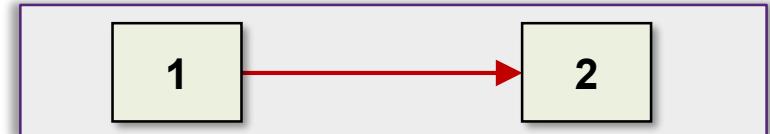
- ─ **Requires analyses in multiple disciplines**

Involves multiple subsystems and/or components

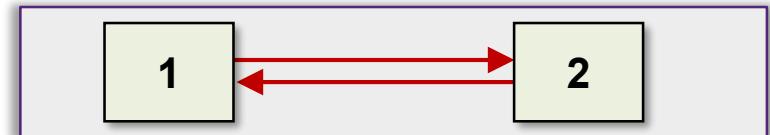
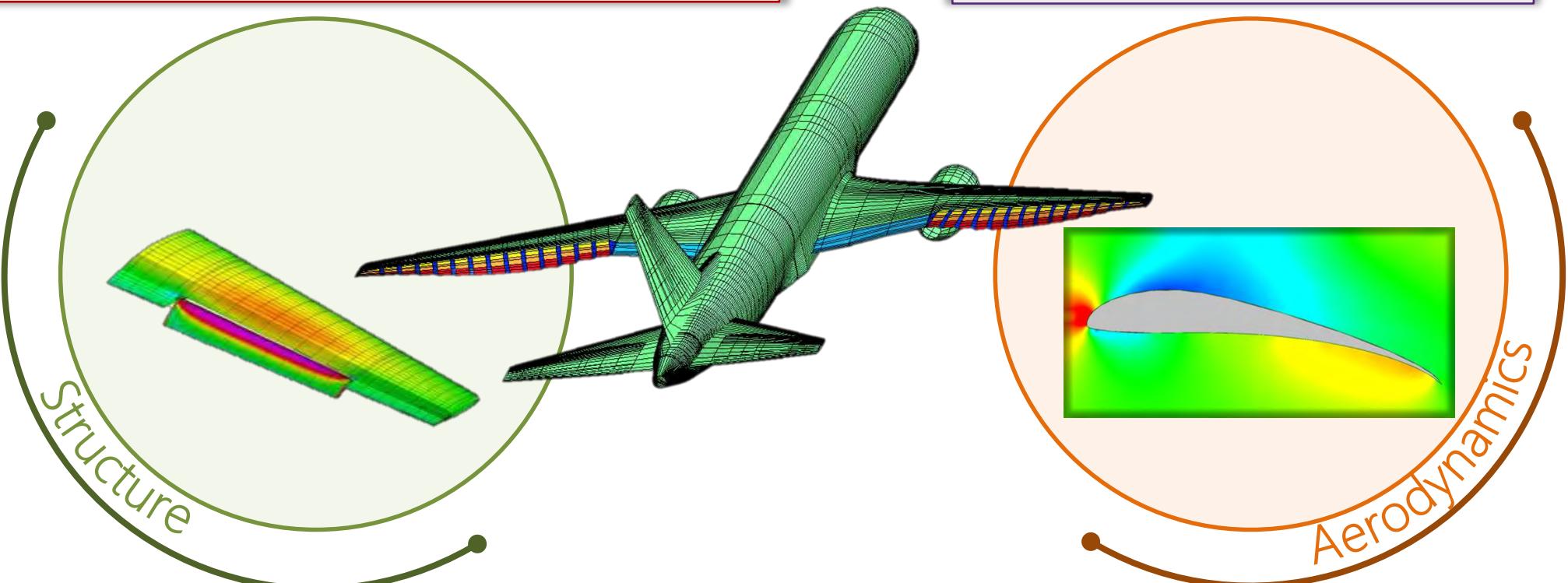
- ─ **CHALLENGE #1**
Coupling in analysis and UQ
- ─ **CHALLENGE #2**
Dynamic decision making in resource allocation

- ─ **Interdisciplinary couplings**

- ─ Feed-forward Coupling



- ─ Feedback Coupling



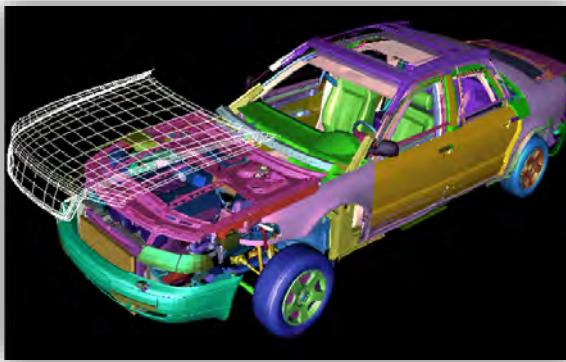
➤ Multiple Models with Different Levels of Fidelity

CHALLENGE #3

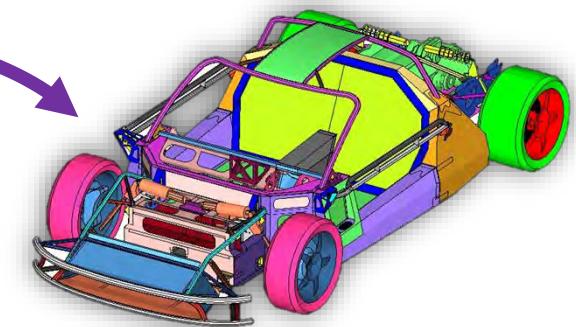
Heterogenous information from different sources (multifidelity simulations and experiments)

“High-fidelity” experiment test

“High-fidelity” physics-based CAE model

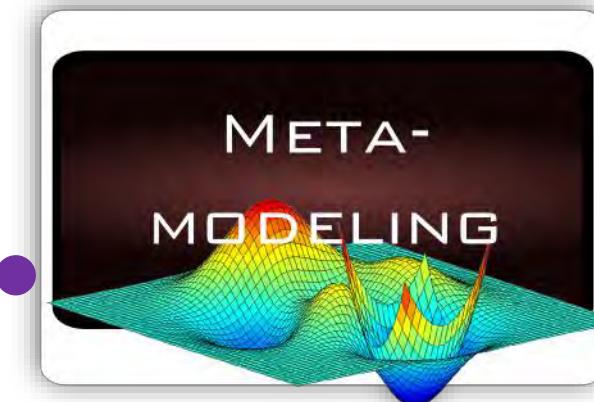


“Intermediate-fidelity” physics-based CAE model



“Low-fidelity” simplified handbook equations

$$2m_c v_1^2 = \frac{1}{2} (2m_c + m_t) v_2^2 + E_{\text{structural}}$$
$$2m_c v_1^2 = \frac{1}{2} (2m_c + m_t) \left(\frac{2m_c v_1}{2m_c + m_t} \right)^2 + E_{\text{structural}}$$
$$E_{\text{structural}} = 2m_c v_1^2 - \frac{2m_c^2 v_1^2}{2m_c + m_t}$$
$$E_{\text{structural}} = 2m_c v_1^2 \left(1 - \frac{m_c}{2m_c + m_t} \right)$$



“Intermediate-fidelity” surrogate model

Model-Fusion for Combining Heterogeneous Information

- Both hierarchical and nonhierarchical rankings of fidelity

Managing Couplings and Information Complexity

- Multidisciplinary statistical sensitivity analysis (MSSA)
- Multidisciplinary uncertainty analysis (MUA)

Resource Allocation for Reducing Epistemic Uncertainty in MDO

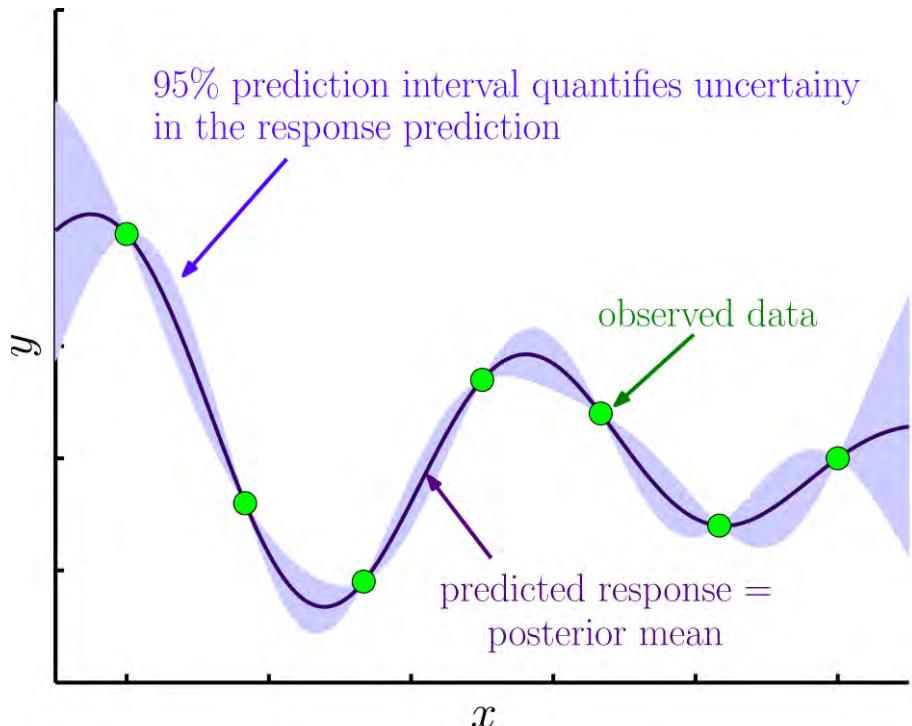
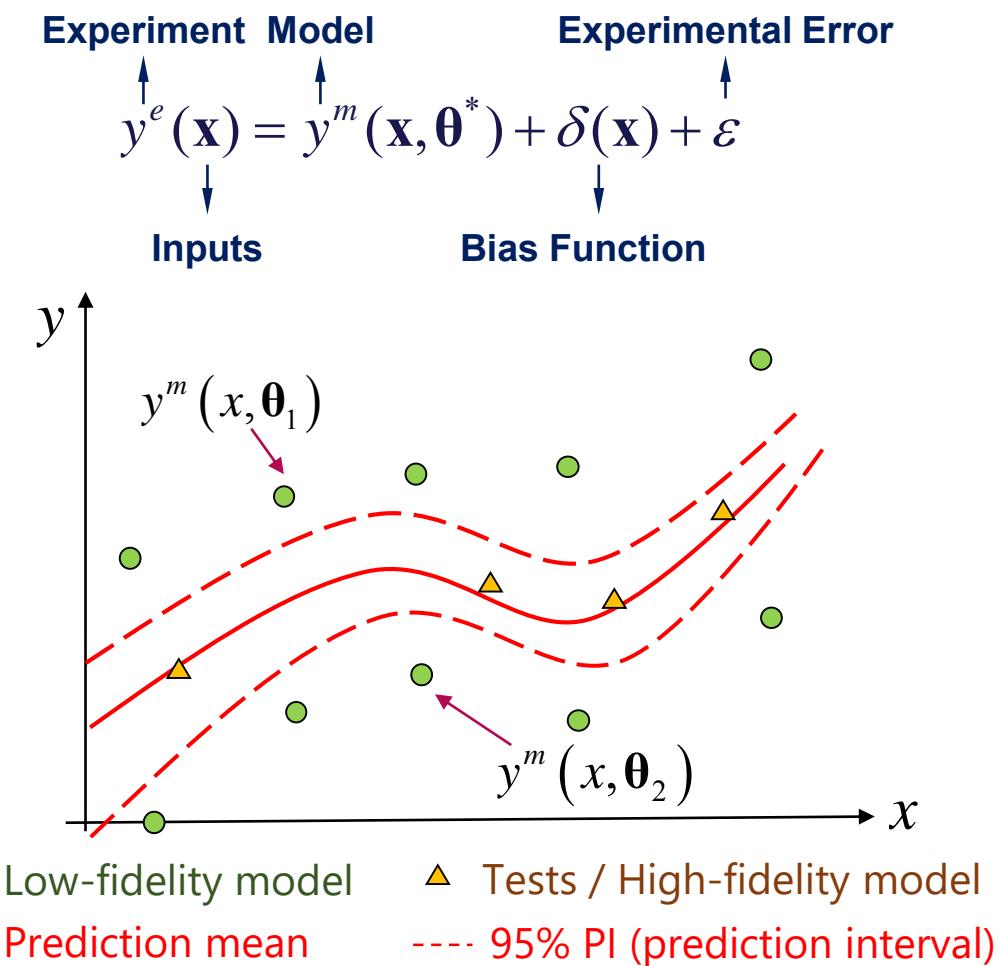
- How to design paths of information seeking actions
- Decision making meta-optimization problem

Spatial Random Process Based Model Uncertainty Quantification

Introduction

- Any pair of random variables, $Y(\mathbf{x})$ and $Y(\mathbf{x}')$, is spatially correlated
- Example: *Gaussian Process*

- $Y(\mathbf{x}) \sim GP (m(\mathbf{x}), V(\mathbf{x}, \mathbf{x}'))$
- $m(\mathbf{x}) = \mathbf{h}(\mathbf{x})^T \boldsymbol{\beta}, \quad V(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp \left\{ -\sum_k \omega_k (x_k - x'_k)^2 \right\}$



TOPIC 1

Model Fusion for Combining Heterogeneous Information

Chen, S., Jiang, Z., Yang, S., Apley, D., and Chen, W., “**Nonhierarchical Multi-model Fusion Using Spatial Random Processes**”, *International Journal for Numerical Methods in Engineering*, 10.1002/nme.5123, 2015.

Existing Multi-Model Fusion Techniques

Ng, L. W. –T. & M. Eldred, 2012; A. Narayan, D. Xiu, et al., 2014

- Apply low-fidelity information to construct the approximation space for a high-fidelity surrogate and then compute a high-fidelity reconstruction for model prediction.
- Using **stochastic allocation** with generalized polynomial chaos approach.

Kennedy & O'Hagan, 2000; Qian, P. Z. & C. J. Wu, 2008; Goh, Bingham, et al. 2013

- Assume the higher-fidelity model to be approximated by its next lower-fidelity model with a discrepancy, and then construct a multi-model sequential updating framework.
- Apply **spatial random process (SRP)** to surrogate the responses from different models.

Common Assumption

- The fidelity levels of the simulation models can be clearly identified and then **preliminarily** ordered for a hierarchical model updating.

› Lack of Clear Ranking of Model Fidelity in Real Applications

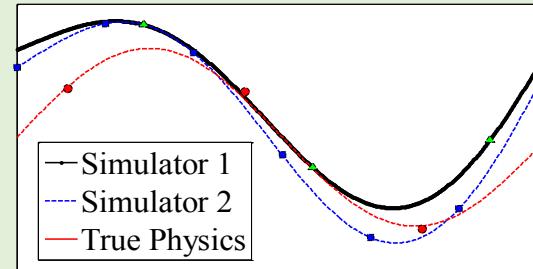
Competitive Simulation Models

- Financial predictive models developed by different commercial companies.

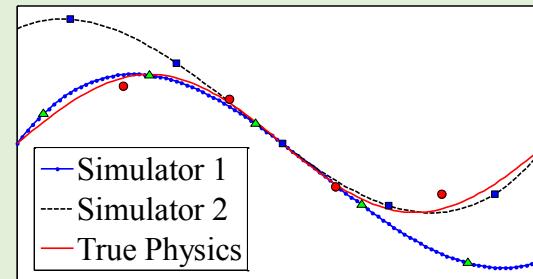
- Climate models arising from different research groups.

Complicated Fidelity Models

- The levels of mode fidelity are such closely similar that cannot be ranked.



- The levels of mode fidelity change over the whole design space.



Goal of this work: Develop model fusion techniques with uncertainty quantification for combining information from multiple models without a clear ranking of fidelity.

› Three Spatial Random Process (SRP) based Approaches

Approach 1: Weighted Sum

$$y^t(\mathbf{x}) = y^e(\mathbf{x}) - \varepsilon = \sum_i \rho^{\{i\}} y^{m\{i\}}(\mathbf{x}) + \delta(\mathbf{x})$$

Assumption: Independency between simulations and the discrepancy function

$$\text{Cov}\left(y^{m\{i\}}(\mathbf{x}), \delta(\mathbf{x})\right) = 0, \quad \forall i$$

$y^t(\mathbf{x})$: True response
 $y^e(\mathbf{x})$: Experimental response
 $y^{m\{i\}}(\mathbf{x})$: i^{th} simulation model
 $\delta(\mathbf{x})$: Discrepancy function
 ε : Experimental error

Approach 2: Each Model Individually Corrected

$$y^t(\mathbf{x}) = y^e(\mathbf{x}) - \varepsilon = y^{m\{i\}}(\mathbf{x}) + \delta^{\{i\}}(\mathbf{x})$$

Assumption: Independency between the discrepancy function and the true response

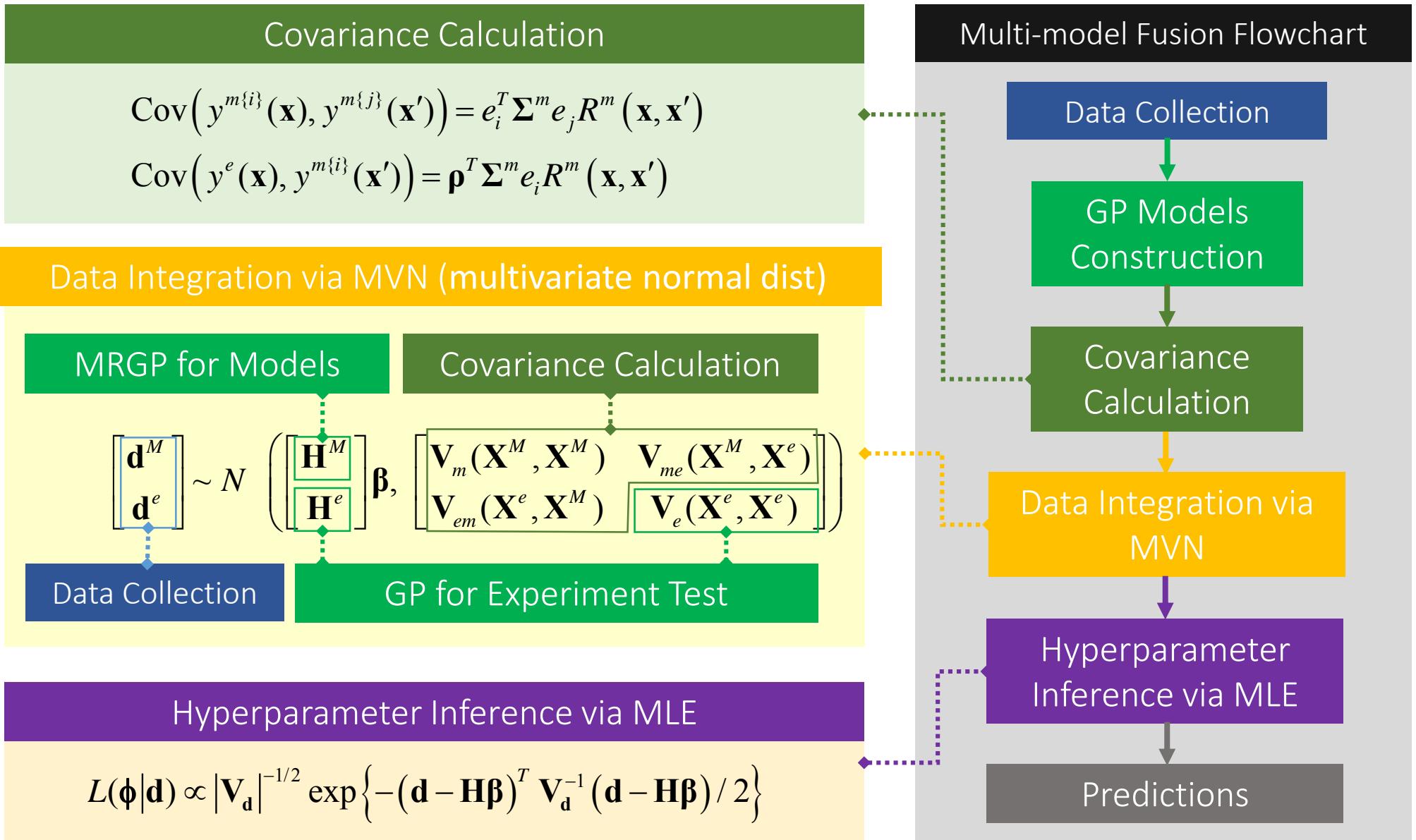
$$\text{Cov}\left(y^t(\mathbf{x}), \delta^{\{i\}}(\mathbf{x}')\right) = 0, \quad \forall i$$

Approach 3: Fully-Correlated Multi-Response

$$y^t(\mathbf{x}) = y^e(\mathbf{x}) - \varepsilon = y^{m\{i\}}(\mathbf{x}) + \delta^{\{i\}}(\mathbf{x})$$

Assumption: Simulation models and the discrepancy functions follow the same spatial correlation function

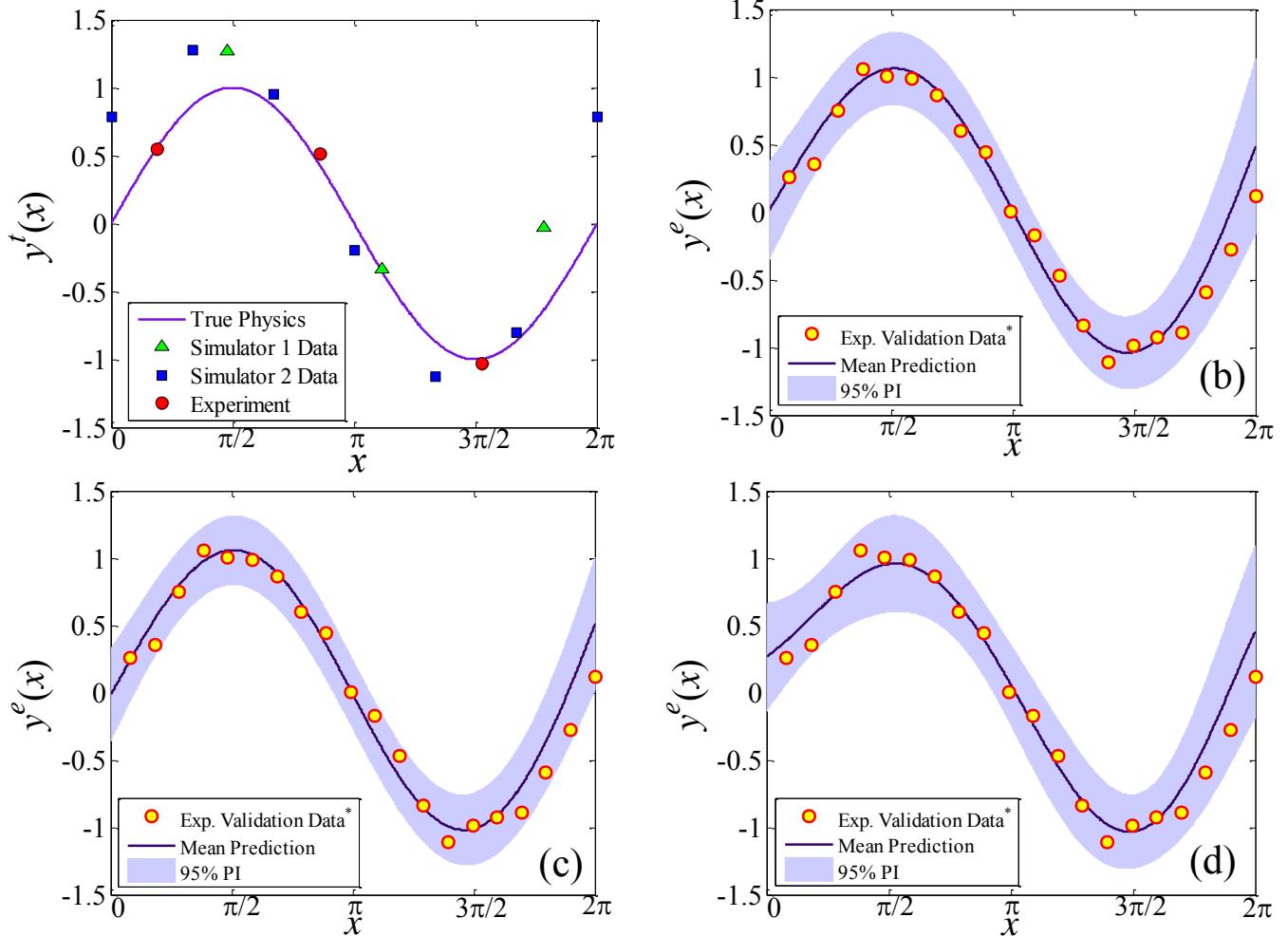
Multi-model Fusion Procedure (Illustration of Approach 1)



Example 1: Similar Model Fidelity

The fidelity levels of simulator 1 and 2 are similar.

3 samples from Simulator 1, 7 samples from Simulator 2, 3 observations from experiment



	Approach 1	Approach 2	Approach 3
RMSE	0.1530	0.1636	0.1573
u-pooling	0.0805	0.0786	0.0924

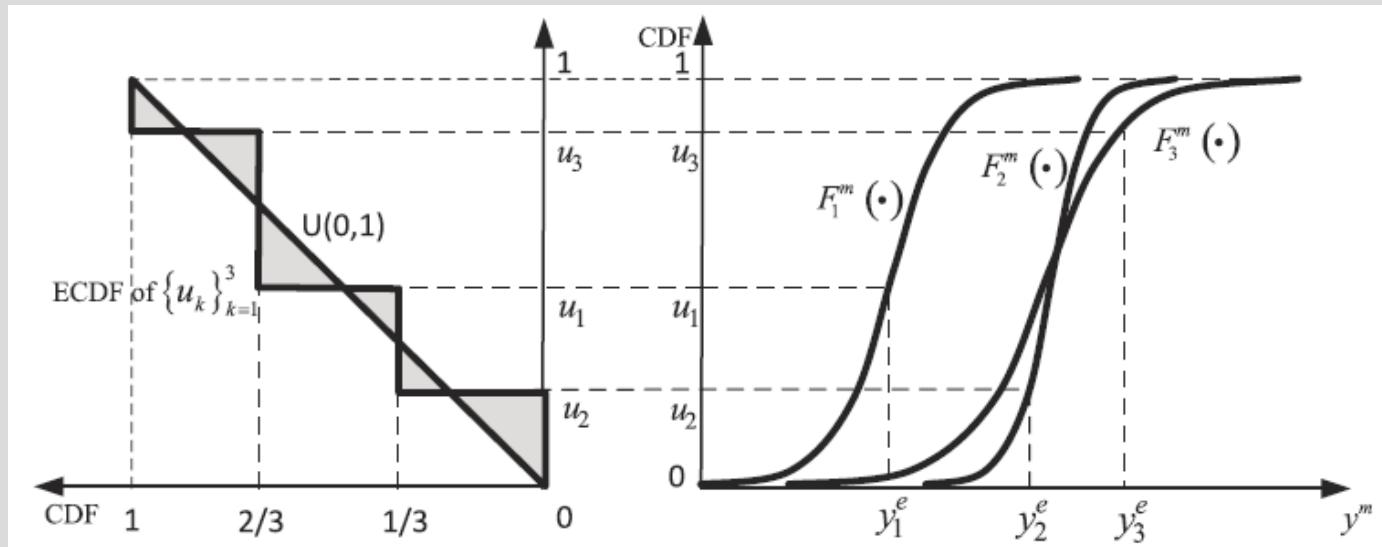
Validation Metrics

Root-mean-square error (RMSE)

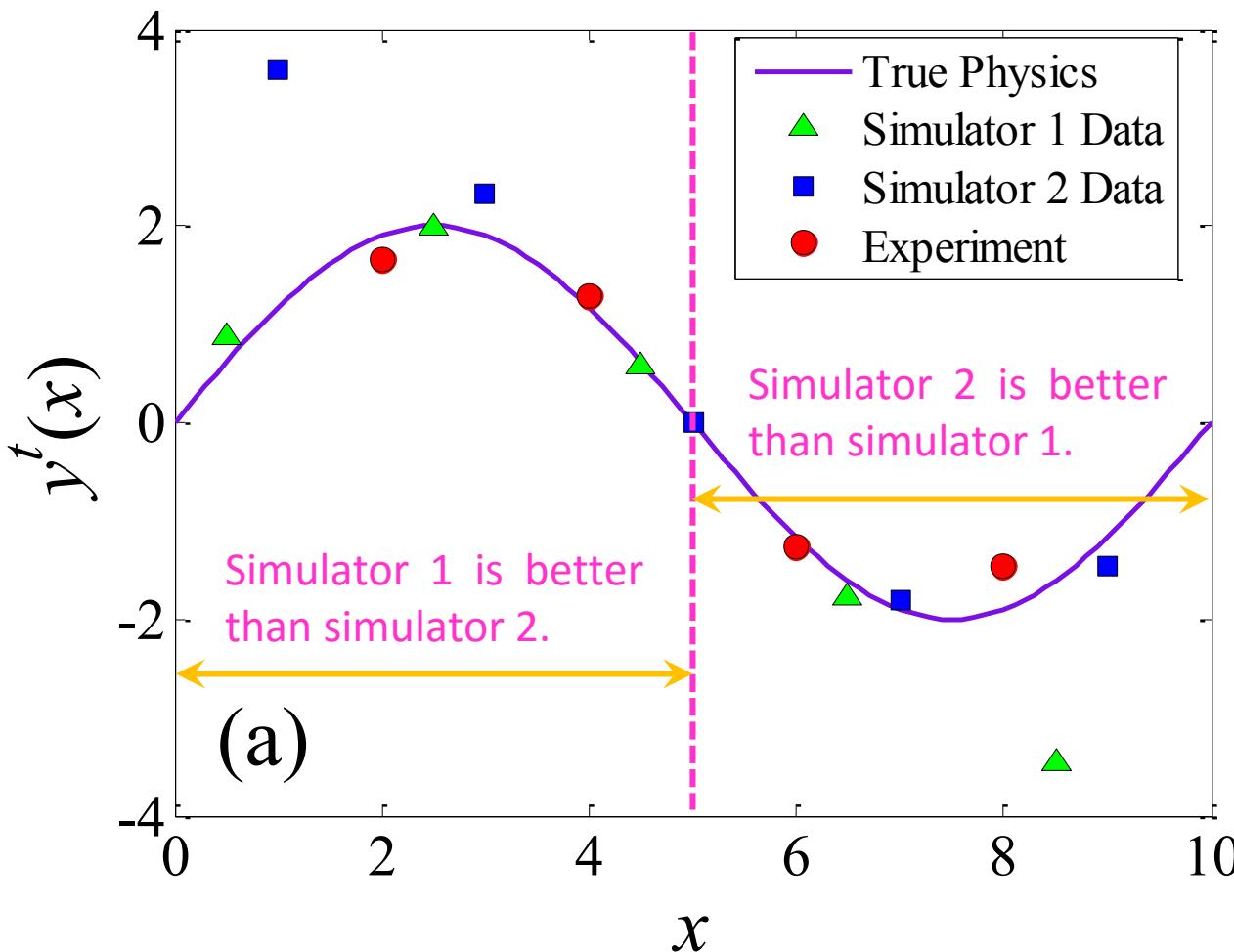
$$\Rightarrow \text{RMSE} = \sqrt{\frac{\sum_{i=1}^n (\hat{y}_i - y_i)^2}{n}}$$

U-pooling

$$u_i = F_{\mathbf{x}_i}^m(y^e(\mathbf{x}_i))$$



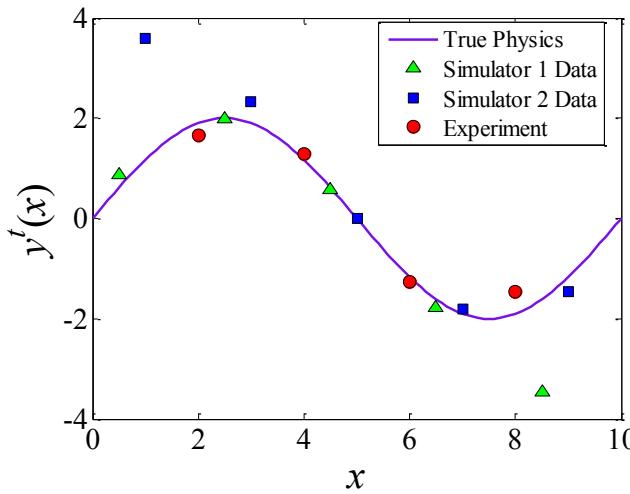
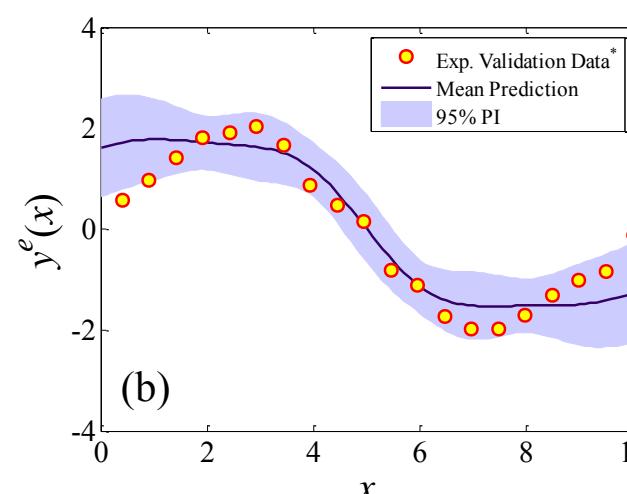
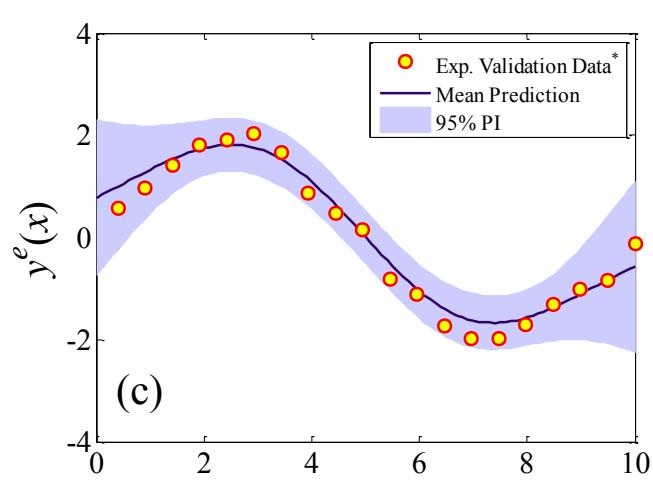
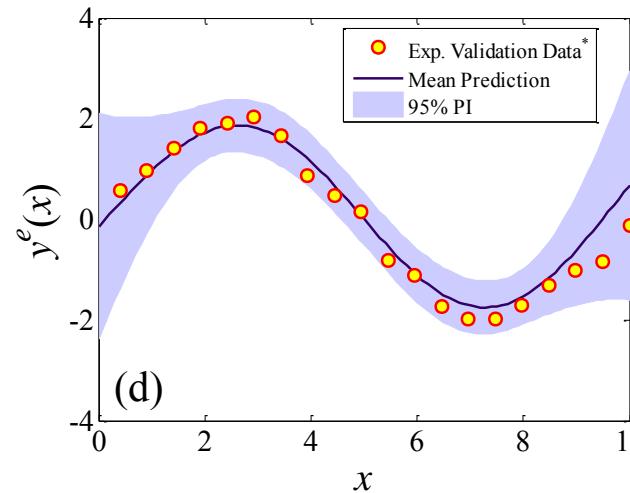
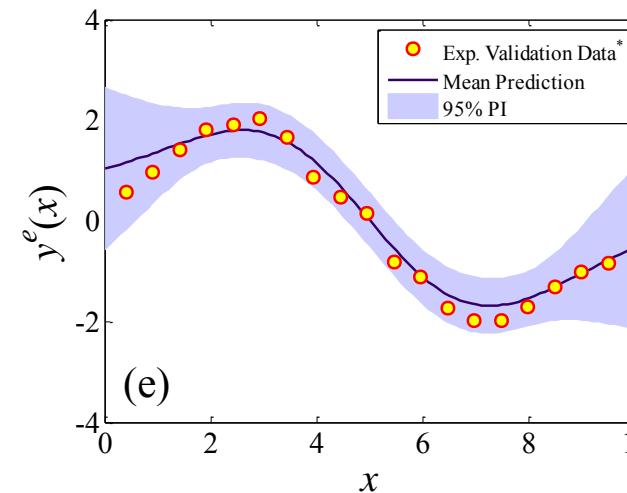
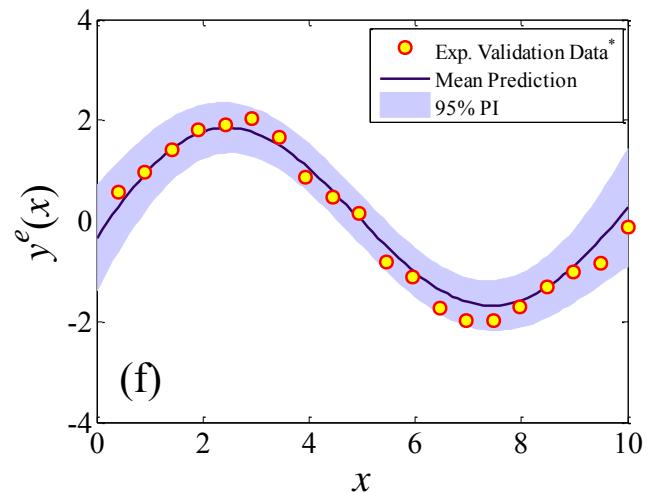
Example 2: Range-Dependent Model Fidelity



- The fidelity levels of both simulator 1 and 2 change over the design space
- 5 samples from each simulator, 4 observations from experiment

Example 2: Range-Dependent Model Fidelity

Model Fusion



Approach 1 with
 $0.01 < \omega^\delta < 50$

Approach 2

Approach 3

Approach 1 with
 $0.01 < \omega^\delta < 10$

Approach 1 with
 $0.01 < \omega^\delta < 5$

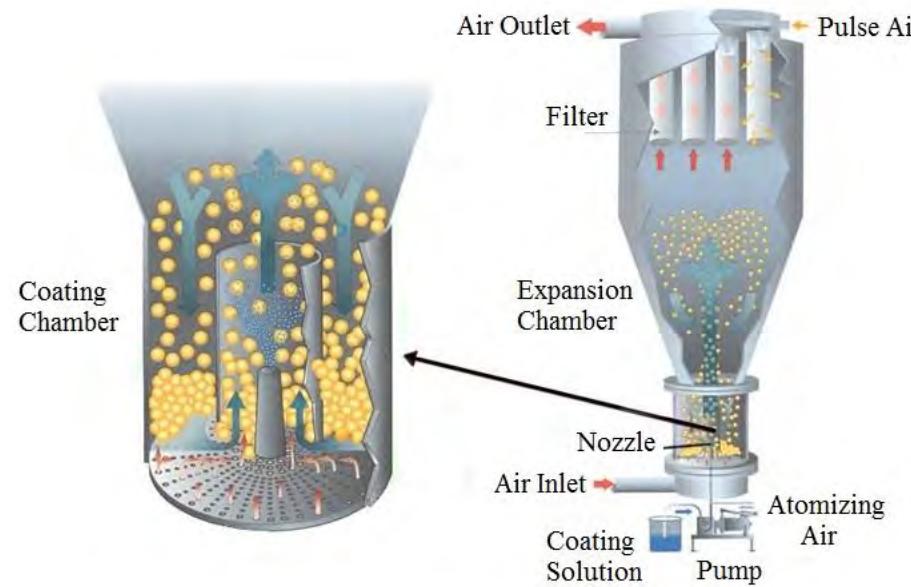
RMSE	0.5692	0.3329	0.3542	0.3598	0.2996
u-pooling	0.0797	0.0952	0.0966	0.1035	0.0823

> Example 3: Fluidized-Bed Processes

- Used in the food industry to tune the effect of functional ingredients and additives.
- Important thermo-dynamic response: steady-state outlet air temperature.
- First studied by Dewettinck et al., 1999; employed by Reese et al., 2004; Qian et al., 2008.

- V_f : Fluid velocity of the fluidization air
- T_a : Temperature of the air from the pump
- R_f : Flow rate of the coating solution
- P_a : Pressure of atomization air
- T_r : Room temperature
- H_r : Room humidity

Input Variables



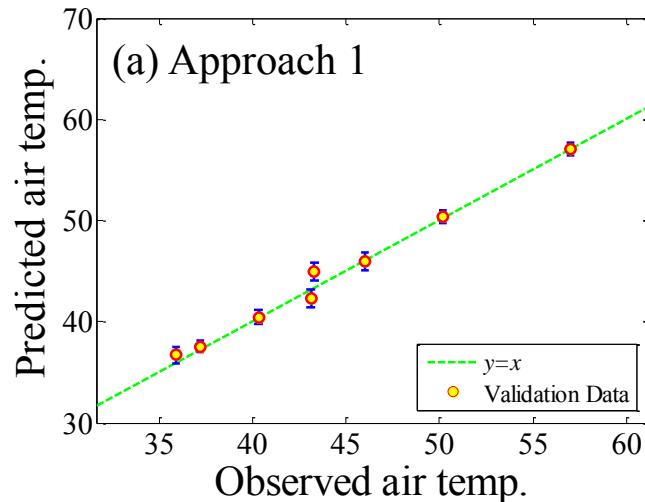
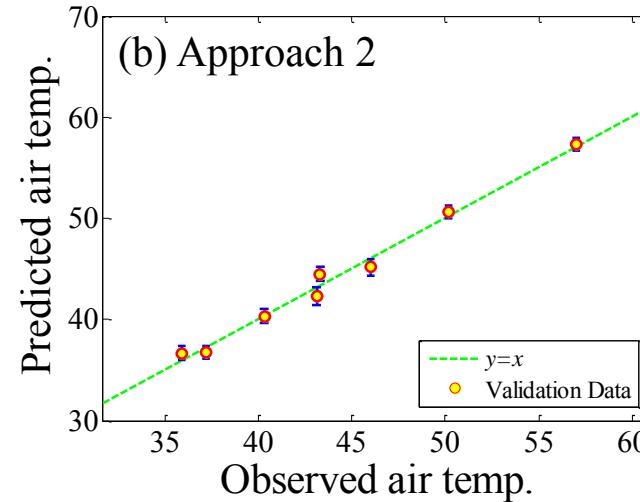
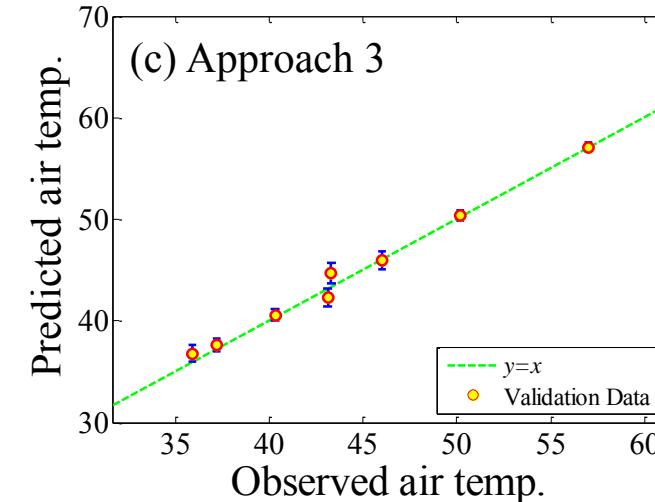
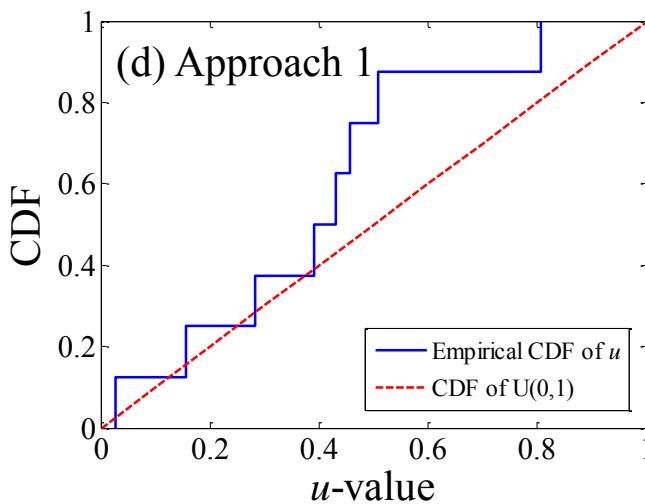
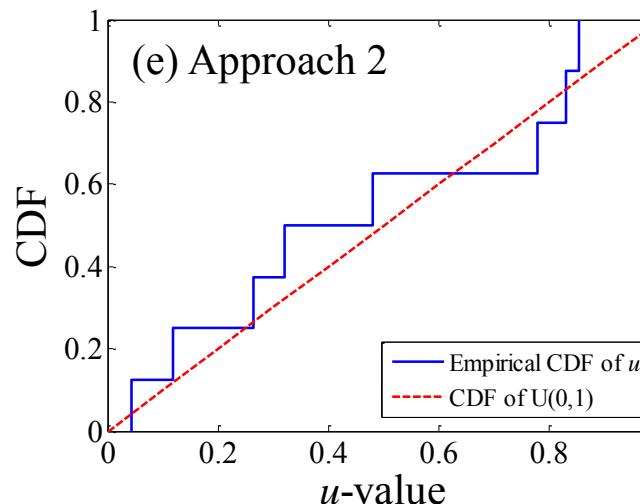
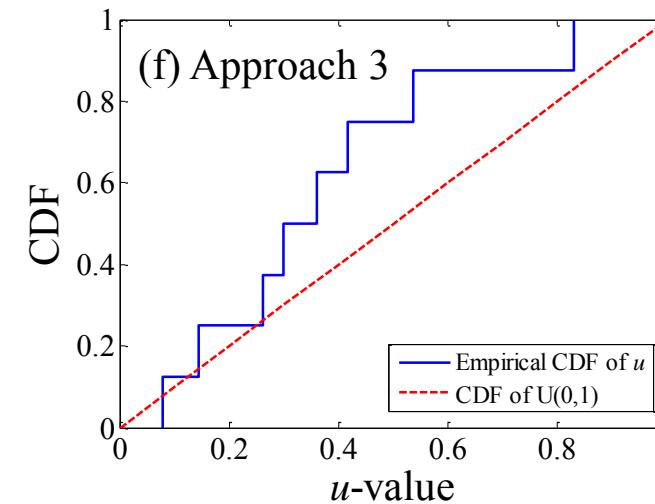
Y^m_1 : Least accurate model because of its neglecting both heat losses and inlet airflow

Y^m_2 : Intermediately accurate model taking those heat losses in the process

Y^e : Most accurate experiment test

Hierarchical Model Resources

Example 3: Fluidized-Bed Processes (Results)



	Approach 1	Approach 2	Approach 3	Qian and Wu's approach
RMSE	0.7402	0.6884	0.6925	/
u-pooling	0.1210	0.0706	0.1410	/
SRMSE	0.0177	0.0163	0.0169	0.020

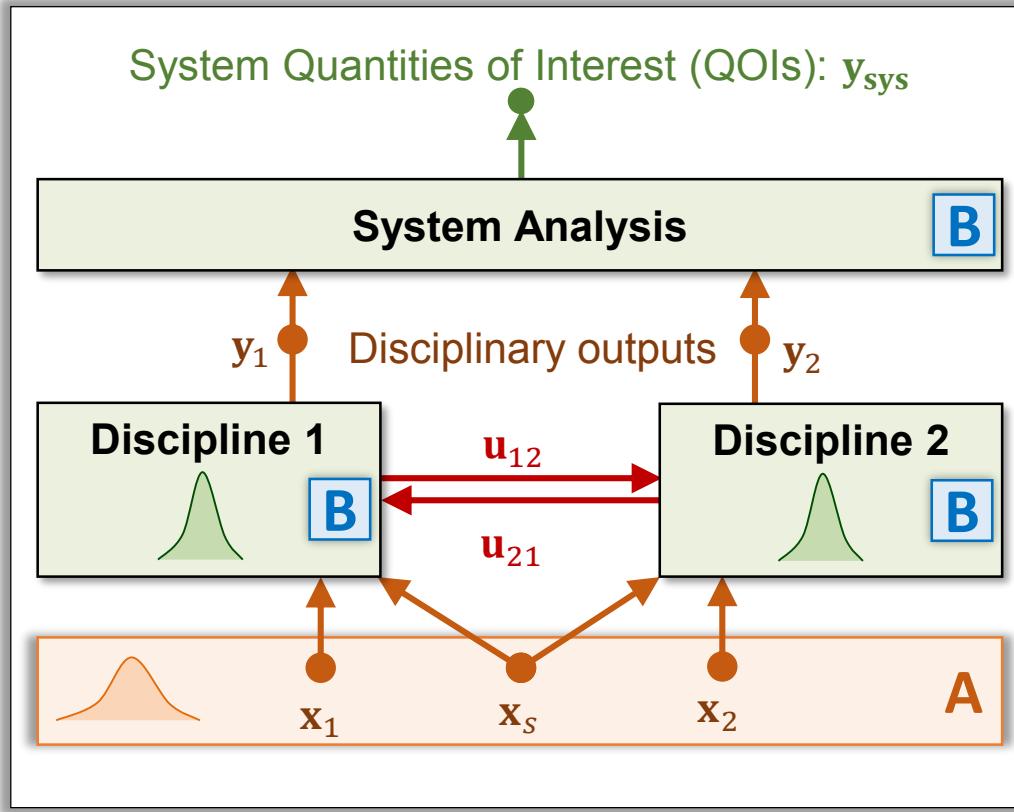
Topic 2

Managing Coupling and Information Complexity in MDO

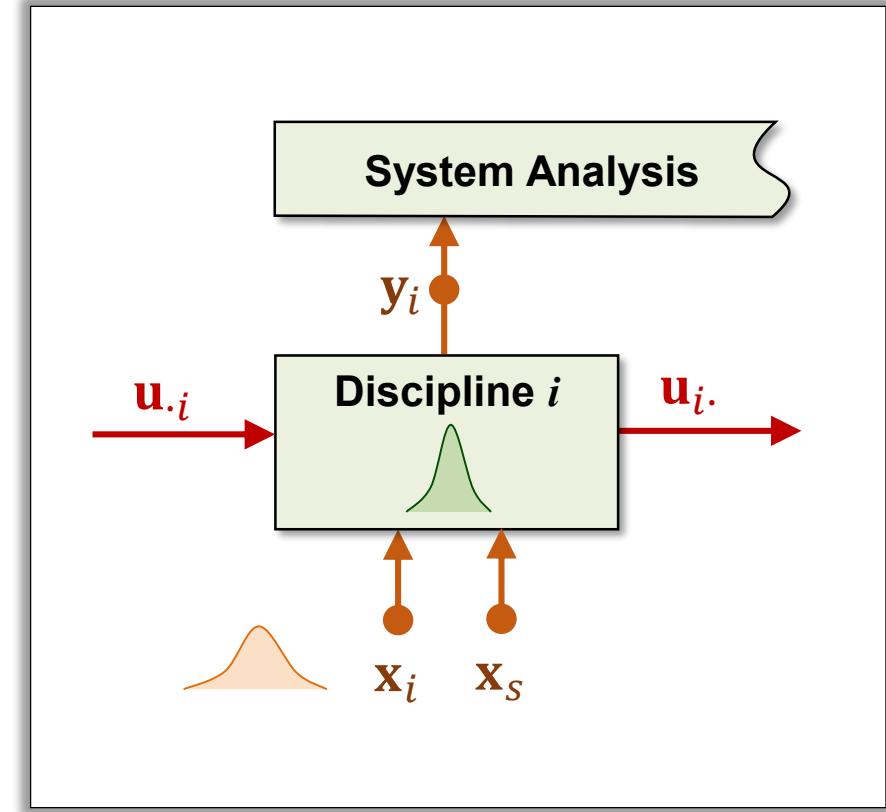
Jiang, Z., German, B., and Chen, W., **“Multidisciplinary Statistical Sensitivity Analysis Considering both Aleatory and Epistemic Uncertainties”**, *AIAA Journal*, doi: 10.2514/1.J054464, 2015.

Jiang, Z., Li., W., Apley, D., and Chen, W., **“A Spatial-Random-Process Based Multidisciplinary System Uncertainty Propagation Approach with Model Uncertainty”**, *Journal of Mechanical Design*, 2015.

> A Multidisciplinary System



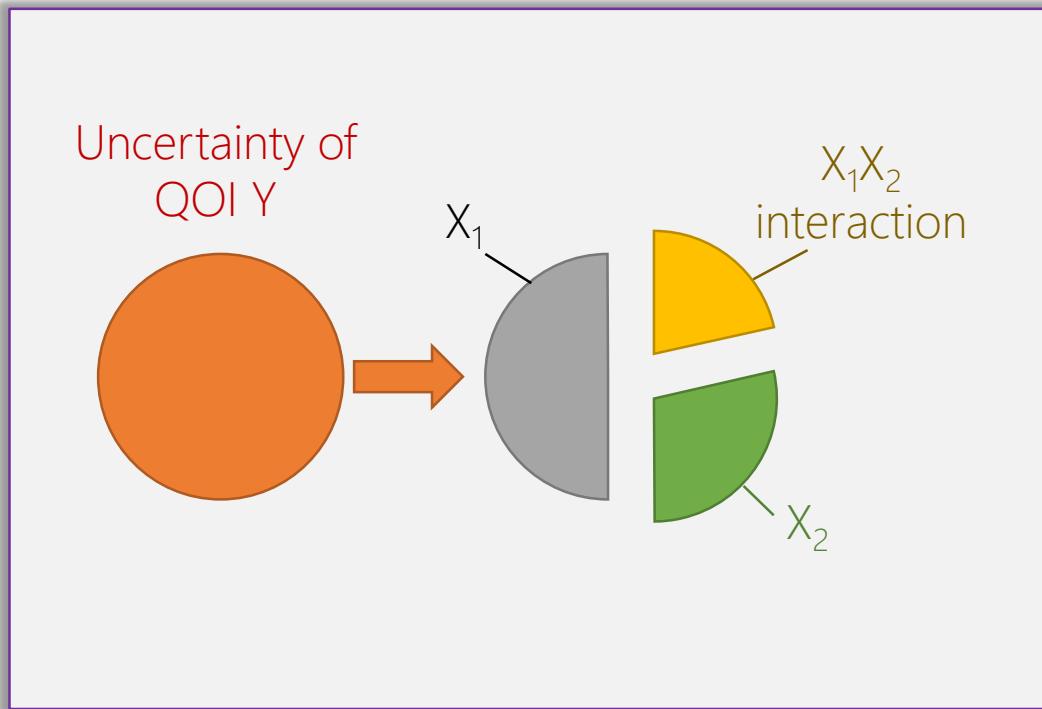
A Aleatory Uncertainty **B** Epistemic Model Uncertainty



Z is used to stand both disciplinary output y_i and linking variables u_i .

› Multidisciplinary Statistical Sensitivity Analysis (MSSA)

VARIANCE-BASED SENSITIVITY INDICES



Impact of Aleatory Uncertainty

- $\text{MSI}(X_i) = \frac{\text{Var}_{X_i}(\mathbb{E}_{Z, X_{\sim i}}(Y|X_i))}{\text{Var}(Y)}$
- $\text{TSI}(X_i) = 1 - \frac{\text{Var}_{Z, X_{\sim i}}(\mathbb{E}_{X_i}(Y|Z, X_{\sim i}))}{\text{Var}(Y)}$

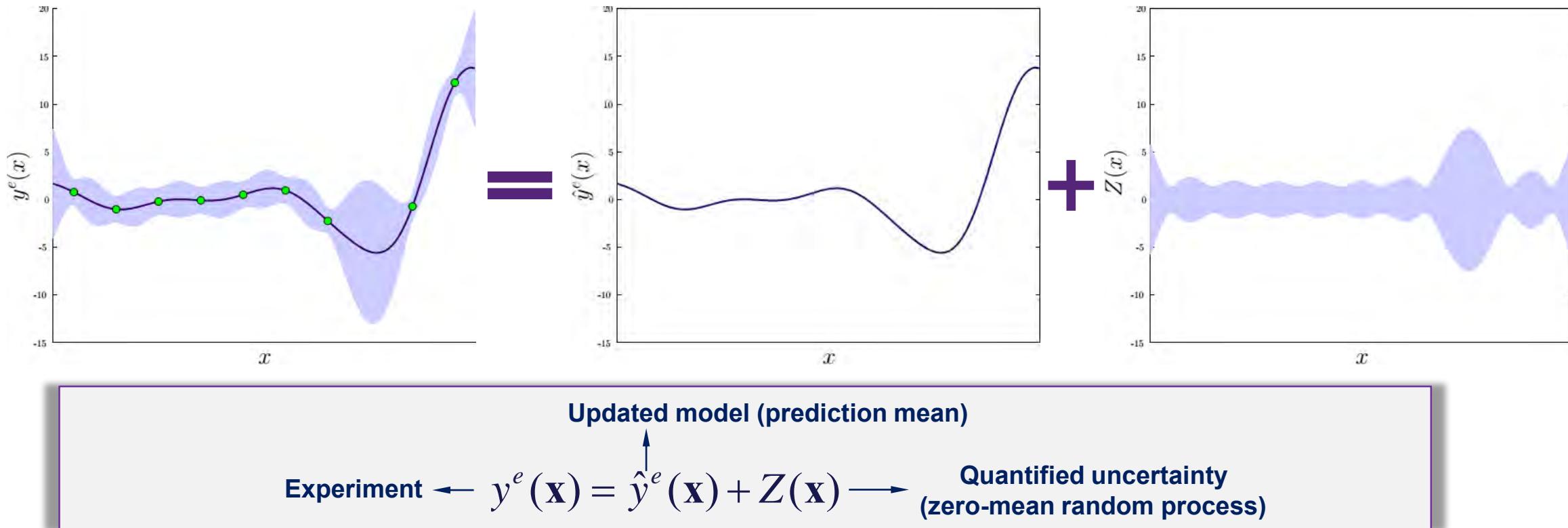
Impact of Epistemic Model Uncertainty

- $\text{MSI}(Z_k) = \frac{\text{Var}_{Z_k}(\mathbb{E}_{Z_{\sim k}, X}(Y|Z_k))}{\text{Var}(Y)}$
- $\text{TSI}(Z_k) = 1 - \frac{\text{Var}_{Z_{\sim k}, X}(\mathbb{E}_{Z_k}(Y|Z_{\sim k}, X))}{\text{Var}(Y)}$

Challenges in SSA of model uncertainty

- Traditional Sobol's method considers stochastic inputs as scalar variables
- Z are stochastic **functional responses** over model inputs.
- **Nested situation** where model uncertainty (Z) is a function of aleatory uncertainty (X)

➤ Separating Model Uncertainty in Disciplinary SRP



DISCIPLINARY UNCERTAINTY QUANTIFICATION

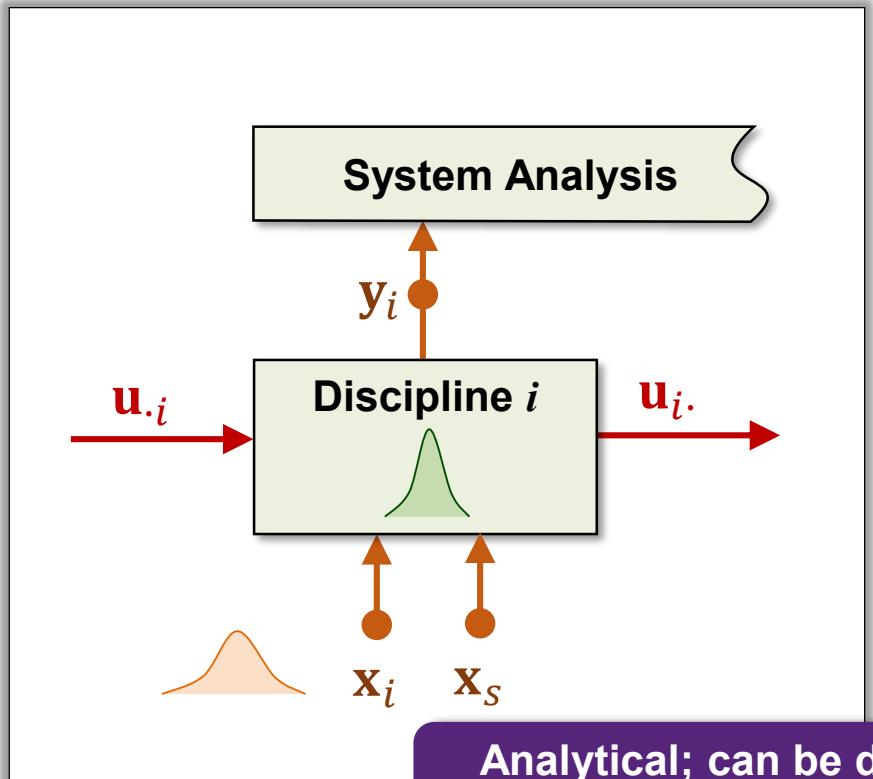
$$\mathbf{u}_i^e(\mathbf{x}_i, \mathbf{x}_s, \mathbf{u}_{\cdot i}^e) = \hat{\mathbf{u}}_i^e(\mathbf{x}_i, \mathbf{x}_s, \mathbf{u}_{\cdot i}^e) + \mathbf{Z}_{ui}(\mathbf{x}_i, \mathbf{x}_s, \mathbf{u}_{\cdot i}^e)$$

$$\mathbf{y}_i^e(\mathbf{x}_i, \mathbf{x}_s, \mathbf{u}_{\cdot i}^e) = \hat{\mathbf{y}}_i^e(\mathbf{x}_i, \mathbf{x}_s, \mathbf{u}_{\cdot i}^e) + \mathbf{Z}_{yi}(\mathbf{x}_i, \mathbf{x}_s, \mathbf{u}_{\cdot i}^e)$$

TO AVOID NESTED SIMULATIONS IN SSA

- **Analytically derived multidisciplinary uncertainty propagation (MUA)**

➤ SRP-Based Multidisciplinary Uncertainty Analysis (MUA) Method



DISCIPLINARY UNCERTAINTY QUANTIFICATION

■ $\mathbf{u}_i^e(\mathbf{x}_i, \mathbf{x}_s, \mathbf{u}_{.i}^e) = \hat{\mathbf{u}}_i^e(\mathbf{x}_i, \mathbf{x}_s, \mathbf{u}_{.i}^e) + \mathbf{Z}_{ui}(\mathbf{x}_i, \mathbf{x}_s, \mathbf{u}_{.i}^e)$

$\mathbf{y}_i^e(\mathbf{x}_i, \mathbf{x}_s, \mathbf{u}_{.i}^e) = \hat{\mathbf{y}}_i^e(\mathbf{x}_i, \mathbf{x}_s, \mathbf{u}_{.i}^e) + \mathbf{Z}_{yi}(\mathbf{x}_i, \mathbf{x}_s, \mathbf{u}_{.i}^e)$

Evaluation of means of linking variables and disciplinary outputs

Evaluation of (co)variance of linking variables u

Evaluation of (co)variance of disciplinary outputs y

Evaluation of mean and (co)variance of system QOIs

A MATRIX FORM

■ $\mathbf{A}(\mathbf{u}^e - \boldsymbol{\mu}_u) \approx \mathbf{B}(\mathbf{X} - \boldsymbol{\mu}_X) + \mathbf{Z}_u, \quad \mathbf{y}^e - \boldsymbol{\mu}_y \approx (\mathbf{E}\mathbf{A}^{-1}\mathbf{B} + \mathbf{F})(\mathbf{X} - \boldsymbol{\mu}_X) + \mathbf{E}\mathbf{A}^{-1}\mathbf{Z}_u + \mathbf{Z}_y$

$$\boldsymbol{\mu}_{ui} \approx \hat{\mathbf{u}}_i^e(\boldsymbol{\mu}_{xi}, \boldsymbol{\mu}_{xs}, \boldsymbol{\mu}_{u.i}),$$

$$\boldsymbol{\Sigma}_u \approx (\mathbf{A}^{-1}\mathbf{B})\boldsymbol{\Sigma}_X(\mathbf{A}^{-1}\mathbf{B})^T + (\mathbf{A}^{-1})\boldsymbol{\Sigma}_{Zu}(\mathbf{A}^{-1})^T.$$

$$\boldsymbol{\mu}_{yi} \approx \hat{\mathbf{y}}_i^e(\boldsymbol{\mu}_{xi}, \boldsymbol{\mu}_{xs}, \boldsymbol{\mu}_{u.i}),$$

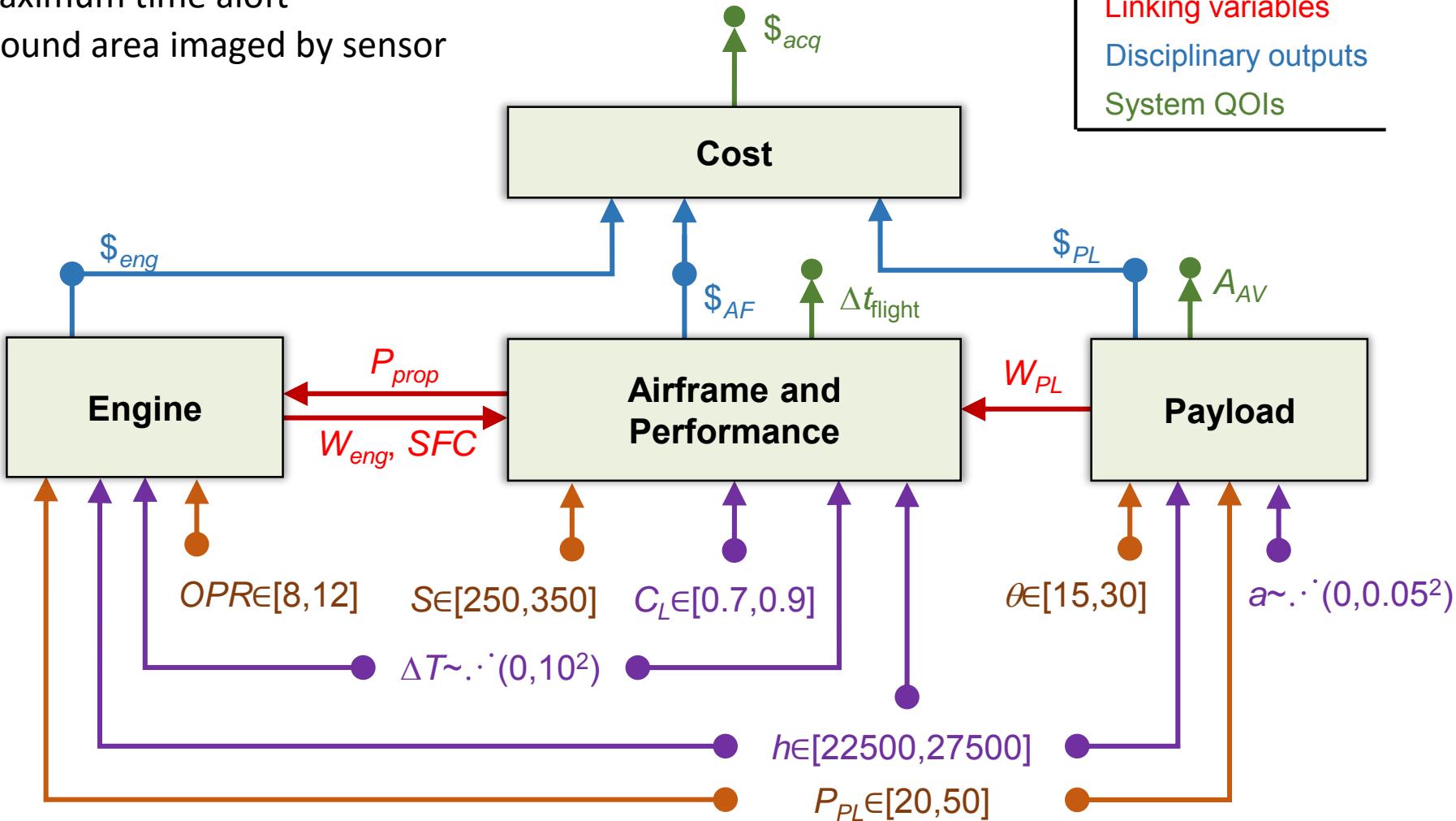
$$\boldsymbol{\Sigma}_y \approx (\mathbf{E}\mathbf{A}^{-1}\mathbf{B} + \mathbf{F})\boldsymbol{\Sigma}_X(\mathbf{E}\mathbf{A}^{-1}\mathbf{B} + \mathbf{F})^T + (\mathbf{E}\mathbf{A}^{-1})\boldsymbol{\Sigma}_{Zu}(\mathbf{E}\mathbf{A}^{-1})^T + \boldsymbol{\Sigma}_{zy}.$$

Case Study: An Aircraft Design Problem

System QOIs

- $\$_{acq}$ -total acquisition cost
- Δt_{flight} -maximum time aloft
- A_{AV} -Ground area imaged by sensor

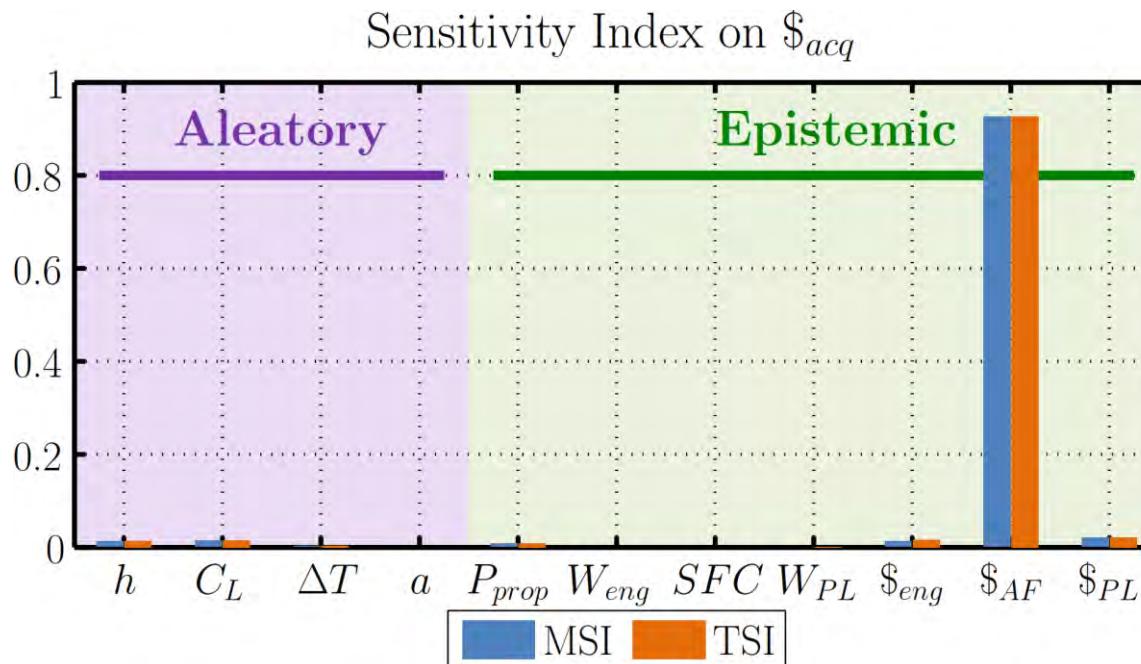
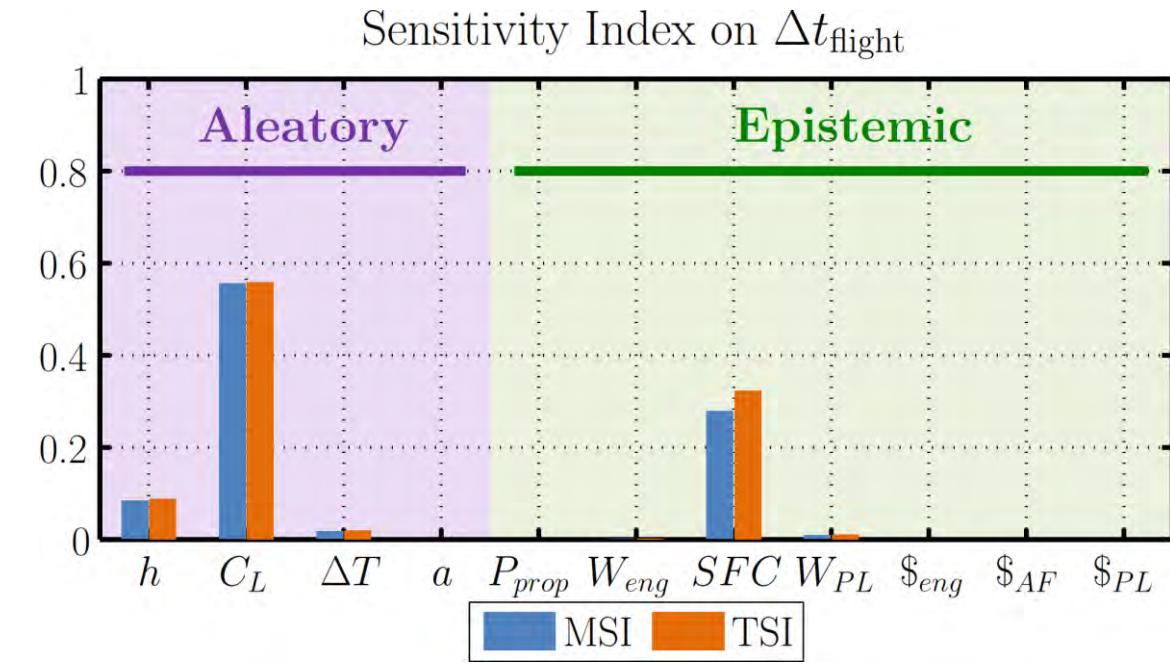
- Design variables
- Noise variables
- Linking variables
- Disciplinary outputs
- System QOIs



Sensitivity Analysis for both Aleatory and Epistemic Uncertainties

Aleatory Uncertainty: 6~7%

Epistemic Uncertainty: 5%



Topic 3

Resource Allocation for Reduction of Epistemic Uncertainty in Multidisciplinary Design

Jiang, Z., Chen, S., Apley, D., and Chen, W., “**Resource Allocation for Reduction of Epistemic Uncertainty in Simulation-based Multidisciplinary Design**”, *ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference*, IDETC2015-47302, August 2-4, Boston, MA, 2015.

› Introduction

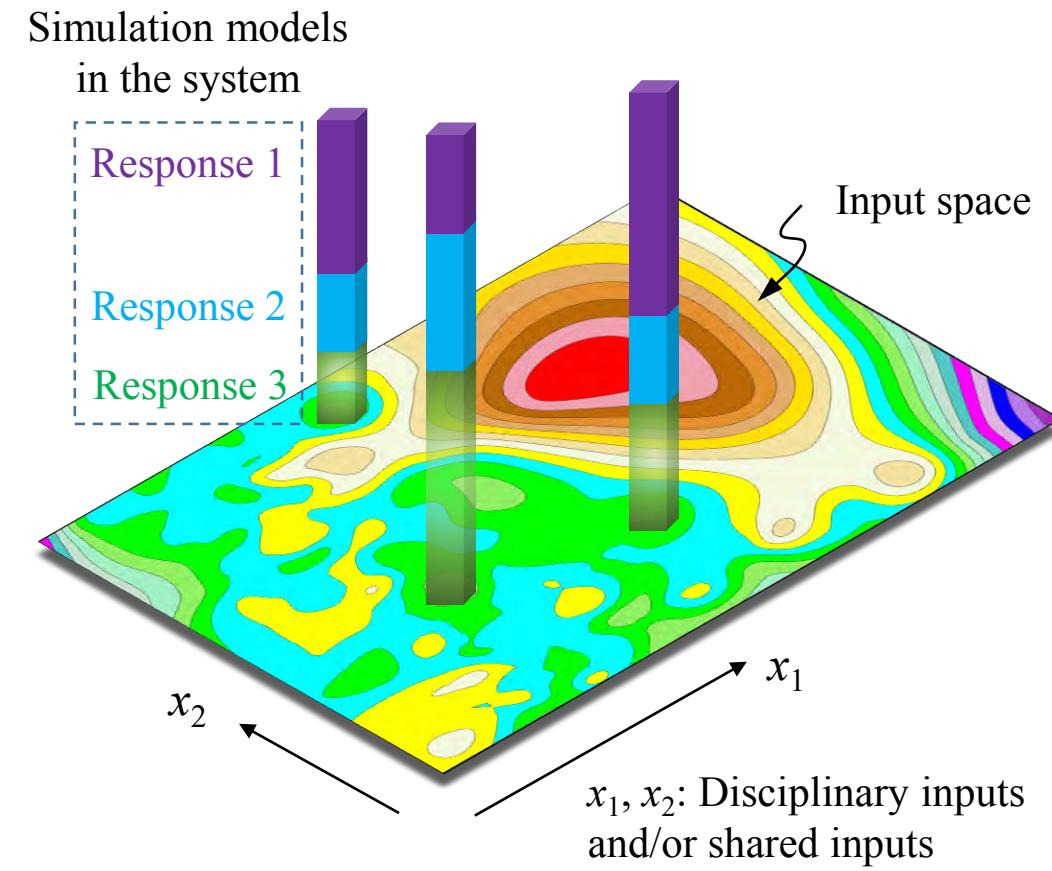
OBJECTIVE

- To improve the **global** modeling capability of a multidisciplinary system
Such that the epistemic uncertainty of system QOIs is acceptable over the input space.

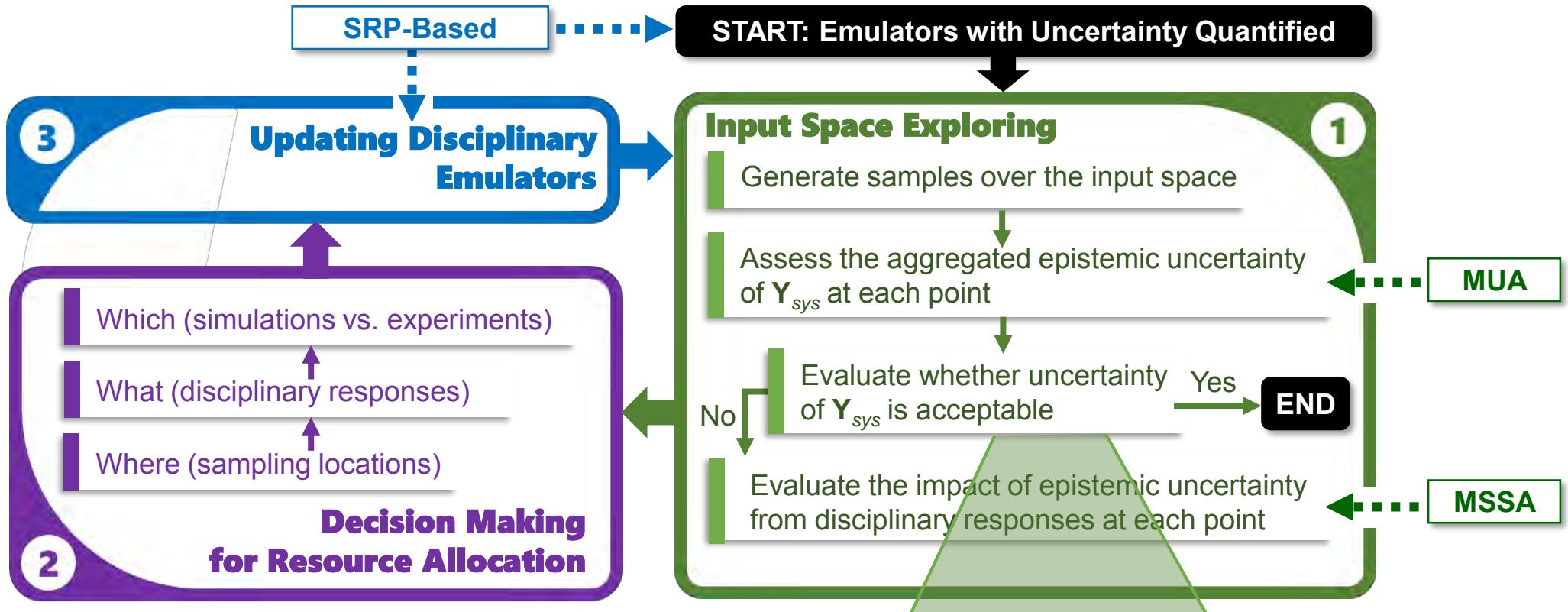
Resources: Experiments and/or simulations

RESEARCH QUESTIONS

- **Where** in the input space of a multidisciplinary system shall we allocate more resources?
- To **what** disciplinary response(s) shall we allocate more resources?
- **Which** type of resource shall we allocate, experiments or simulations?
-



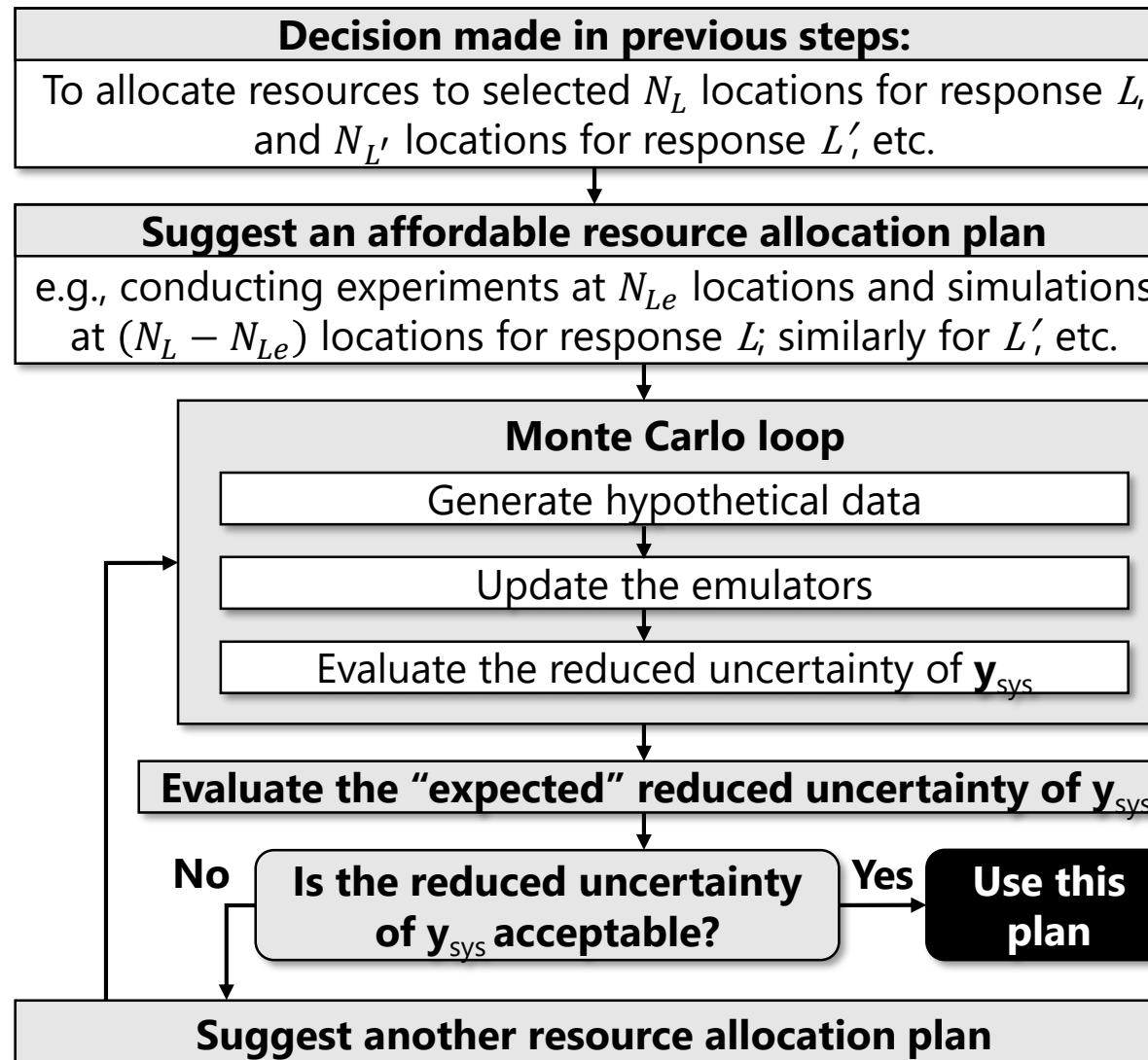
A Sequential Resource Allocation Strategy



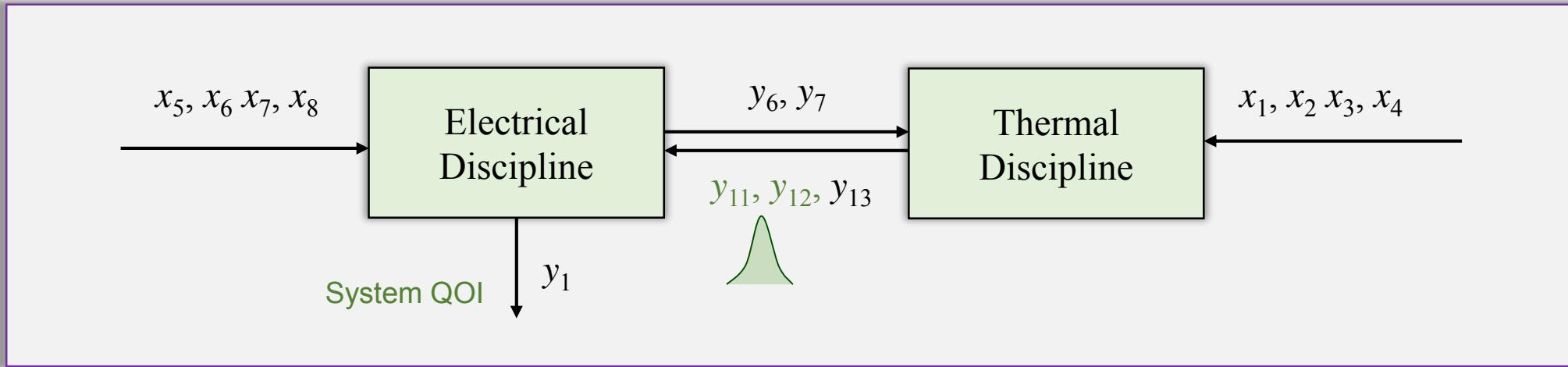
- SRP: Spatial-Random-Process
- MUA: Multidisciplinary Uncertainty Analysis
- MSSA: Multidisciplinary Statistical Sensitivity Analysis

$$\gamma(\mathbf{x}_{ind}, \mathbf{x}_s) \triangleq \frac{\sqrt{\text{Var}[Y_{sys}(\mathbf{x}_{ind}, \mathbf{x}_s)]}}{\iint \|Y_{sys}(\mathbf{x}_{ind}, \mathbf{x}_s)\| d\mathbf{x}_{ind} d\mathbf{x}_s / \iint d\mathbf{x}_{ind} d\mathbf{x}_s} \leq \alpha\%, \quad \text{for } \forall \mathbf{x}_{ind}, \mathbf{x}_s$$

➤ Which (simulations vs. experiments): A Preposterior Analysis

AFTER SELECTING LOCATIONS AND RESPONSES...

Case Study: Electronic Packaging



- <http://www.eng.buffalo.edu/Research/MODEL/mdo.test.orig/class2prob3.html>

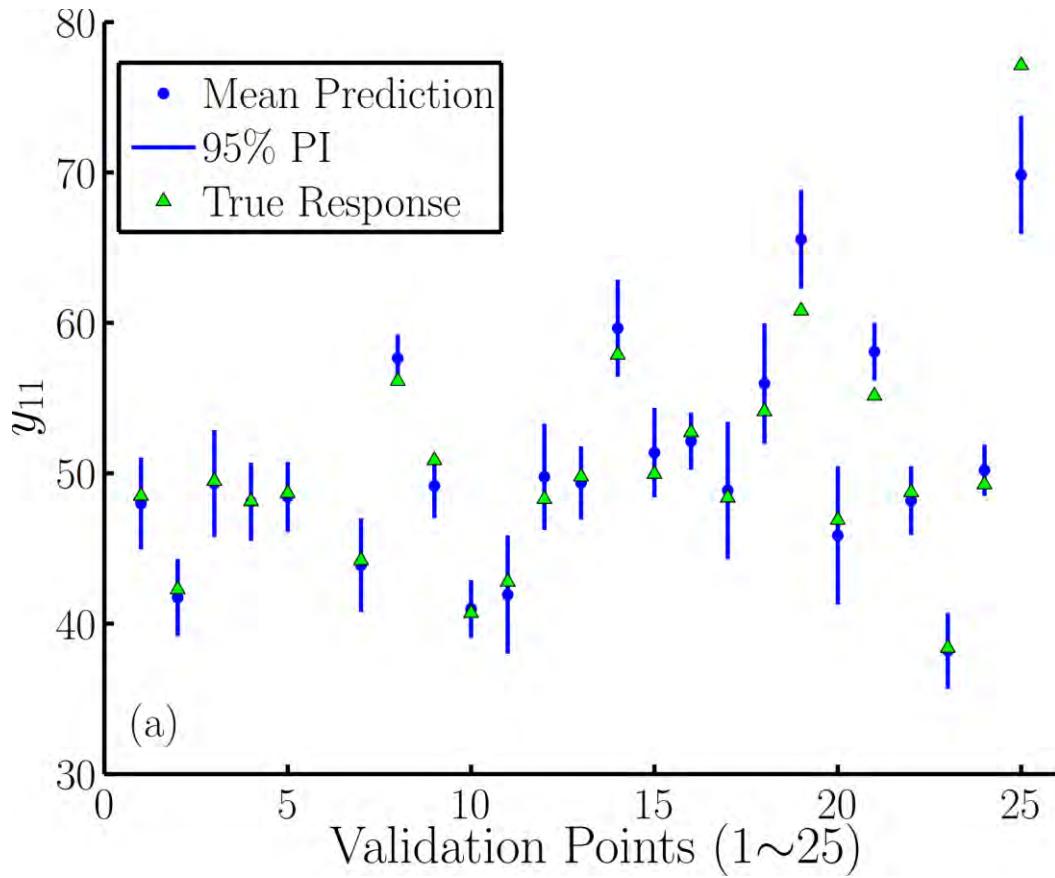
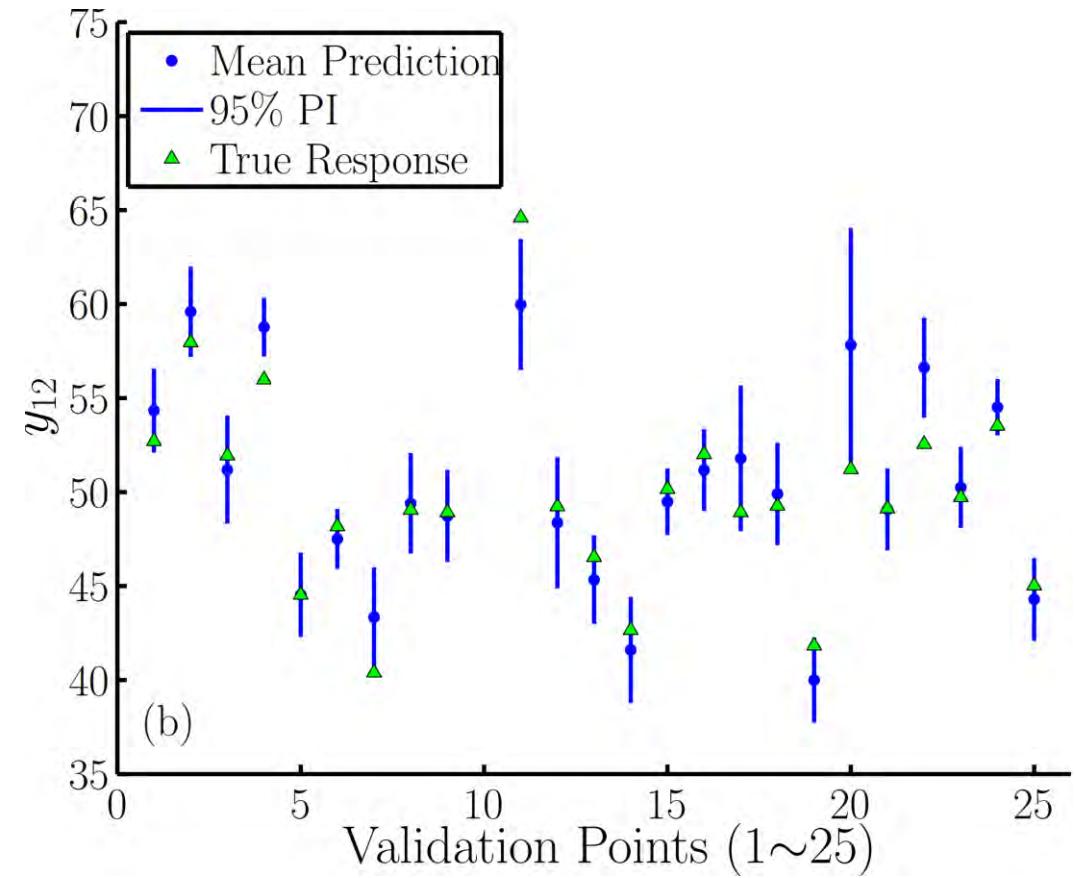
x_1	Heat sink width (m)	y_1	Negative of watt density (watts/m ³)
x_2	Heat sink length (m)	y_4	Current in resistor #1 (amps)
x_3	Fin length (m)	y_5	Current in resistor #2 (amps)
x_4	Fin width (m)	y_6	Power dissipation in resistor #1 (watts)
x_5	Nominal resistance #1 at temperature 20 °C (Ω)	y_7	Power dissipation in resistor #2 (watts)
x_6	Temperature coefficient of electrical resistance #1 (°K ⁻¹)	y_{11}	Component temperature of resistor #1 (°C)
x_7	Nominal resistance #2 at temperature 20 °C (Ω)	y_{12}	Component temperature of resistor #2 (°C)
x_8	Temperature coefficient of electrical resistance #2 (°K ⁻¹)	y_{13}	Heat sink volume (m ³)

Uncertainty Quantification

1ST ITERATION

- Model UQ: 40 experiments + 40 simulations

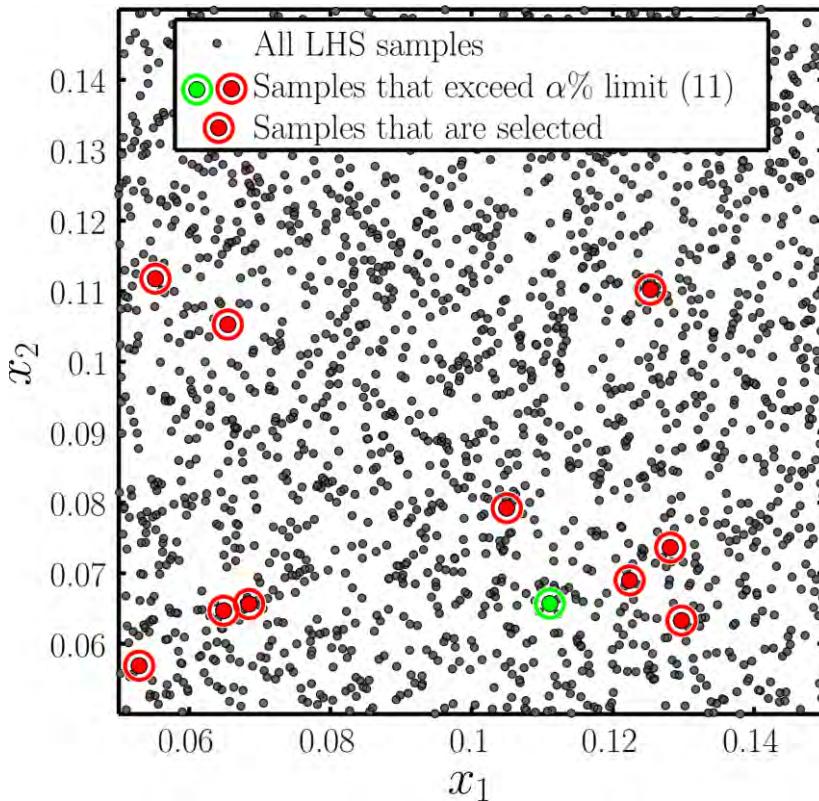
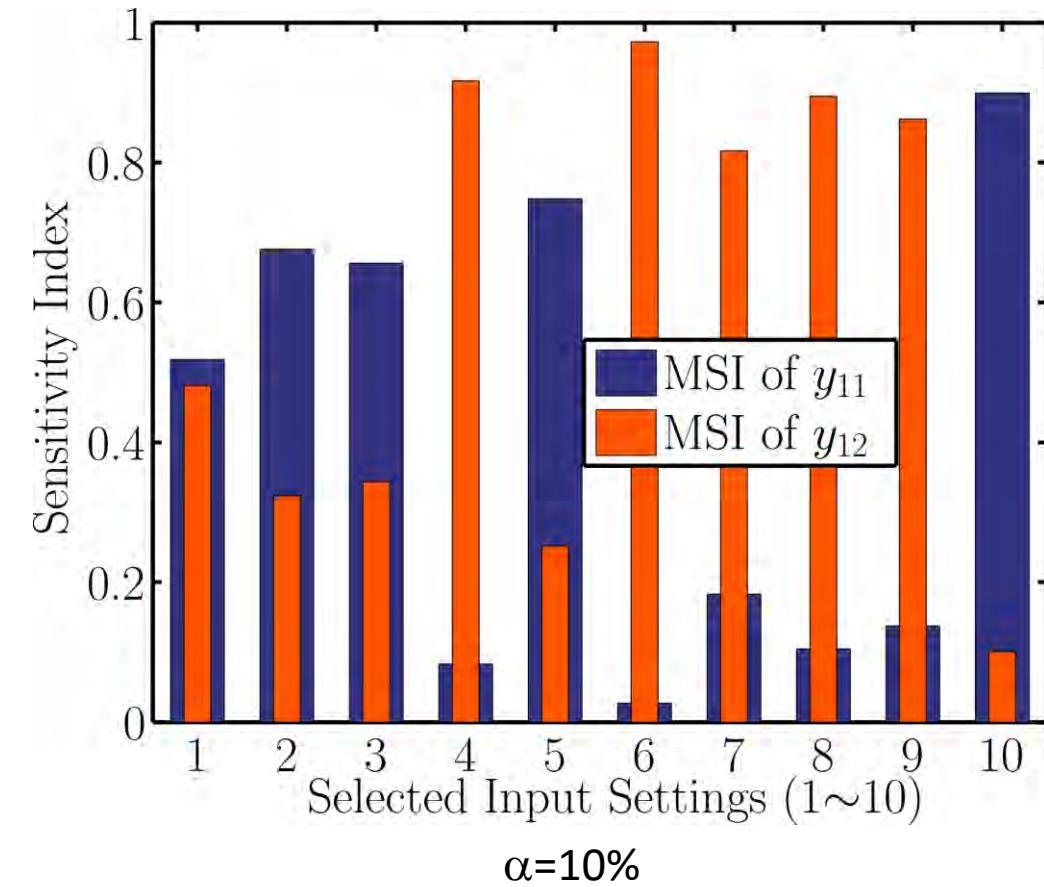
Resource Allocation



Selection of Input settings

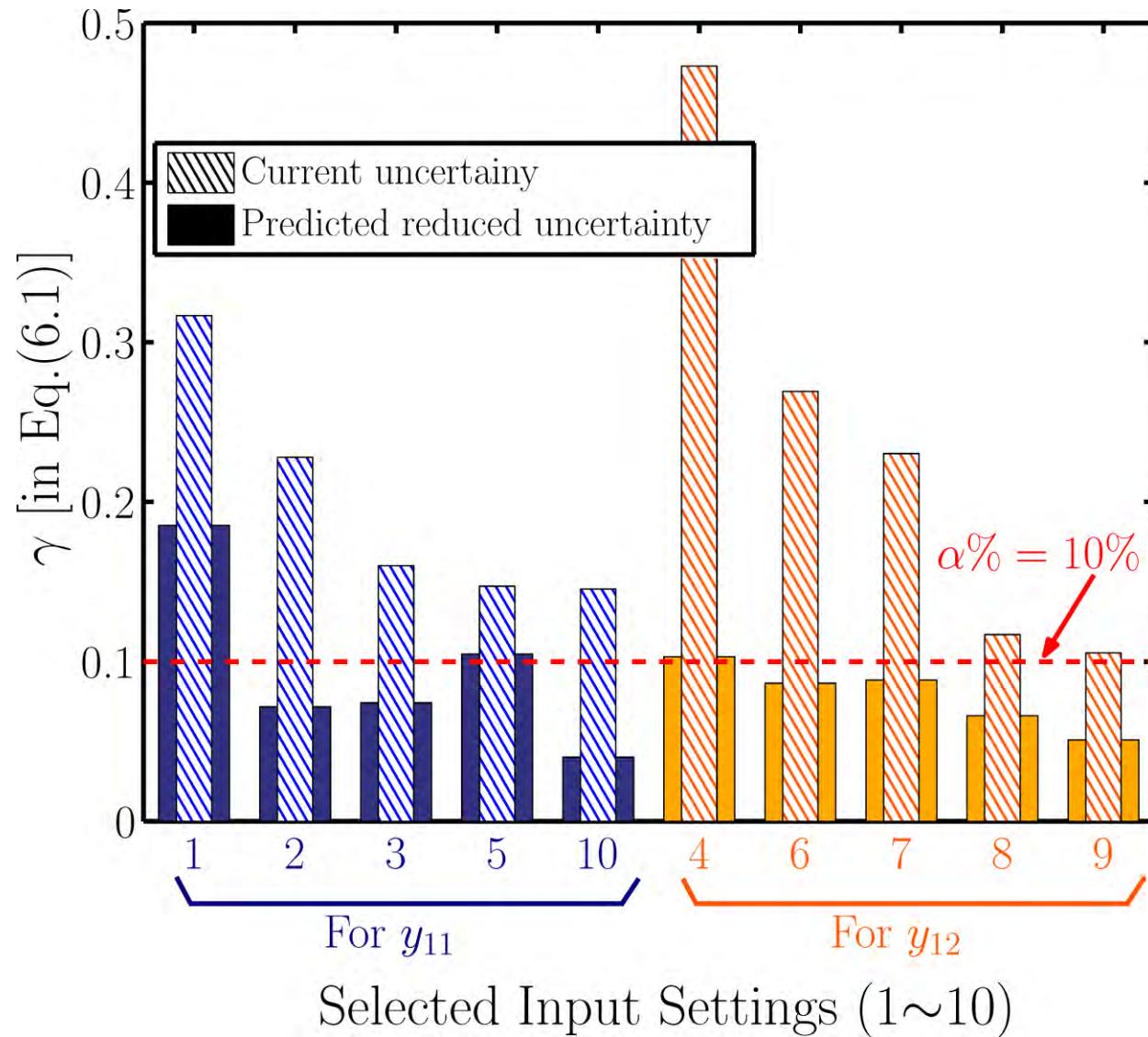
1ST ITERATION

- Selection of input settings (from 2,000 samples) and responses



Preposterior Analysis to Decide the Type of Resources to Allocate

Resource Allocation

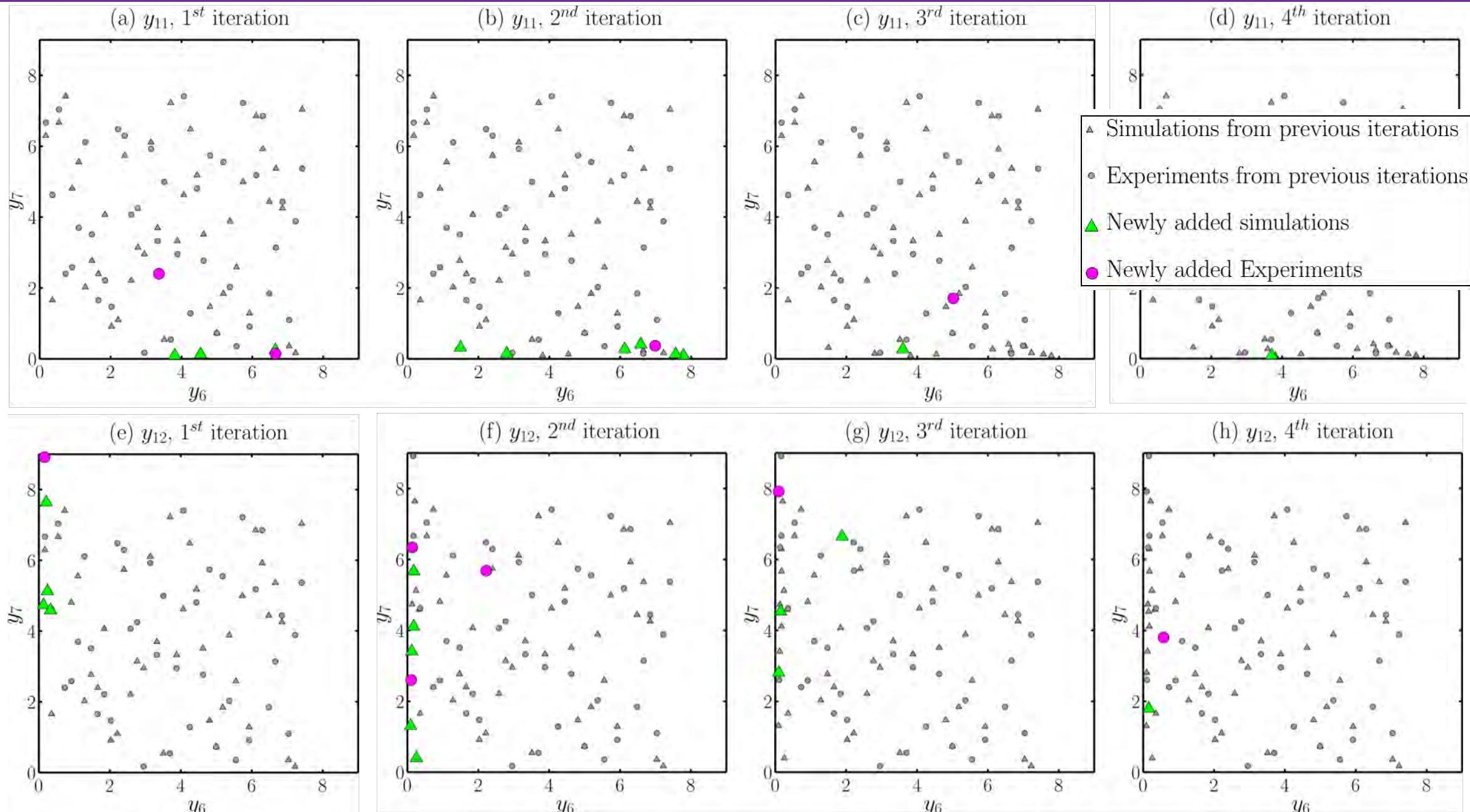


DECISION (1ST ITERATION)

- (1) Allocate simulations of y_{11} to points #2, 3, 10;
- (2) Allocate simulations of y_{12} to points #6~9;
- (3) Allocate experiments of y_{11} to points #1, 5;
- (4) Allocate experiment of y_{12} to point #4.

Resource Allocation

Subsequent Four Iterations (24 simulations + 10 experiments)



MODEL FUSION

- ─ Approaches can handle both hierarchical and non-hierarchical rankings of fidelity
- ─ Multiple approaches work equally well with reasonable assumptions

MULTIDISCIPLINARY UNCERTAINTY PROPAGATION AND SENSITIVITY ANALYSIS

- ─ Considers both aleatory and epistemic uncertainties
- ─ Utilizes the structure of SRP emulators, which allows for analytical derivation
- ─ Decomposed disciplinary analyses, provide useful information for resource allocation

RESOURCE ALLOCATION FOR REDUCTION OF EPISTEMIC UNCERTAINTY

- ─ Breaks a complex decision making problem into a sequential process
- ─ Considers not only physical experiments but also simulations

Thank You!