

Text Mining Using Linear Models of Latent States

Bob Stine

Department of Statistics

The Wharton School, University of Pennsylvania

www-stat.wharton.upenn.edu/~stine

Topics

• Application

- Statistical named entity recognition

• Feature creation

- Preprocessing

- Converting text into numerical data

• Exploiting the features

- Estimators, standard errors

- Auctions and experts

• Collaborators

- Dean Foster in Statistics

- Lyle Ungar in CS

Application and Motivation

Text Mining Applications

④ Cloze

④ What's the next word?

“...in the midst of modern life the greatest, __”

④ Data compression

④ Word disambiguation

④ Meaning of a word in context

④ Does “Washington” refer to a state, a person, a city or perhaps a baseball team? Or politics?

④ Speech tagging

④ ~~Identifying parts of speech~~

④ Distinguishing among proper nouns

④ Grading papers, classification, ...

Named Entity Recognition

- Annotate plain text in a way that identifies the words that refer to a person (Obama)
place (France)
organization (Google)
or something else.

Wiki example

Jim bought 300 shares of Acme Corp in 2006.

person	company	year
--------	---------	------

- Customized systems build on grammatical heuristics and statistical models.

- ④ Time consuming to build
- ④ Specific to training domain

Second Example

- You get some text, a sequence of “words”
 - bob went to the 7-11 <.> he was hungry <.> ...
- Task is to tag proper nouns, distinguishing those associated with people, places and organizations.
- No other information in the test set
- Training data
 - Marked up sequence that includes the tags that you’d ideally produce
 - bob went to the 7-11 <.> he was hungry <.> ...
 - person
 - organization
- Test data is just a sequence of “words”

Washington?
person
place
team
politics

Approaches

- ➊ Numerous methods used for NER
 - ➋ Gazette
 - lists of proper words/businesses, places
 - ➋ Formal grammar, parse trees
 - off the shelf parsing of text into subject/verb
 - ➋ Stemming
 - such as noting prior word ends in -ing
 - ➋ Capitalization
- ➋ Not using any of these...
 - ➋ Things like capitalization are not available in some formats, such as text from speech
 - ➋ Generalization: gazettes depend on context
 - ➋ Languages other than English

Could add these later!

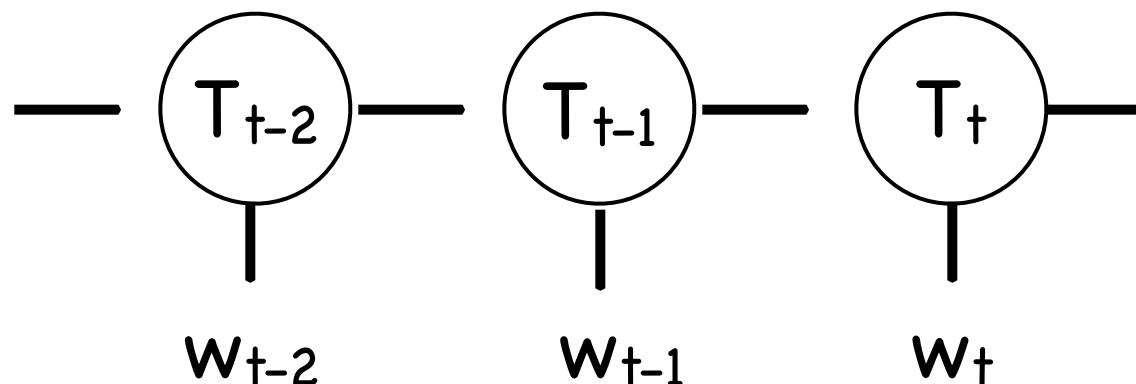
Statistical Models for Text

④ Markov chains

- ④ Hidden Markov models have been successfully used in text mining, particularly speech tagging

④ Hidden Markov model (HMM)

- ④ Transition probabilities for observed words $P(w_t|w_{t-1}, w_{t-2}, \dots)$ as in $P(\text{clear}|\text{is}, \text{sky}, \text{the})$
- ④ Instead specify model for underlying types $P(T_t|T_{t-1}, T_{t-2}, \dots)$ as in $P(\text{adj}|\text{is}, \text{noun}, \text{article})$ with words generated by the state



Concentrate dependence in transitions among relatively few states

State-Based Model

- ➊ Appealing heuristic of HMM
Meaning of text can be described by transitions in a low-dimensional subspace determined by surrounding text
- ➋ Estimation of HMM hard and slow
 - ➌ Nonlinear
 - ➌ Iterative (dynamic programming)
- ➌ Objective
 - ➌ Linear method for building features that represent underlying state of the text process.
 - ➌ Possible? Observable operator algebras for HMMs.
 - ➌ Features used by predictive model. Pick favorite.

Connections

- Talks earlier today...
- Probabilistic latent semantic analysis
- Non-negative matrix factorization (NMF)
- Clustering

Building the Features

Summary of Method

- Accumulate correlations between word occurrences in n-grams
 - Preprocessing, all n-grams on Internet
 - Trigrams in example; can use/combine with others
- Perform a canonical correlation analysis (CCA) of these correlations
 - Singular value decomposition (SVD) of corr mat
- Coordinates of words in the space of canonical variables define “attribute dictionary”
- Predictive features are sequences of these coordinates determined by the order of the words in the text to be modeled

Canonical Correlation

- CCA mixes linear regression and principal components analysis
- Regression
Find linear combination of X_1, \dots, X_k most correlated with Y
$$\max \text{corr}(Y, \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k)$$
- Canonical correlation
Find linear combinations of X 's and Y 's that have maximal correlation
$$\max \text{corr}(\alpha_1 Y_1 + \dots + \alpha_j Y_j, \beta_1 X_1 + \dots + \beta_k X_k)$$
- Solution is equivalent to PCA of
$$(\Sigma_{XX})^{-1/2} \Sigma_{XY} (\Sigma_{YY})^{-1/2}$$
covariance matrices

Coincidence Matrices

	Pre-word $w_1, w_2, w_3, \dots, w_d$	Word $w_1, w_2, w_3, \dots, w_d$	Post-word $w_1, w_2, w_3, \dots, w_d$
w_1, w_2, w_3			
\vdots			
w_{t-1}, w_t, w_{t+1}	0 1 0 0 0 0 0 0	0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 1 0
billions of n-grams	B_1	B_w	B_2
w_{n-2}, w_{n-1}, w_n			

$d = 50,000$

d is the size of
our dictionary 14

Using CCA

- Which words, or groups of words, co-occur?
- Linear
Find α_1 in \mathbb{R}^d and β_1 in \mathbb{R}^{2d} that together
maximize $\text{corr}(B_w\alpha, [B_1, B_2]\beta)$
 (α_1, β_1) defines first pair of canonical variables
- Subsequent pairs as in principle components
Find (α_2, β_2) which
maximize $\text{corr}(B_w\alpha, [B_1, B_2]\beta)$
while being orthogonal to (α_1, β_1) .
- We compute about $K=30$ to 100 of these
canonical coordinates

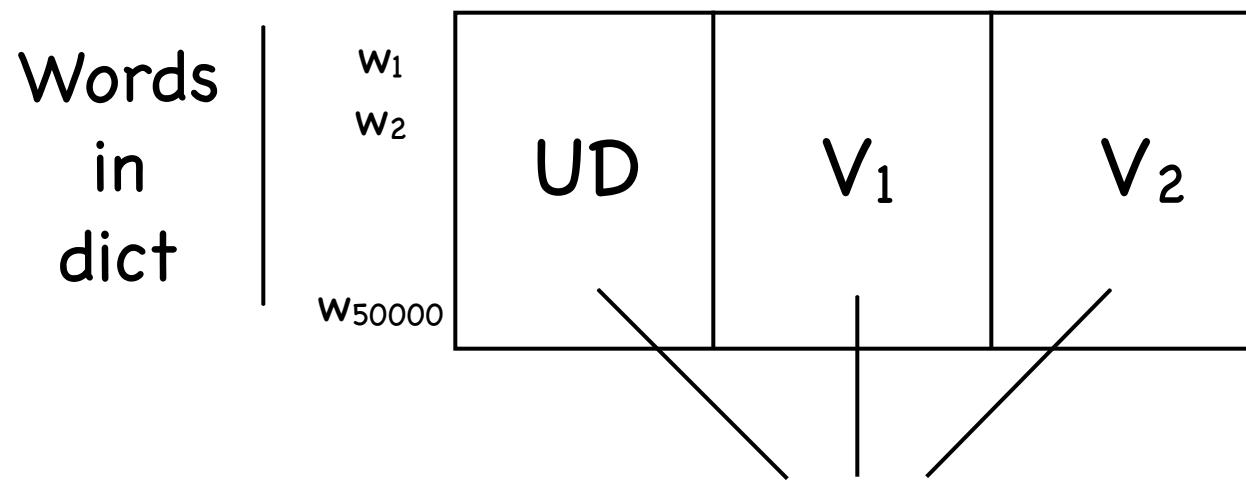
Canonical Variables

- SVD of correlations $C \approx B_w' [B_1 \ B_2]$

$$C = \begin{matrix} U & D & V' \end{matrix} = UD[V_1' \ V_2']$$

$(50,000 \times 50) \ (50 \times 50) \ (50 \times 100,000)$

- Attribute dictionary



$K=50$ columns in
each bundle

Random Projections

- Faster calculation of CCA/SVD

- Computing canonical variables

$$C = B_w' [B_1 \ B_2]$$

50,000 \times 100,000 is large

- Random projection

- Low rank approximations

- Reference Halko, Martinsson, Tropp 2010

- Two stage approach

- (1) Project into “active” subspace

- (2) Do usual operation

Algorithm for SVD

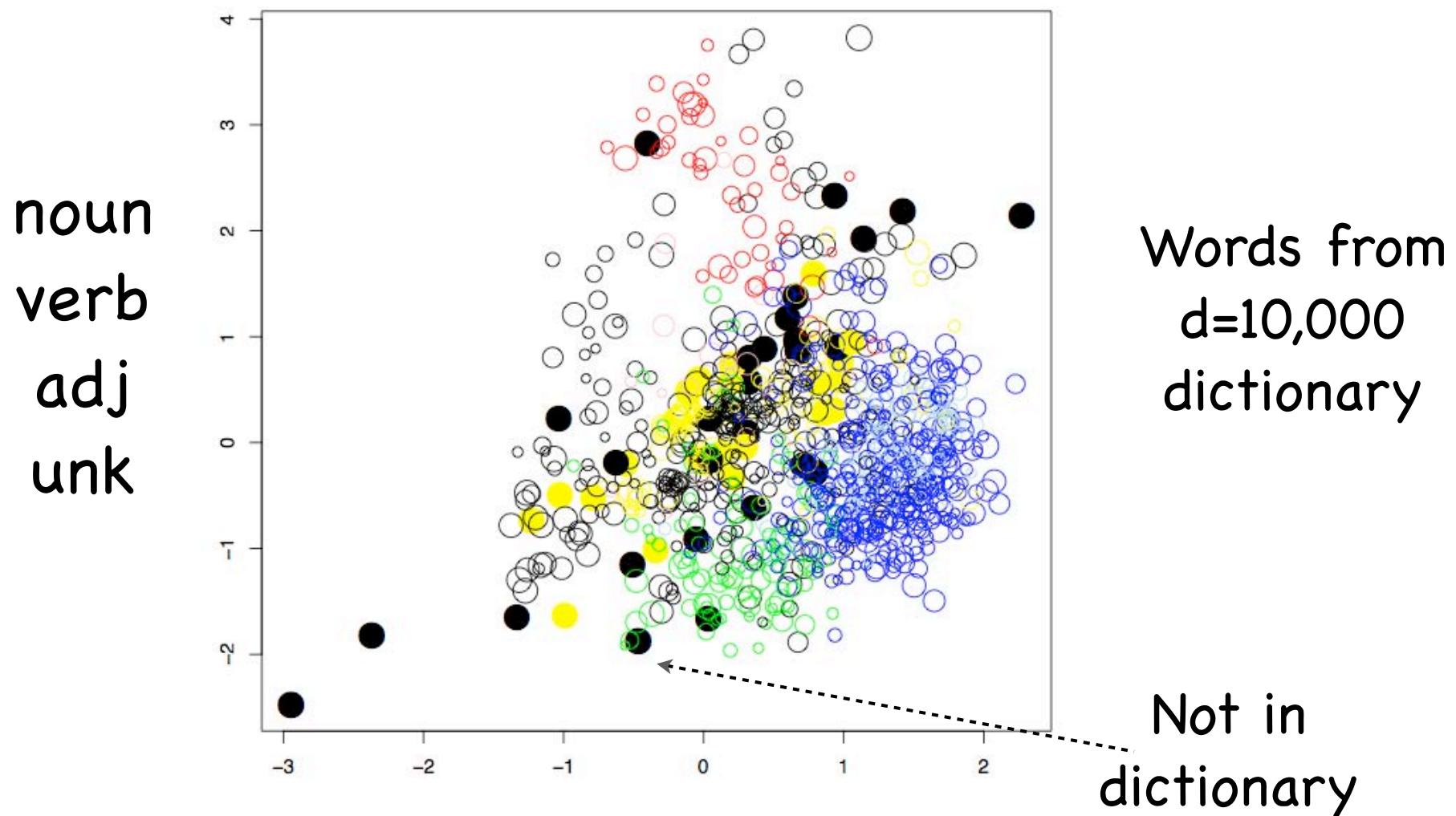
- ④ Want SVD of correlations (omit scaling)
$$C = B_w' [B_1 \ B_2] = UDV'$$
- ⑤ Find orthonormal Q with $K+m$ columns for which
$$\|C - QQ'C\|_2$$
 is small
- ⑥ Random projection
 $Q \sim N(0,1)$ works very well!
- ⑦ Steps
 - ⑧ Compute coefficients $H = Q'C$
 - ⑨ SVD of H is U_1DV'
 - ⑩ Compute $U = QU_1$
 - ⑪ To get rank K , need a few extra columns (m)

Plots of Attribute Dict

- Isolate the coordinates in the attribute dictionary assigned to “interesting words”
 - Words were not picked out in advance or known while building the attribute dictionary
- Several views
 - Grouped/colored by parts of speech
 - Names
 - Common US names, casual and formal
 - Bob and Robert
 - Numbers
- Plots show projections of the coordinates in the attribute dictionary...

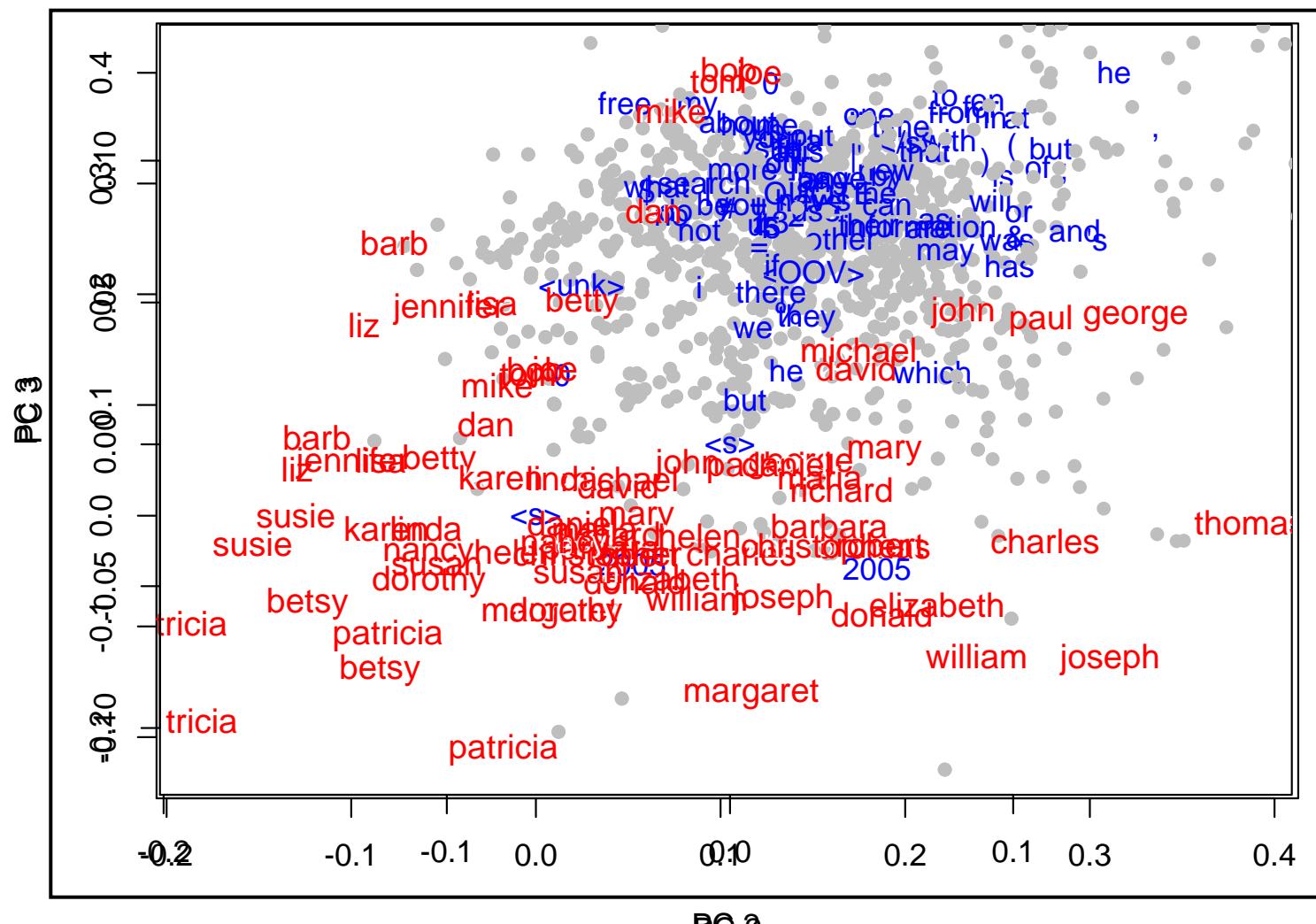
Parts of Speech

Projection from attribute dictionary



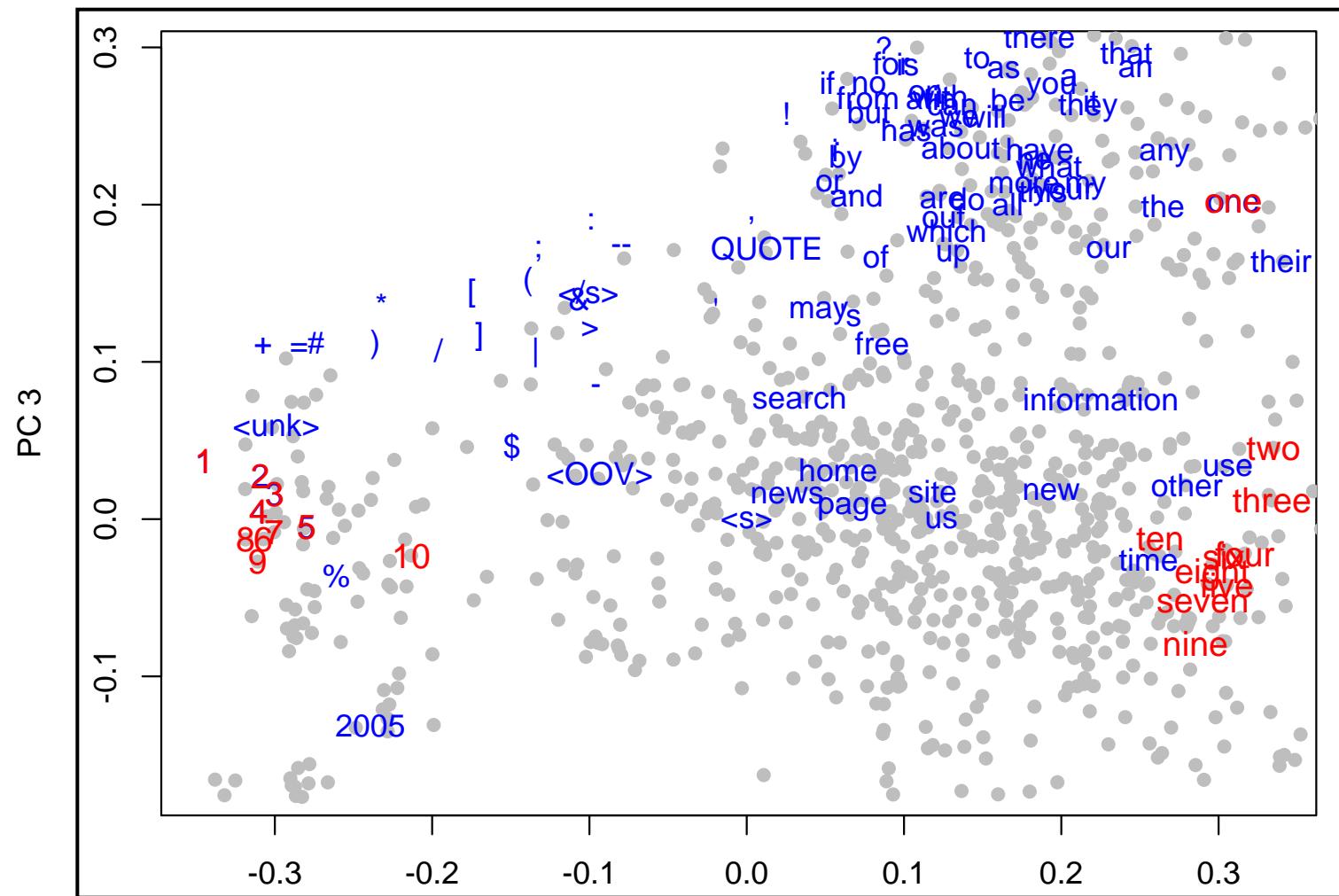
Closer Look at Features

Focus on a few names



Closer Look at Features

Numbers as words and digits



Features

- Sequence of words in the document determine the features in the predictive model.
- Further processing, such as exponential smoothing of various lengths

<u>Document</u>	<u>Features from Attr Dictionary</u>		
w_1	$UD[w_1]$	$V_1[w_1]$	$V_2[w_1]$
w_2	$UD[w_2]$	$V_1[w_2]$	$V_2[w_2]$
w_3	$UD[w_3]$	$V_1[w_3]$	$V_2[w_3]$
...		...	
w_n	$UD[w_n]$	$V_1[w_n]$	$V_2[w_n]$

3K features

Predictive Models

Components

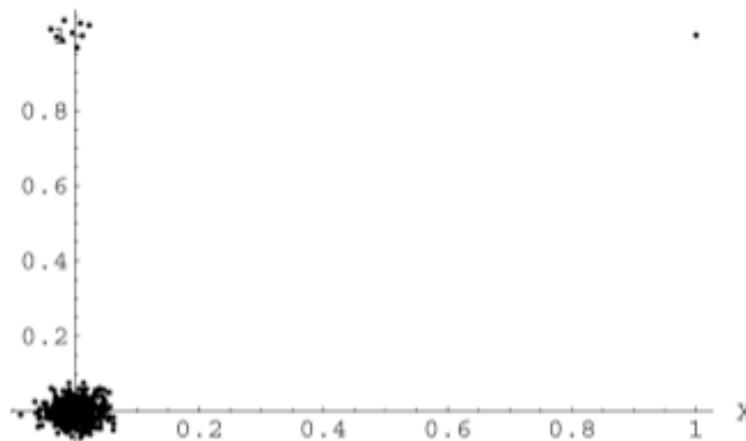
- Multiple streaming variable selection
 - Depth-first, guided selection
- Auction framework
 - Blend several strategies
 - raw data, calibration, nonlinearity, interaction
 - Formalize external expert knowledge
- Statistics: Estimates and standard errors
 - Sandwich estimator for robust SE
 - Shrinkage
- Sequential testing
 - Alpha investing avoids need for tuning data
 - Martingale control of expected false discoveries
- Or your favorite method (e.g. R package `glmnet`)

Based on Regression

- Familiar, interpretable, good diagnostics
- Regression has worked well
 - Predicting rare events, such as bankruptcy
 - Competitive with random forest
 - Function estimation, using wavelets and variations on thresholding
 - Trick is getting the right explanatory variables
- Extend to rich environments
 - Spatial-temporal data
 - Retail credit default MRF, MCMC
 - Linguistics, text mining
 - Word disambiguation, cloze TF-IDF
- Avoid overfitting...

Lessons from Prior Work

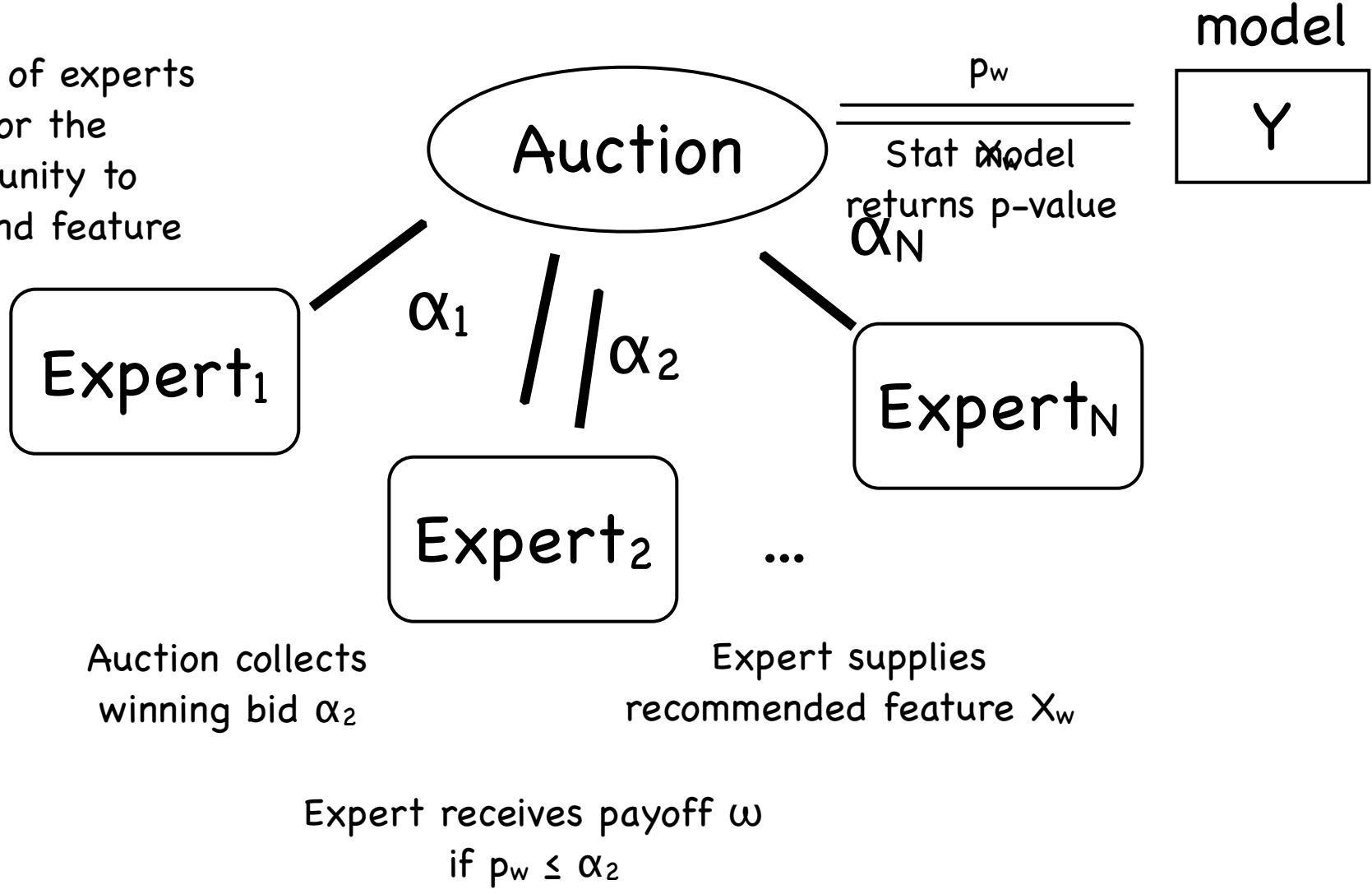
- “Breadth-first” search
 - Slow, large memory space
 - Fixed set of features in search
 - Severe penalty on largest z-score, $\sqrt{2 \log p}$
- If most searched features are interactions, then most selected features are interactions
 - $\mu > 0$ and $\beta_1, \beta_2 \neq 0$, then $X_1^* X_2 \Rightarrow c + \beta_1 X_1 + \beta_2 X_2$
- Outliers cause problems even with large n



Real p-value $\approx 1/1000$,
but
usual t-statistic ≈ 10

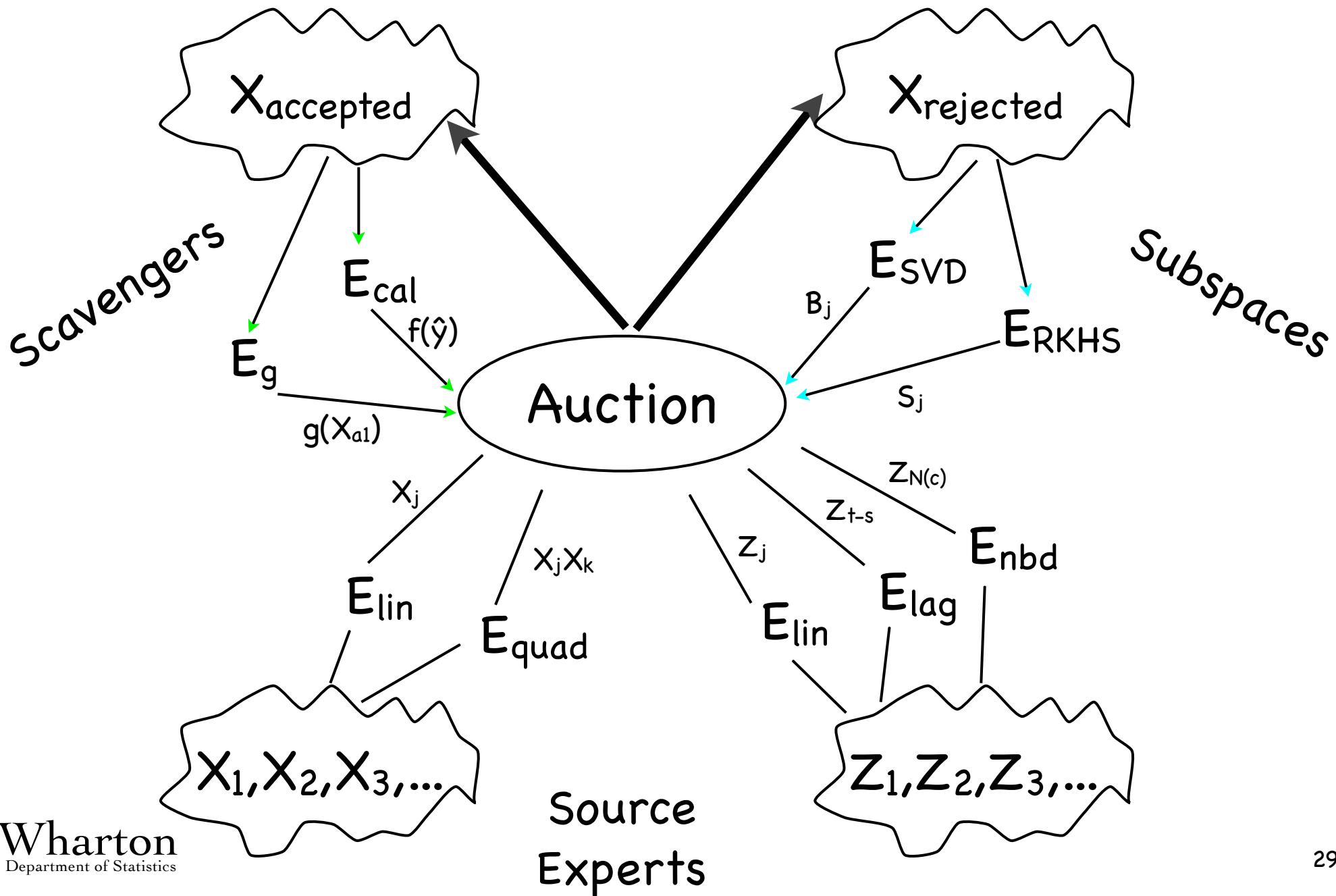
Feature Auction

Collection of experts
bid for the
opportunity to
recommend feature



Experts learn if the bid was accepted,
not the effect size or p_w .

Experts

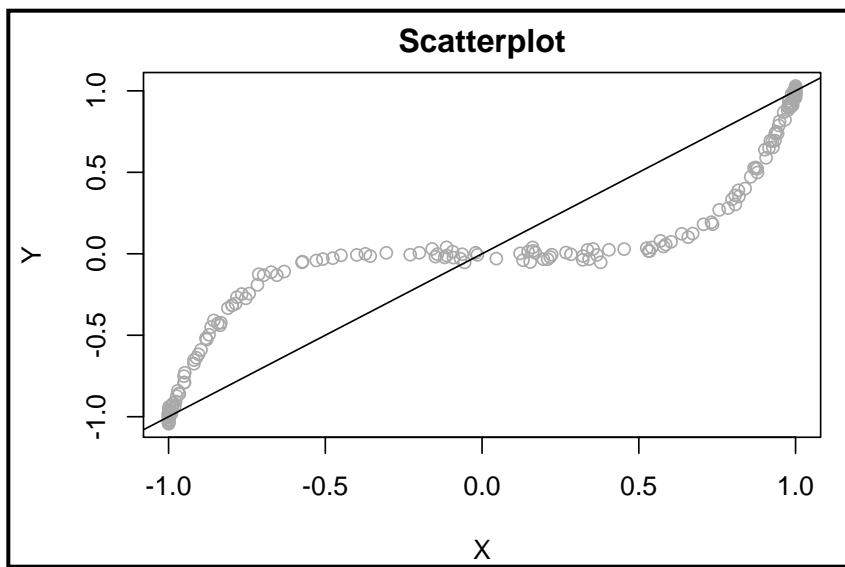
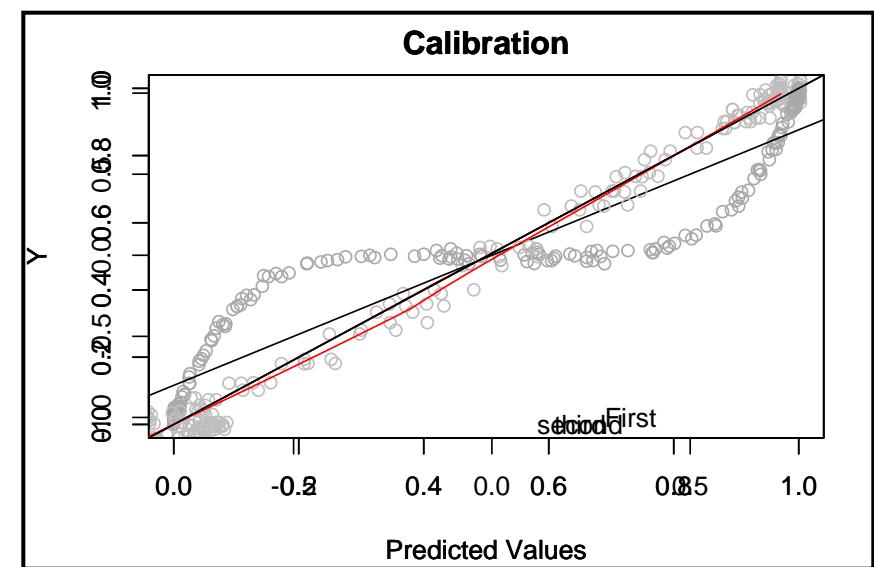


Experts

- ④ Strategy for creating sequence of possible explanatory variables.
 - ④ Embody domain knowledge, science of application.
- ④ Source experts
 - ④ A collection of measurements (CCA features)
 - ④ Subspace basis (PCA, RKHS)
 - ④ Multiple smooths of context variables
 - ④ Interactions between within/between groups
- ④ Scavengers
 - ④ Interactions
 - among features accepted/rejected by model
 - ④ Transformations
 - segmenting, as in scatterplot smoothing
 - polynomial transformations
 - ④ Calibration

Calibration

- Simple way to capture global nonlinearity
 - aka, nonparametric single-index model
- Predictor is calibrated if
$$E(\hat{Y}) = Y$$
- Simple way to calibrate a model is to regression Y on \hat{Y}^2 and \hat{Y}^3 until linear.



Expert Wealth

- ④ Expert gains wealth if feature accepted
 - ④ Experts have alpha-wealth
 - ④ If recommended feature is accepted in the model, expert earns ω additional wealth
 - ④ If recommended feature is refused, expert loses bid
- ④ As auction proceeds...
 - ④ Reward experts that offer useful features. These then can afford later bids and recommend more X's
 - ④ Eliminate experts whose features are not useful.
- ④ Taxes fund parasites and scavengers
 - ④ Continue control overall FDR
- ④ Critical
 - ④ control multiplicity in a sequence of hypotheses
 - ④ p-values determine useful features

Robust Standard Errors

- p-values depend on many things
 - $p\text{-value} = f(\text{effect size, std error, prob dist})$
 - Error structure likely heteroscedastic
 - Observations frequently dependent
- Dependence
 - Complex spatial dependence in default rates
 - Documents from various news feeds
 - Transfer learning
 - When train on observations from selected regions or document sources, what can you infer to others?
- What are the right degrees of freedom?
 - Tukey story

Sandwich Estimator

① Usual OLS estimate of variance

Assume your model is true

$$\begin{aligned}\text{var}(\mathbf{b}) &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{E}(\mathbf{e}\mathbf{e}')\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\ &= \sigma^2(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1} \\ &= \sigma^2(\mathbf{X}'\mathbf{X})^{-1}\end{aligned}$$

② Sandwich estimators

Robust to deviations from assumptions

heteroscedasticity

$$\begin{aligned}\text{var}(\mathbf{b}) &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{E}(\mathbf{e}\mathbf{e}')\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\ &= (\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{D}^2\mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}\end{aligned}$$

diagonal

dependence

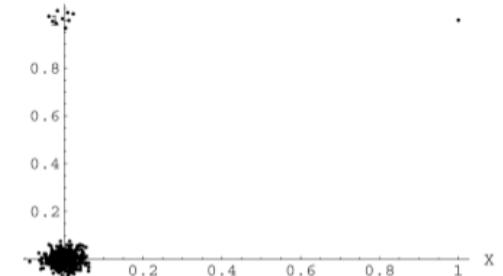
$$\begin{aligned}\text{var}(\mathbf{b}) &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{E}(\mathbf{e}\mathbf{e}')\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \\ &= \sigma^2(\mathbf{X}'\mathbf{X})^{-1} \mathbf{X}'\mathbf{B}\mathbf{X} (\mathbf{X}'\mathbf{X})^{-1}\end{aligned}$$

block diagonal

Essentially the
“Tukey method”

Flashback...

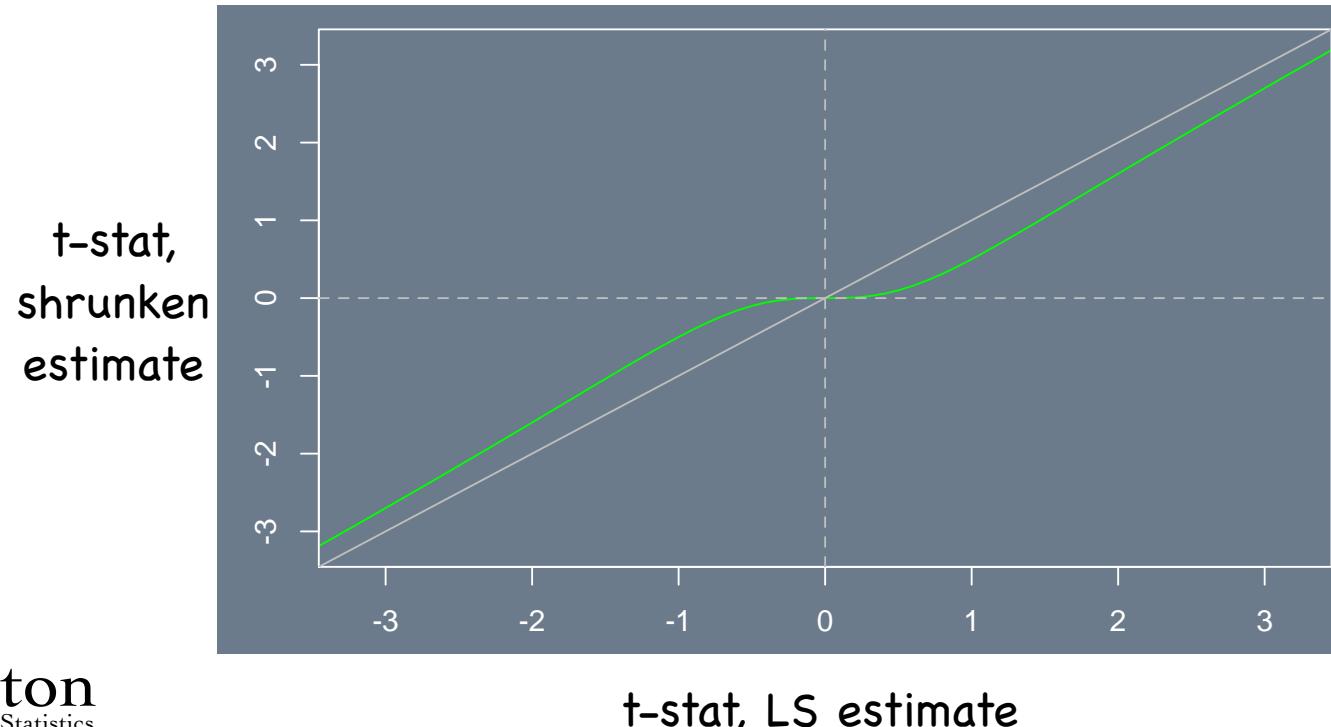
- ④ Heteroscedastic errors
 - Estimate standard error with outlier
 - Sandwich estimator allowing heteroscedastic error variances gives a t-stat ≈ 1 , not 10.
- ④ Dependent errors
 - Even more critical to obtain an accurate SE
 - Netflix example
Bonferroni (hard thresholding) overfits due to dependence in responses.
 - Credit default modeling
Everything seems significant unless incorporate dependence into the calculation of the SE



Estimators

Shrinkage

- Two estimates of β_j : 0 and b_j
- Std error determines the amount of shrinkage
 - Larger the t-statistic, the smaller the shrinkage
- Resembles Bayes estimator with Cauchy prior
- “Smooth” version of hard thresholding



Alpha Investing

Context

- Test possibly infinite sequence of m hypotheses
 $H_1, H_2, H_3, \dots H_m \dots$
obtaining p-values p_1, p_2, \dots
- Order of tests can depend prior outcomes

Procedure

- Start with an initial alpha wealth $W_0 = \alpha$
- Invest wealth $0 \leq \alpha_j \leq W_j$ in the test of H_j
- Change in wealth depends on test outcome
- $\omega \leq \alpha$ denotes the payout earned by rejecting

$$W_j - W_{j-1} = \begin{cases} \omega & \text{if } p_j \leq \alpha_j \\ -\alpha_j & \text{if } p_j > \alpha_j \end{cases}$$

Martingale Control

- Provides uniform control of the expected false discovery rate. At any stopping time during testing, martingale argument shows

$$\sup_{\theta} \frac{E(\#\text{false rejects})}{E(\#\text{rejects})+1} \leq \alpha$$

- Flexibility in choice of how to invest alpha-wealth in test of each hypothesis
 - Invest more when just reject if suspect that significant results cluster.
 - Universal investing strategies
- Avoids computing all p-values in advance

Multiple Testing

- ④ Other methods are special cases
 - ④ Note: alpha-investing does not require the full set of p-values or estimates at the start.
- ④ Bonferroni test of H_1, \dots, H_m
 - ④ Set initial $W_0 = \alpha$ and reward to $\omega = 0.05$.
 - ④ Bid $\alpha_j = \alpha/m$
- ④ Step-down test of Benjamini and Hochberg
 - ④ Set initial $W_0 = \alpha$ and reward to $\omega = 0.05$.
 - ④ Test H_1, \dots, H_m at fixed level α/m
 - ④ If none reject \rightarrow finished.
 - ④ If one rejects, earn $\alpha = 0.05$ for next round
 - ④ Test next round conditionally on $p_j > \alpha/m$
 \rightarrow continue with remaining hypotheses.

Example...
Back to text processing

Named Entity Results

Model

- Approximate max entropy classifier
 - Fancy name for multinomial logit
- Other predictive models can be used

Data

- Portion of the ConLL03 data
- Training and test subsets

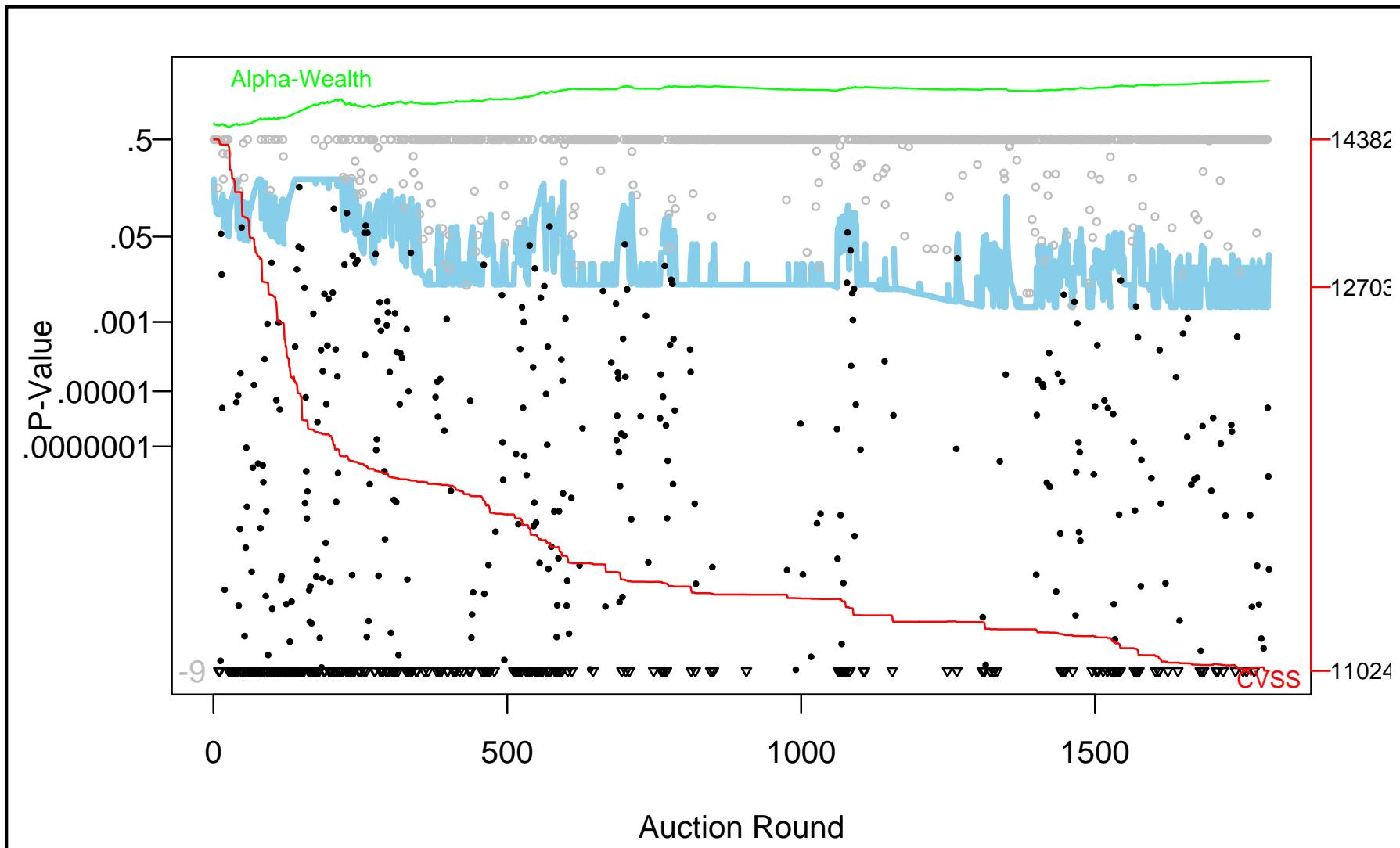
Dictionary

- $d=50,000$ words
- Exponential smooths of content features
- Interactions

Precision and recall about 0.85

Auction Run

First 2,000 rounds of auction modeling.



What are the predictors?

- Interactions
 - Combinations of canonical variables
- Principal components of factors
 - Combinations of skipped features
 - RKHS finds some nonlinear combinations
- Calibration adjustments
 - Simple method to estimate single-index model
$$\hat{y} = g(b_0 + b_1 X_1 + \dots + b_k X_k)$$
Estimate g cheaply by building a nonlinear regression of y on linear \hat{y} .

Closing Comments

Next Steps

④ Text

- ④ Incorporate features from other methods
- ④ Understanding the CCA
- ④ Other “neighborhood” features

④ Theory

- ④ Develop martingale that controls expected loss.
- ④ Adapt theory from the “nearly black” world of modern statistics to “nearly white” world of text

④ Computing

- ④ Multi-threading is necessary to exploit trend toward vast number of cores in CPU
- ④ More specialized matrix code

Linguistics \approx Spatial TS

Text

- Predict word in new documents, different authors

- Latent structure associated with corpus

- Neighborhoods: nearby words, sentences

- Vast possible corpus

- Sparse

Credit default

- Predict rates in same locations, but changing economic conditions

- Latent temporal changes as economy evolves

- Neighborhoods: nearby locations, time periods

- 70 quarters, 3000 counties. Possible to drill lower.

- May be sparse

References

- ④ Feature auction
 - ④ www-stat.wharton.upenn.edu/~stine
- ④ Alpha investing
 - ④ “ α -investing: a procedure for sequential control of expected false discoveries”, JRSSB. 2008
- ④ Streaming variable selection
 - ④ “VIF regression”, JASA. 2011
- ④ Linear structure of HMM
 - ④ “A spectral algorithm for learning hidden Markov models”, Hsu, Kakade, Zhang, TTI. 2008
- ④ Random projections
 - ④ “Finding structure with randomness”, Halko, Martinsson, and Tropp. 2010