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@ Overview of NMF
@ Fast algorithms with Frobenius norm
e Theoretical results on convergence
e Multiplicative updating
e Alternating nonnegativity constrained least Squares: Active-set
type methods, ...
e Hierarchical alternating least squares
@ Variations/Extensions of NMF : sparse NMF, regularized NMF,
nonnegative PARAFAC
@ Efficient adaptive NMF algorithms
@ Applications of NMF, NMF for Clustering
@ Extensive computational results
@ Discussions
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Nonnegative Matrix Factorization (NMF)

(Lee&Seung 99, Paatero&Tapper 94)

Given A € R.™ " and a desired rank k << min(m, n),
find W e R,™¥ and H e R, **"s.t. A~ WH.

@ miny>o x>0 [|A— WH|| g

@ Nonconvex A A

@ W and H not unique (e.g. W= WD >0,H=D"H>0)
Notation: R, : nonnegative real numbers
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Nonnegative Matrix Factorization (NMF)

(Lee&Seung 99, Paatero&Tapper 94)

Given A € R.™ " and a desired rank k << min(m, n),
find W e R,™¥ and H e R, **"s.t. A~ WH.

@ miny>o x>0 [|A— WH|| g
@ NMF improves the approximation as k increases:
If rank,(A) > k,

min A— W, 1H < min A— W.H
Wk+120,Hk+1on k+1Hk411lF szo,szo” HillF,

W; e R.™ and H; € R,/*"
@ But SVD does better: if A= UL VT, then
IA = UcZi V|| < min||A— WH| g, W € R.™K and H € R F*"
@ So Why NMF? Dimension Reduction with
Better Interpretation/Lower Dim. Representation for Nonnegative
Data.
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Nonnegative Rank of A € R+mxn (J. Cohen and U. Rothblum, LAA, 93)

@ rank(A), is the smallest integer k for which there exist
Ve R,™Kand U e R " such that A = VU.
Note: rank(A) < rank(A) < min(m, n)
@ If rank(A) < 2, then rank,.(A) = rank(A).
@ Ifeither me {1,2,3} or n € {1,2,3}, then rank,.(A) = rank(A).
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Nonnegative Rank of A € R+mxn (J. Cohen and U. Rothblum, LAA, 93)

@ rank(A), is the smallest integer k for which there exist
Ve R,™Kand U e R " such that A = VU.
Note: rank(A) < rank(A) < min(m, n)
@ If rank(A) < 2, then rank,.(A) = rank(A).
@ Ifeither me {1,2,3} or n € {1,2,3}, then rank,.(A) = rank(A).

@ (Perron-Frobenius) There are nonnegative left and right singular
vectors vy and vy of A associated with the largest singular value
01q.

@ rank 1 SVD of A = best rank-one NMF of A
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Applications of NMF

@ Text mining
o Topic model: NMF as an alternative way for PLSI ( Gaussier et al.,
05; Ding et al., 08)
o Document clustering (Xu et al., 03; Shahnaz et al., 06)
o Topic detection and trend tracking, email analysis (Berry et al., 05;
Keila et al., 05; Cao et al., 07)
Image analysis and computer vision
o Feature representation, sparse coding (Lee et al., 99; Guillamet et
al., 01; Hoyer et al., 02; Li et al. 01)
o Video tracking (Bucak et al., 07)
Social network
e Community structure and trend detection ( Chi et al., 07; Wang et
al., 08
° Recorr)1mendation system (Zhang et al., 06)
Bioinformatics-microarray data analysis (Brunet et al., 04, H. Kim
and Park, 07)
Acoustic signal processing, blind source separating (Cichocki et
al., 04)
Financial data (Drakakis et al., 08)
Chemometrics (Andersson and Bro, 00)
and SO MANY MORE...
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Algorithms for NMF

@ Multiplicative update rules: Lee and Seung, 99
@ Alternating least squares (ALS): Berry et al 06
@ Alternating nonnegative least squares (ANLS)

Lin, 07, Projected gradient descent
D. Kim et al., 07, Quasi-Newton
H. Kim and Park, 08, Active-set

e J. Kim and Park, 08, Block principal pivoting
@ Other algorithms and variants

Cichocki et al., 07, Hierarchical ALS (HALS)

Ho, 08, Rank-one Residue lteration (RRI)

Zdunek, Cichocki, Amari 06, Quasi-Newton

Chu and Lin, 07, Low dim polytope approx.

Other rank-1 downdating based algorithms (Vavasis,..)

C. Ding, T. Li, tri-factor NMF, orthogonal NMF, ...

Cichocki, Zdunek, Phan, Amari: NMF and NTF: Applications to
Exploratory Multi-way Data Analysis and Blind Source Separation,
Wiley, 09

Andersson and Bro, Nonnegative Tensor Factorization, 00

And SO MANY MORE...
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Block Coordinate Descent (BCD) Method

@ A constrained nonlinear problem:
min f(x)(e.g., (W, H) = | A — WH|¢)
subjectto x € X = Xy x X5 x -+ x Xp,

where X = (Xy,X2,...,Xp),Xi € Xi CR", i=1,...,p.
@ Block Coordinate Descent method generates

x(k+1) — (X1(k+1), o k+1 ) by
k+1 k+1 k
x,.( ):arg?€|)r(1f(x1( ),..., .7 ,5, ,+1,... x,[(,)).
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Block Coordinate Descent (BCD) Method

@ A constrained nonlinear problem:
min f(x)(e.g., (W, H) = | A — WH|¢)
subjectto x € X = Xj x Xo x -+ x Xp,

where X = (Xy,X2,...,Xp),Xi € Xi CR", i=1,...,p.
@ Block Coordinate Descent method generates
X = (x k“ )) by
k+1 k+1 k
x = arg?;l)r(lf(m( V) e X9 x9).

@ Th. (Bertsekas, 99): Suppose f is continuously differentiable over the

Cartesian product of closed, convex sets Xi, Xz, ..., X, and suppose
for each i and x € X, the minimum for
. (k+1) (k1) (k) (k)
?jegr(:f(x1 e Xisg 6 X s Xp )

is uniquely attained. Then every limit point of the sequence generated
by the BCD method {x(¥)} is a stationary point.

NOTE: Uniqueness not required when p = 2 (Grippo and Sciandrone, 00).
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BCD with k(m + n) Scalar Blocks

@ Minimize functions of wj or h; while all other components in W
and H are fixed:

wj — argmin (5" = wihg) — wih] |2
(k=

K]
hj «— argmin [(a - wihyg) — wihjll2
h=0 ki
h{
where W= (wy - we),H= : and
hi
rl
A=( a ap )= :
7

@ Scalar quadratic function, closed form solution.
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BCD with k(m + n) Scalar Blocks

@ Lee and Seung (01)’s multiplicative updating (MU) rule

(AHT);
(WHHT);;

(WTA);

Wi = Wi (WTWH);

, hj — hy
@ Derivation based on gradient-descent form:

W — W+ [(AHT) (WHHT),-,}

(WHHT),]

hi — hj+ [(WTA) (WTWH),-,-]

hi
(WTWH),,

@ Reuwriting of the solution of coordinate descent:

oy = [ gy (7 Ty |
1

! { T (wTw);

(W~ wrwhy) |

@ In MU, conservative steps are taken to ensure nonnegativity.
Bertsekas’ Th. on convergence is not applicable to MU.
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BCD with 2k Vector Blocks

H SR

@ Minimize functions of w; or h; while all other components in W
and H are fixed:

k
1A= ]l
j=1

K
I(A=>"wih[) — wih] || = ||RD — wih] ||
j=1

J#i
w; « arg VTQHR(') —wih! |l
(=

hi « arg Wig”'q(i) —wih! ||

@ Each subproblem has the form miny |cx” — G|/ and
has a closed form solution x = [%ch]+ !
Hierarchical Alternating Least Squares (HALS) (cichocki et al, 07, 09),
(actually HA-NLS)
Rank-one Residue Iteration (RRI) (o, 08)
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BCD with Scalar Blocks vs. 2k Vector Blocks

Hii ZIIIIIIIz]
R | Eaan——
by —— A
Wil =
[
[
[
[
1T
Lo ZIIIIZIIZ]
T I - | EE S ——
L O N
Wil ~ A
h
[
[
[
@ Inscalar BCD, wyj, wyj, - - - , W can be computed independently.

Also, hjy, hjs, - - - , hj; can be computed independently.
— scalar BCD < 2k vector BCD in NMF
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Successive Rank-1 Deflation in SVD and NMF

@ Successive rank-1 deflation works for SVD but not for NMF
A—oyuv] = oaupv)? A—wyh] ~ wah]?
-1 0

b
4 6 0 0 10 0 0

o 6 4 0 0 0 2 0
0 0 1 ; ] 0 0 1 )

@ The sum of two successive best rank-1 nonnegative approx. is

4 6 0 5 5 0 0 0O
6 40 |~|550]+(000
0 0 1 0 0O 0 0 1

@ The best rank-2 nonnegative approx. is

4 6 0 4 6
WH:64O:64<(1)(1)8)
00 0 00

@ NOTE: 2k vector BCD # successive rank-1 deflation for NMF

SHS

ON“%L
ook
o LS
=

Haesun Park hpark@cc.gatech.edu Nonnegative Matrix Factorization: Algorithms and Applications



BCD with 2 Matrix Blocks

H--—-———————-

T
I
|
i
i = A
|
I
|
|
|

<

@ Minimize functions of W or H while the other is fixed:
: TwT _ AT
w arg min [|H*W* — A|l¢

H — arg Wi@ IWH — Al

@ Alternating Nonnegativity-constrained Least Squares (ANLS)
@ No closed form solution.

e Projected gradient method (Lin, 07)

o Projected quasi-Newton method . kimetal. 07)

o Active-set method (H. kim and Park, 08)

@ Block principal pivoting method . kim and Park, 08)

] ALS (M. Berry et al. 06) 7‘?
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NLS : miny=o [|CX — B||z = >_ min,, ||Cx; — bi|5

Nonnegativity-constrained Least Squares (NLS) problem

@ Projected Gradient method wn o) x(k+1) — P, (x(K) — o VF(x(K))
* P, (-): Projection operator to the nonnegative orthant
* Back-tracking selection of step ay
@ Projected Quasi-Newton method (imetal, 07)
(k1) [ y ] _ [ Py [y — aDRIV ()]
Zk 0
* Gradient scaling only for nonzero variables
@ These do not fully exploit the structure of the NLS problems in

NMF
@ Active Set method (. kim and Park, (08)

Lawson and Hanson (74), Bro and De Jong (97), Van Benthem and Keenan (04) )
@ Block principal pivoting method . kim and park, 0s)
linear complementarity problems (LCP) udice and pires, 94)
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Active-set type Algorithms for

MiNy>o ||Cx — b||2, C: m x k

@ KKT conditions: y = CTCx — CTb
y>0, x>0, xyy=0i=1,---,k
@ If we know P = {i|x; > 0} in the solution in advance
then we only need to solve min ||Cpxp — b||2, and the rest of
Xx; = 0, where Cp: columns of C with the indices in P
C * = b

Haesun Park hpark@cc.gatech.edu Nonnegative Matrix Factorization: Algorithms and Applications



Active-set type Algorithms for

MiNy>o ||Cx — b||2, C: m x k

@ KKT conditions: y = CTCx — CTb
}/ZO, XZO, XiYi:07i217"‘,k
@ Active set method (Lawson and Hanson 74)
o E={1,--- k} (i.e. x = O initially), P = null
e Repeat while E not null and y; < 0 for some i
@ Exchange indices between E and P while keeping feasibility and
reducing the objective function value
@ Block Principal Pivoting method (portugal et al. 94 Mathcomp) -
e Lacks any monotonicity or feasibility but finds a correct
active-passive set partitioning.
e Guess two index sets P and E that partition {1,--- , k}
o Repeat
@ Let xe = 0 and xp = argminy, ||Cexp — b5
Then ye = CL(Cpxp — b) and yp = 0
@ If xp > 0 and ye > 0, then optimal values are found.
Otherwise, update P and E.
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How block principal pivoting works

k =10, Initially P = {1,2,3,4,5}, E = {6,7,8,9,10}
Update by C;CPXP = C;b, and YE = CE(CPXP — b)
x y

| [elefe]=]<]

_________ REEIEE)

ole[elofo] [ [ []
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How block principal pivoting works

Update by C,Z—;CPXP = C,Tp-b, and yg = CZ:-(CPXP —b)
x y

__________ EIRIEIEIE)

[+l T+ Tel=[=]<]<]

[o[elo]ofo] [+]-] ]+
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How block principal pivoting works

Update by C,Z—;CPXP C;b, and yg = CZ:-(CPXP —b)
X y X y

P|[+]]0] B 0
P -0 BB o]
P -0 B (o]
P l+]l0] Pl o
Pl -|[o] =] |o]||
B o - Pl o
E 0|+ B o]
B ol - Pl o
E 0|+ B o]
E o] +] BEN [0
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How block principal pivoting works

Update by C,Z—;CPXP = C;b, and yg = CZ:-(CPXP —b)
X y X y

Pl[+]0] Pl+][0o
Pl-]lo ‘Bl o[+
Pl[-]lo 'E| ol]-
Pl[+]0 Pll+]]0
Pl -0 DBl o[+
B o] - Pl -0
E||o] + 'E| o[+
E| o] - Pl +|[0
B0+ 'E| o[+
E| 0| +] E| o[+
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How block principal pivoting works

Update by C,Z—;CPXP = C;b, and yg = CZ:-(CPXP —b)
X y X y X y

Pl[+][0] Pl[+]0] (P 0
Pl -|[o Bl o+ Bl (o]
Pl -|[o 'E||o]]- Pl |lo
Pl +]|[0 Pll+]]0 Pl |lo
RIEID =] - =] - IF
P o] - Pll-]lo 'E|[o]||
'E|| o]+ 'Ello| |+ lE| (o]
lE| | o] - P+ 0 Pl |lo
'E|| o]+ 'El[o| |+ Bl (o]
lE||o]|]+ lEl o]+ 'E| 0|
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How block principal pivoting works

Update by C,Z—;CPXP = C;b, and yg = CZ:-(CPXP —b)
X y X y X y

Pl[+]0] Pl +|]0] Pl+][o
Pl-]lo 'E| o]+ 'E| o[+
Pl -1l0] 'E| ol]- Pll+][0o
Pl +]0] Pll+]0 Pll+][0
Pl -]folc e o|[+|)FE||o] +
B o] - P -|]o] E| o[+
E o]+ 'E| o]+ E| o[+
E| o] - Pll+][0] Pll+][0
E o]+ 'E| o]+ 'El o]+
E| 0| +] E|lo]]+ E o]+
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How block principal pivoting works

Update by C,Z—;CPXP = C;b, and yg = CZ:-(CPXP —b)
X y X y X y

Pl[+][0] pl[+]]o ‘pl[+|lo
Pl -]/o] 'Ello||+] 'E o]+
P-10] lE|lo]]- p|[+]]0
P||+]|0] Pll+]]o0 Pl +]l0
Pl -0l |0+ PE] o]+
B o] - Pl -]l0] 'E| o ||+
'E|| o]+ 'Ello||+] 'E| o]+
el o] - ‘Pl +|l0] ‘p|[+]0
'E|| o]+ 'Ello||+] 'E| o]+
'E||o||+] 'Ello||+] 'E||lo||+
- - 7Solved.|7
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Refined Exchange Rules

@ Active set algorithm is a special instance of single principal
pivoting algorithm . kim and Park, simax o)
@ Block exchange rule without modification does not always work.

e The residual is not guaranteed to monotonically decrease.
Block exchange rule may cycle (although rarely).

e Modification: if the block exchange rule fails to decrease the
number of infeasible variables, use a backup exchange rule

e With this modification, block principal pivoting algorithm finds the
solution of NLS in a finite number of iterations.
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Structure of NLS prOblemS in NMF (J. Kim and Park, 08)

@ Matrix is long and thin, solutions vectors short, many right hand
side vectors.
@ minyso |WH — A2

k n
I T

® minso|[HTWT — AT|%

K m
7w
n{HY
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Efficient Algorlthm for minXZo H CX — BH?: (J. Kim and Park, 08)

@ Precompute C'Cand C’B
Update Xp and YE by C/Z;CPXP = C;b and YE = CECPXP — Cgb
All coefficients can be retrieved from C"C and C"B

@ C'C and C"B s small. Storage is not a problem.

K n
X

[P e R |

@ Exploit common P and E sets among col. in B in each iteration.
X is flat and wide. — More common cases of P and E sets.

HE R

@ Proposed algorithm for NMF (ANLS/BPP):
ANLS framework + Block principal pivoting algorithm for NLS
with improvements for multiple right-hand sides
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Sparse NMF and Regularized NMF

@ Sparse NMF (for sparse H) (. kim and Park, Bioinformatics, 07)

{ A~ WHHF+nHWHF+ﬂZHH 1},vij, Wj, Hj > 0

Jj=1

ANLS reformulation (. kimand rark, 07) : alternate the following

25 ( s ) (o )],
H20 ||\ VBerxk O1xn /lp
T T 2
(o ) (ot )
w>0 ||\ /7 Okxm /¢

@ Regularized NMF (pauca, etal. 06):
. 2 2 2 i
min {14~ WHIE + 0| WIE + B HIE . vii. Wy, Hy > 0.

ANLS reformulation : alternate the following

(v )#=(ol)
(frlk>wrf<of:m>

2

min
H>0

F
2

W>0

F
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Nonnegative PARAFAC

@ Consider a 3-way Nonnegative Tensor T € R7"* and
its PARAFAC ming 5 oo | T — [[ABC]]|12

where A e RT*K, B e RT*K, C ¢ RP*X,

@ The loading matrices (A,B, and C) can be iteratively estimated
by an NLS algorithm such as block principal pivoting method.

AN 4 /"
by by by
~ I 1, T NN | | e—
X
a a ar
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NO ﬂ neg ative PA RA FAC (J. Kim and Park, in preparation)

@ lterate until a stopping criteria is satisfied:
® Minao || YacA™ — Tl
® mingxo HYACBT - Toll¢
® Mingso || YasC™ — Tig)|| where
Yac = B® C € R(P) <k Ty e R(w)xm
Yac = A® C € RmP)xk, T2 € R(mP)xn,
Yag = AG B € RU™M*K T e RIM>P ynfolded matrices,
and F © Gmnyx k) = [f1 ®g1 heg - fi®gkisthe
Khatri-Rao product of F € R™* and G € Rk,
@ Matrices are longer and thinner, ideal for ANLS/BPP.
@ Can be similarly extended to higher order tensors.
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EXperimental Results (NMF) (J. Kim and Park, 2011)

NMF Algorithms Compared

| Name | Description | Author |
ANLS-BPP ANLS / block principal pivoting | J. Kim and HP 08
ANLS-AS ANLS / active set H. Kim and HP 08
ANLS-PGRAD | ANLS / projected gradient Lin 07
ANLS-PQN ANLS / projected quasi-Newton | D. Kim et al. 07
HALS Hierarchical ALS Cichocki et al. 07
MU Multiplicative updating Lee and Seung 01
ALS Alternating least squares Berry et al. 06
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ive-set vs. Block principal pivoting

ATNT, k=10

TDT2, k=160

elapsed

PRpp

o 10 20 30

40 50 60 70

iter

ATNT, k=10

20 30 40 50 60
iter

TDT2, k=160

elapsed

0 10 20 30 40

—8— ANL UPDATE|
—+— ANLS-AS-GROUP

50 6 70 8 9
iter

30 40 50 60

70 8 90 100
iter

ATNT image data: 10,304 x 400, k = 10, TDT2 text data:19,009 x 3,087, k = 160
Top:time per iteration, bottom:cumulative time
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Residual vs. Execution time Kim and Park, 2011)

TDT2, k=10 TDT2, k=160
L I B e — . .
o9t —B—HALS i
’ ——Mu 0651 ]
——ALS
ANLS-PGRAD)
0.89f H L )
ANLS-PQN 064 \_
—6— ANLS-BPP s
0881 1 0631 B HALS
9] 9]
§ % ——Mu
2087 I ——ALS 1
° ° ANLS-PGRAD)
2 2 061F ANLS-PQN |
086 E g g
g o —O— ANLS-BPP
06f
0851 E
059f
058t

0 100 200 300 400 500 600 700
time(sec) time(sec)

TDT2 text data: 19,009 x 3,087, k = 10 and kK = 160
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Residual vs. Execution time Kim and Park, 2011)

ATNT, k=10 20 Newsgroups, k=160
— . .
03k —B—HALS | |
W 055
——ALS
0.9+ i
ANLS-PGRAD) 054t |
L ANLS-PQN ||
028 —O6— ANLS-BPP —8—HALS
053t WU ]
. 027+ ] : AS
021 ] eosy ANLS-PGRAD) 1
;O?' g ANLS-PQN
¢ o 0511 —6— ANLS-BPP 1
g g
¢ © osf ]
049+
048t
047 L L L L L L

0 100 200 300 400 500 600 700
time(sec) time(sec)

ATNT image data: 10,304 x 400, k = 10 and
20 Newsgroups text data: 26,214 x 11,314, k = 160
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Residual vs. Execution time Kim and Park, 2011)

PIE 64, k=80 PIE 64, k=160
; : ; ; ; ;
035 L | —8—HALS i
o4l —— MU
ANLS-PGRAD
ANLS-PQN
0al —6— ANLS-BPP
0.35(1 ’
: —8—HALS
——MU
[} [}
2 —+—ALS 2 %
> 03r A ANLS-PGRAD| | 2 0.5} 1
k) L k)
o ANLS-PQN o
2 —6— ANLS-BPP 2
o 0.25r v
02 ]
02f
0.151
0.151
0 50 100 150 200 250 300 0 100 200 300 40 50 600 700
time(sec) time(sec)

PIE 64 image data: 4,096 x 11,554, k = 80 and k = 160
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syn—90, k=160 syn—95, k=160

—8— HALS —H&— HALS
—&— ANLS-BPP —&— ANLS-BPP
[ (2]
= =
5] <
> >
= =)
o o
[ [
= =
s kS
L 5]
10*20
(0] 100 200 300
time(sec) time(sec)
syn—90, k=160 syn—95, k=160
1
w [%]
5 5
£ £ -
% 0.6 —O6— W sparsity % 0.6 —S— W sparsity
k] i —+— H sparsity kS —+— H sparsity
é 0.4 W change _é 0.4 W change
§ —#— H change §_ —#— H change
a5 0.2 s 0.2 L
0] 20 40 60 (0] 20 40 60
iter iter

Synthetic data 10,000 x 2,000 created by factors with different sparsities
Left: 90% sparsity, Right: 95% sparsity
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Adaptive NMF for Varying Reduced Rank k — k

(He, Kim, Cichocki, and Park, in preparation)

@ Given (W, H) with k, how to compute (W, H) with k fast?
@ E.g., model selection for NMF clustering

AdaNMF
@ Initialize W and H using W and H )
o If k > k, compute NMF for A— WH ~ AWAH. Set W = [W AW]
and H = [H; AH]
o If k < k, initialize W and H with k pairs of (w;, h;) with largest
Iwih] 1l = [[will2]lhill2
@ Update W and H using HALS algorithm.
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MOdG' SG'GCtiOﬂ in N M F ClUSterl ng (He, Kim, Cichocki, and Park, in preparation)

@ Consensus matrix based on A~ WH:

ot = JO max(HG.i) =max(H(.j)
ij 1 max(H(:, i) # max(H(:, /)’ sy

o Dispersion coefficient p(k) = & 374 314 4(Cj — })?, where
c=1yct

§EEE 88888y

Clustering results on MNIST digit images (784 x 2000) by AdaNMF

with k = 3,4,5 and 6. Averaged consensus matrices, dispersion
coefficient, execution time
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Adaptive NMF for Varying Reduced Rank

(He, Kim, Cichocki, and Park, in preparation)

0.18
—o— Recompute —e&— Recompute
—&— Warm-restart| 016 —&— Warm-restart|
AdaNMF 1 AdaNMF

Relative error
Relative error

Execution time Execution time

Relative error vs. exec. time of AdaNMF and “recompute”. Given an
NMF of 600 x 600 synthetic matrix with k = 60, compute NMF with

k = 50, 80.
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Adaptive NMF for Varying Reduced Rank

(He, Kim, Cichocki, and Park, in preparation)

Theorem: For A € RT"*", If rank,(A) > k, then
min||A — W(k+1)/-/(k+1)HF < min||A— WRH®| g,
where W() ¢ R™/ and H() ¢ R7X".

—e— rank=20 —&— Training error
—=— rank=40 —&— Testing error
03f rank=60 [{ 0.3 4
—~2— rank=80

Relative Objective Function Value of NMF

01
e,
A
AAA
0.05- AR

o 100 120 140 160 5 10 15 20 250 300 B T a0 a5+
Approx\mauon Rank k of NMF Reduced rank k of NMF

Rank path on synthetic data set: relative residual vs. k
ORL Face image (10304 x 400) classification errors (by LMNN) on training
and testing set vs. k.

k-dim rep. Hr of training data T by BPP miny, > | WHr — Tl|¢
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N M F fOF Dynam iC Data (Dyn N M F) (He, Kim, Cichocki, and Park, in preparation)

@ Given an NMF (W, H) for A = [§A A], how to compute NMF
(W, H) for A= [A AA] fast ?
(Updating and Downdating)

A A

DynNMF (Sliding Window NMF)

o Initialize H as follows:
e Let A be the remaining columns of H.
e Solve minap>o |[WAH — AA|2 using block principal pivoting
o Set H=[H AH]

@ Run HALS on A with initial factors W = W and H
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Dyn N M F for Dynamlc Data (He, Kim, Cichocki, and Park, in preparation)
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NMF aS a Clustering MethOd (Kuang and Park, in preparation)

@ Clustering and Lower Rank Approximation are related.
NMF for Clustering: Document (Xu et al. 03), Image (Cai et al. 08), Microarray (Kim & Park 07), etc.
@ Equivalence of objective functions between k-means and NMF:

(Ding, et al., 05; Kim & Park, 08)
n

min 3" [la; — ws, |3 = min | A — WH|
i=1

S; = j when i-th point is assigned to j-th cluster (j € {1,--- , k})
k-means: W: k cluster centroids, H € E
NMEF: W : basis vectors for rank-k approximation,
H: representation of Ain W space
(E: matrices whose columns are columns of an identity matrix )
NOTE: The equivalence of obj. functions holds when H € E, A > 0.
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NMF and K-means

min||A— WH|2 st. H € E

@ Paths to solution:
o K-means: Expectation-Minimization
o NMF: Relax the condition on H to H > 0 with orthogonal rows or
H > 0 with sparse columns - soft clustering

TDT2 text data set: (clustering accuracy aver. among 100 runs)
# clusters 2 6 10 14 18
K-means | 0.8099 | 0.7295 | 0.7015 | 0.6675 | 0.6675

NMF/ANLS | 0.9990 | 0.8717 | 0.7436 | 0.7021 | 0.7160

Sparsity constraint improves clustering result . kim and Park, 08):
Miny >0 H0[|A — WHIZ + W2 + 85 [HG,))II2

# of times achieving optimal assignment

(a synthetic data set, with a clear cluster structure ):

k 3 6 9 12 | 15
NMF 69 | 65 | 74 | 68 | 44
SNMF || 100 | 100 | 100 | 100 | 97

NMF and SNMF much better than k-means in general.
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NMF, K'meanS, and SpeCtra| C|USter|ng (Kuang and Park, in preparation)

Equivalence of objective functions is not enough to explain the
clustering capability of NMF:

@ NMF is more related to spherical k-means, than to k-means
— NMF shown to work well in text data clustering
Symmetric NMF: mingsq ||A — SST||g, A € R : affinity matrix

@ Spectral clustering — Eigenvectors (g etal. 1), A normalized it needed, Laplacian, ...
@ Symmetric NMF pingetal) — can handle nonlinear structure, and
S > 0 natually captures a cluster structure in S
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Summary/Discussions

Overview of NMF with Frobenius norm and algorithms
Fast algorithms and convergence via BCD framework
Adaptive NMF algorithms

Variations/Extensions of NMF : nonnegative PARAFAC and
sparse NMF

NMF for clustering

Extensive computational comparisons
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Summary/Discussions

Overview of NMF with Frobenius norm and algorithms
Fast algorithms and convergence via BCD framework
Adaptive NMF algorithms

Variations/Extensions of NMF : nonnegative PARAFAC and
sparse NMF

NMF for clustering

Extensive computational comparisons

NMF for clustering and semi-supervised clustering

NMF and probability related methods

NMF and geometric understanding

NMF algorithms for large scale problems, parallel
implementation? GPU?

Fast NMF with other divergences (Bregman and Csiszar
divergences)

NMF for blind source separation? Uniqueness?

More theoretical study on NMF especially for foundations for
computational methods

NMF Matlab codes and papers available at
http://www.cc.gatech.edu/~hpark and
http://www.cc.gatech.edu/~jingu
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