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Significance of Fisher Information Matrix

@ Fundamental role of data analysis is to extract
information from data

@ Parameter estimation for models is central to process
of extracting information

@ The Fisher information matrix plays a central role in
parameter estimation for measuring information:

Information matrix summarizes amount of information
in data relative to parameters being estimated
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Problem Setting

@ Consider classical problem of estimating parameter
vector, 8, from n data vectors, Z, = {Z1,--- , Z,}

@ Suppose have a probability density or mass function
(PDF or PMF) associated with the data

@ The parameter, 6, appears in the PDF or PMF and
affect the nature of the distribution

o Example: Z; ~ N(u(6),X(0)), for all i

@ Let ¢(0|Z,) represents the likelihood function, i.e., ¢(-)
is the PDF or PMF viewed as a function of
conditioned on the data
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Selected Applications

Information matrix is measure of performance for several
applications. Five uses are:

© Confidence regions for parameter estimation
@ Uses asymptotic normality and/or Cramér-Rao
inequality

Prediction bounds for mathematical models

o
© Basis for “ D-optimal” criterion for experimental
design
@ Information matrix serves as measure of how well 6
can be estimated for a given set of inputs

© Baisis for “noninformative prior” in Bayesian
analysis
@ Sometimes used for “objective” Bayesian inference

© Model selection (5]
@ Is model A “better” than model B?
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Information Matrix

@ Recall likelihood function, ¢(8|Z,) and the
log-likelihood function by L(6|Z,) = In 4(0|Z,)

@ Information matrix defined as
J

where expectation is w.r.t. the measure of Z,

oL oL

@ If Hessian matrix exists, equivalent form based on
Hessian matrix:
d

@ F,(0) is positive semidefinite of dimension p x p,
p = dim(0)

%L
960 50"

Fn(6) = —E [
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Two Famous Results

Connection of F,(#) and uncertainty in estimate, 6, is
rigorously specified via following results (6* = true value of
0):

© Asymptotic normality:
Vit (80— 07) <5 Np(0,F )
where F = nI|_>mOo Fn(6)/n
@ Cramér-Rao inequality:

cov(Bn) > Fn(0*)~1, for all n (unbiased 8,)

Above two results indicate: greater variability in 8, —>
“smaller” F,(8) (and vice versa) =
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Monte Carlo Computation of Information Matrix

@ Analytical formula for F(@) requires first or second
derivative and expectation calculation
@ Often impossible or very difficult to compute in
practical applications
@ Involves expected value of highly nonlinear (possibly
unknown) functions of data
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Monte Carlo Computation of Information Matrix

@ Analytical formula for F(@) requires first or second
derivative and expectation calculation
@ Often impossible or very difficult to compute in
practical applications
@ Involves expected value of highly nonlinear (possibly
unknown) functions of data

@ Schematic next summarizes “easy” Monte
Carlo-based method for determining F,(0)
@ Uses averages of very efficient (simultaneous
perturbation) Hessian estimates
@ Hessian estimates evaluated at artificial (pseudo) data
@ Computational horsepower instead of analytical
analysis
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Schematic of Monte Carlo Method for Estimating
Information Matrix
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(Spall, 2005, JCGS)
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Supplement: Simultaneous Perturbation (SP)
Hessian and Gradient Estimate

G(6 £ cAx|Zpseudoli))

OL(6 + cAk|Zpseudo(i))

el _ B T 00
+ ( Zé [Ak117"' vAkp1j|> OR
= (1/8) [L(6 + EAx + cA|Zpseudoli))

A1
Akl

06 = G(8 +CcAlZpseudoli)) —L(8 # cAk|Zpseudo(i) |
—G(0 — cAx|Zpseudo(i)) A
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Supplement: Simultaneous Perturbation (SP)
Hessian and Gradient Estimate

G(6 £ cAx|Zpseudoli))

OL(6 + cAk|Zpseudo(i))

- T
6G(I) . . 00
(1 e o

(1/8) [L(0 + EAx + cA|Zpseudo ()

where Aﬁl
06 = G(8 +CcAlZpseudoli)) —L(0 + cAk|Zpseudo()) | |
—G(0 — cAx|Zpseudo(i)) A@l
@ Ay =[Axi,- -, Awp]" and Ax, - - -, Ayp, mean-zero and
statistically independent r.v.s with finite inverse moments
@ A, has same statistical properties as Ay ;|

@ ¢ > ¢ > 0 are “small’ numbers

Sonjoy Das James C. Spall Roger Ghanem Improved resampling algorithm



Introduction and Motivation

0O000e0

Supplement: Optimal Implementation

Several implementation questions/answers:

Q. How to compute (cheap) Hessian estimates?
Use simultaneous perturbation (SP) based method
(Spall, 2000, IEEE Trans. Auto. Control)

Q. How to allocate per-realization (M) and
across-realization (N) averaging?
M = 1 is the optimal solution for a fixed total number
of Hessian estimates. However, M > 1 is useful when
accounting for cost of generating pseudo data

Q. Can correlation be introduced to improve overall
accuracy of Fy n(60)?
Yes, antithetic random numbers can reduce
variance of elements in Fy n(6) (Spall, 2005, JcGs) 45|

Sonjoy Das James C. Spall Roger Ghanem Improved resampling algorithm



Introduction and Motivation

O0000e

Fisher information matrix with analytically known
elements

1 5 10 15 20

1 4 8 12 16 20 22
Known elements = 54

(Das, Ghanem, Spall, 2008, SISC) (Navigation application at APL)

The previous resampling approach (Spall, 2005, JCGS)
yields the “full” Fisher information matrix without consid-
ering the available prior information
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e Contribution/Results of the Proposed Work
@ Improved resampling algorithm — using prior information
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Schematic of the Proposed Resampling Algorithm
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For M = 1; however, can be readily extended to the case when M > 1
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Schematic of the Proposed Resampling Algorithm
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e Contribution/Results of the Proposed Work

@ Theoretical basis
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Supplement: Improvement in terms of Variance
Reduction

Case 1: Log-likelihood based

var[A{”|6] — var[H{")|6]
~ 22 am(isT) (Fn(6))
mel
>0, ielf

where
am(i,j) = E[A%/AZIE[AZ/A?]> 0

Case 2: Gradient based

var[A®|6] — var[H.<9>|9]
Z b (i) (Fu(0
leT

>0, ielf

vhere by (j) = E[A?/A?] > 0

@ For (i,])-th element an additional covariance terms needed to be
considered and it can still be shown that var[H;;|6] < var[H;|0]

(see the paper)

@ — var[F;|6] < var[F;|6] J

@ Also, E[H;|6] = E[H;|6], for all j € I¢, for both cases
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Basic Ideas for Proofs/Implementation

@ Per current resampling algorithm, the (i, j)-th element is given by,

Hi ~ > wmHm, (weightedsum of unknown elements of Hy)

unknownt-known
~ 2 . N
=var(Fy) ~ E[( D wmHm)“] - (Fj(8))%, since E[H;|6] ~ —F(6)
unknownknown
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Basic Ideas for Proofs/Implementation

@ Per current resampling algorithm, the (i, j)-th element is given by,

Hi ~ > wmHm, (weightedsum of unknown elements of Hy)

unknownt-known
~ 2 2
=var(Fy) ~ E[( D wmHm)“] - (Fj(8))%, since E[H;|6] ~ —F(6)
unknownknown

@ Per modified resampling algorithm,
I:|ij B~ Z wm}{m + parts corresponding to unknown elements of Fn(6)
Hm = —Fim + €m, €m = mean-zero error terms

@ The new estimate, therefore, is given by,

Hij = [y — > wm(=Fm)] & > wmHm+ Y Wimeim

known unknown known

svar(fy) ~ E[(D wimHm+ Y wimem)?] — (Fi(0)

unknown known

=
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Basic Ideas for Proofs/Implementation

@ Per current resampling algorithm, the (i, j)-th element is given by,

Hi ~ > wmHm, (weightedsum of unknown elements of Hy)

unknownt-known
~ 2 2
=var(Fy) ~ E[( D wmHm)“] - (Fj(8))%, since E[H;|6] ~ —F(6)
unknownknown

@ Per modified resampling algorithm,

Ay ~ > wm}{m + parts corresponding to unknown elements of Fn(8)
Him = —Fim + €m, €m = Mean-zero error terms

@ The new estimate, therefore, is given by,

Hij = [y — > wm(=Fm)] & > wmHm+ Y Wimeim

known unknown known

svar(fy) ~ E[(D wimHm+ Y wimem)?] — (Fi(0)
unknown known
@ since E[e?] = var(Him) < E[HZ ] = var(H;) < var(H;)

@ — var[l5”|0] < var[ﬁij|0] J =
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@ Numerical lllustrations
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Problem Description

@ Consider independently distributed scalar-valued
random data z; ~ N(u, 0% + cja), Vi, n = 30
@ A problem with known information matrix
@ Useful for comparing simulation results with known
analytical results
@ 0 =[u,0%a]"andassume y =0,0?=1landa =1
for the purpose of illustration
@ 0 < ¢ < 1 assumed known (non-identical across i)
@ p=dm(@) =3
— 3(3 + 1)/2 = 6 unique elements in F,(0)
@ Assume that only the upper-left 2 x 2 block of Fn(6)
known a priori

@ The analytical Fisher information matrix in practical
applications is not known (unlike this example) or
partially known
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Analytical FIM
Fiu O 0
Fn(6) = 0 Fyp Fo Error in FIM estimates MSE
0 Fy3 Fa3 reIMSE(F,) | relMSEF,) || (variance)

[MSE(Fn)] | [MSE(Fn)] || reduction
L-based || 0.00135% | 0.00011 % 91.5 %
[0.0071] [0.0006] (93.4 %)
g-based || 0.0533% | 0.0198 % 81.0 %
[0.0020] [0.0004] (93.5 %)

For illustration,

Fn 0 7
Fder@)=| 0 Fp ? |, MSEandMSE reé:iuction of estimates for F n(6),
2 7 2 N =5 x 10° ¢ = 0.0001, = 0.00011,

A, Ay ~ Bernoulli+1
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Concluding Remarks

@ Fisher information matrix is a central quantity in data
analysis and parameter estimation

@ Direct computation of information matrix in general
nonlinear problems usually impossible

@ Monte Carlo approach usually preferred
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Summary

Concluding Remarks

@ Fisher information matrix is a central quantity in data
analysis and parameter estimation

@ Direct computation of information matrix in general
nonlinear problems usually impossible

@ Monte Carlo approach usually preferred

@ A modification of the previous Monte Carlo based
resampling algorithm is proposed to enhance the
statistical characteristics  of the estimator of F,(8)

@ Particularly useful in those cases where some elements
of F,(0) are analytically known from prior information

@ Numerical illustrations show considerable improvement of
the new estimator (in the sense of mean-squared error
reduction as well as variance reduction ) over the
previous estimator G5 |
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