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Nonnegative Matrix Factorization (NMF)
(Lee&Seung 99, Paatero&Tapper 94)

Given A ∈ R+
m×n and a desired rank k << min(m,n),

find W ∈ R+
m×k and H ∈ R+

k×n s.t. A ≈WH.
minW≥0,H≥0 ‖A−WH‖F
Nonconvex
W and H not unique ( e.g. Ŵ = WD ≥ 0, Ĥ = D−1H ≥ 0)

Notation: R+: nonnegative real numbers
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Nonnegative Matrix Factorization (NMF)
(Lee&Seung 99, Paatero&Tapper 94)

Given A ∈ R+
m×n and a desired rank k << min(m,n),

find W ∈ R+
m×k and H ∈ R+

k×n s.t. A ≈WH.
minW≥0,H≥0 ‖A−WH‖F
NMF improves the approximation as k increases:
If rank+(A) > k ,

min
Wk+1≥0,Hk+1≥0

‖A−Wk+1Hk+1‖F < min
Wk≥0,Hk≥0

‖A−WkHk‖F ,

Wi ∈ R+
m×i and Hi ∈ R+

i×n

But SVD does better: if A = UΣV T , then
‖A− Uk ΣkV T

k ‖F ≤ min‖A−WH‖F , W ∈ R+
m×k and H ∈ R+

k×n

So Why NMF? Dimension Reduction with
Better Interpretation/Lower Dim. Representation for Nonnegative
Data.
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Nonnegative Rank of A ∈ R+
m×n

(J. Cohen and U. Rothblum, LAA, 93)

rank+(A), is the smallest integer k for which there exist
V ∈ R+

m×k and U ∈ R+
k×n such that A = VU.

Note: rank(A) ≤ rank+(A) ≤ min(m,n)
If rank(A) ≤ 2, then rank+(A) = rank(A).
If either m ∈ {1,2,3} or n ∈ {1,2,3}, then rank+(A) = rank(A).

(Perron-Frobenius) There are nonnegative left and right singular
vectors u1 and v1 of A associated with the largest singular value
σ1.
rank 1 SVD of A = best rank-one NMF of A
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Applications of NMF

Text mining
Topic model: NMF as an alternative way for PLSI ( Gaussier et al.,
05; Ding et al., 08)
Document clustering (Xu et al., 03; Shahnaz et al., 06)
Topic detection and trend tracking, email analysis (Berry et al., 05;
Keila et al., 05; Cao et al., 07)

Image analysis and computer vision
Feature representation, sparse coding (Lee et al., 99; Guillamet et
al., 01; Hoyer et al., 02; Li et al. 01)
Video tracking (Bucak et al., 07)

Social network
Community structure and trend detection ( Chi et al., 07; Wang et
al., 08)
Recommendation system (Zhang et al., 06)

Bioinformatics-microarray data analysis (Brunet et al., 04, H. Kim
and Park, 07)
Acoustic signal processing, blind source separating (Cichocki et
al., 04)
Financial data (Drakakis et al., 08)
Chemometrics (Andersson and Bro, 00)
and SO MANY MORE...
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Algorithms for NMF

Multiplicative update rules: Lee and Seung, 99
Alternating least squares (ALS): Berry et al 06
Alternating nonnegative least squares (ANLS)

Lin, 07, Projected gradient descent
D. Kim et al., 07, Quasi-Newton
H. Kim and Park, 08, Active-set
J. Kim and Park, 08, Block principal pivoting

Other algorithms and variants
Cichocki et al., 07, Hierarchical ALS (HALS)
Ho, 08, Rank-one Residue Iteration (RRI)
Zdunek, Cichocki, Amari 06, Quasi-Newton
Chu and Lin, 07, Low dim polytope approx.
Other rank-1 downdating based algorithms (Vavasis,..)
C. Ding, T. Li, tri-factor NMF, orthogonal NMF, ...
Cichocki, Zdunek, Phan, Amari: NMF and NTF: Applications to
Exploratory Multi-way Data Analysis and Blind Source Separation,
Wiley, 09
Andersson and Bro, Nonnegative Tensor Factorization, 00
And SO MANY MORE...
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Block Coordinate Descent (BCD) Method

A constrained nonlinear problem:

min f (x)(e.g., f (W ,H) = ‖A−WH‖F )

subject to x ∈ X = X1 × X2 × · · · × Xp,

where x = (x1, x2, . . . , xp), xi ∈ Xi ⊂ Rni , i = 1, . . . ,p.
Block Coordinate Descent method generates
x (k+1) = (x (k+1)

1 , . . . , x (k+1)
p ) by

x (k+1)
i = arg min

ξ∈Xi

f (x (k+1)
1 , . . . , x (k+1)

i−1 , ξ, x (k)
i+1, . . . , x

(k)
p ).

Th. (Bertsekas, 99): Suppose f is continuously differentiable over the
Cartesian product of closed, convex sets X1,X2, . . . ,Xp and suppose
for each i and x ∈ X , the minimum for

min
ξ∈Xi

f (x (k+1)
1 , . . . , x (k+1)

i−1 , ξ, x (k)
i+1, . . . , x

(k)
p )

is uniquely attained. Then every limit point of the sequence generated
by the BCD method {x (k)} is a stationary point.
NOTE: Uniqueness not required when p = 2 (Grippo and Sciandrone, 00).
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BCD with k(m + n) Scalar Blocks

W

H

A

Minimize functions of wij or hij while all other components in W
and H are fixed:

wij ← arg min
wij≥0

‖(rT
i −

∑
k 6=j

wikhT
k )− wijhT

j ‖2

hij ← arg min
hij≥0
‖(aj −

∑
k 6=i

wkhkj)− wihij‖2

where W =
(

w1 · · · wk
)
, H =

 hT
1
...

hT
k

 and

A =
(

a1 · · · an
)

=

 rT
1
...

rT
m


Scalar quadratic function, closed form solution.
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BCD with k(m + n) Scalar Blocks

Lee and Seung (01)’s multiplicative updating (MU) rule

wij ← wij
(AHT )ij

(WHHT )ij
, hij ← hij

(W T A)ij

(W T WH)ij

Derivation based on gradient-descent form:

wij ← wij +
wij

(WHHT )ij

[
(AHT )ij − (WHHT )ij

]
hij ← hij +

hij

(W T WH)ij

[
(W T A)ij − (W T WH)ij

]
Rewriting of the solution of coordinate descent:

wij ←
[
wij +

1
(HHT )jj

(
(AHT )ij − (WHHT )ij

)]
+

hij ←
[
hij +

1
(W T W )ii

(
(W T A)ij − (W T WH)ij

)]
+

In MU, conservative steps are taken to ensure nonnegativity.
Bertsekas’ Th. on convergence is not applicable to MU.
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BCD with 2k Vector Blocks

W

H

A

Minimize functions of wi or hi while all other components in W
and H are fixed:

‖A−
k∑

j=1

wjhT
j ‖F = ‖(A−

k∑
j=1
j 6=i

wjhT
j )− wihT

i ‖F = ‖R(i) − wihT
i ‖F

wi ← arg min
wi≥0
‖R(i) − wihT

i ‖F

hi ← arg min
hi≥0
‖R(i) − wihT

i ‖F

Each subproblem has the form minx≥0 ‖cxT −G‖F and
has a closed form solution x = [GT c

cT c ]+ !
Hierarchical Alternating Least Squares (HALS) (Cichocki et al, 07, 09),
(actually HA-NLS)
Rank-one Residue Iteration (RRI) (Ho, 08)
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BCD with Scalar Blocks vs. 2k Vector Blocks

W

H

A

W

H

A

In scalar BCD, w1j ,w2j , · · · ,wmj can be computed independently.
Also, hi1,hi2, · · · ,hin can be computed independently.
→ scalar BCD⇔ 2k vector BCD in NMF
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Successive Rank-1 Deflation in SVD and NMF

Successive rank-1 deflation works for SVD but not for NMF
A− σ1u1vT

1 ≈ σ2u2vT
2 ? A− w1hT

1 ≈ w2hT
2 ?0@ 4 6 0

6 4 0
0 0 1

1A =

0B@
1√
2

− 1√
2

0
1√
2

1√
2

0
0 0 1

1CA
0@ 10 0 0

0 2 0
0 0 1

1A
0B@

1√
2

1√
2

0
1√
2

− 1√
2

0
0 0 1

1CA
The sum of two successive best rank-1 nonnegative approx. is 4 6 0

6 4 0
0 0 1

 ≈
 5 5 0

5 5 0
0 0 0

+

 0 0 0
0 0 0
0 0 1


The best rank-2 nonnegative approx. is

WH =

 4 6 0
6 4 0
0 0 0

 =

 4 6
6 4
0 0

( 1 0 0
0 1 0

)
NOTE: 2k vector BCD 6= successive rank-1 deflation for NMF
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BCD with 2 Matrix Blocks

W

H

A

Minimize functions of W or H while the other is fixed:

W ← arg min
W≥0
‖HT W T − AT‖F

H ← arg min
H≥0
‖WH − A‖F

Alternating Nonnegativity-constrained Least Squares (ANLS)
No closed form solution.

Projected gradient method (Lin, 07)

Projected quasi-Newton method (D. Kim et al., 07)

Active-set method (H. Kim and Park, 08)

Block principal pivoting method (J. Kim and Park, 08)

ALS (M. Berry et al. 06) ??

Haesun Park hpark@cc.gatech.edu Nonnegative Matrix Factorization: Algorithms and Applications



NLS : minX≥0 ‖CX − B‖2
F =

∑
minxi ‖Cxi − bi‖2

2

Nonnegativity-constrained Least Squares (NLS) problem
Projected Gradient method (Lin, 07) x (k+1) ← P+(x (k) − αk∇f (x (k)))
* P+(·): Projection operator to the nonnegative orthant
* Back-tracking selection of step αk
Projected Quasi-Newton method (Kim et al., 07)

x (k+1) ←
[

y
zk

]
=

[
P+

[
y (k) − αD(k)∇f (y (k))

]
0

]
* Gradient scaling only for nonzero variables
These do not fully exploit the structure of the NLS problems in
NMF
Active Set method (H. Kim and Park, (08)

Lawson and Hanson (74), Bro and De Jong (97), Van Benthem and Keenan (04) )

Block principal pivoting method (J. Kim and Park, 08)

linear complementarity problems (LCP) (Judice and Pires, 94)
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Active-set type Algorithms for
minx≥0 ‖Cx − b‖2, C : m × k

KKT conditions: y = CT Cx − CT b
y ≥ 0, x ≥ 0, xiyi = 0, i = 1, · · · , k
If we know P = {i |xi > 0} in the solution in advance
then we only need to solve min ‖CPxP − b‖2, and the rest of
xi = 0, where CP : columns of C with the indices in P

C x b

+

+

0

0

+

*
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Active-set type Algorithms for
minx≥0 ‖Cx − b‖2, C : m × k

KKT conditions: y = CT Cx − CT b
y ≥ 0, x ≥ 0, xiyi = 0, i = 1, · · · , k
Active set method (Lawson and Hanson 74)

E = {1, · · · , k} (i.e. x = 0 initially), P = null
Repeat while E not null and yi < 0 for some i

Exchange indices between E and P while keeping feasibility and
reducing the objective function value

Block Principal Pivoting method (Portugal et al. 94 MathComp):
Lacks any monotonicity or feasibility but finds a correct
active-passive set partitioning.
Guess two index sets P and E that partition {1, · · · , k}
Repeat

Let xE = 0 and xP = arg minxP ‖CPxP − b‖2
2

Then yE = CT
E (CPxP − b) and yP = 0

If xP ≥ 0 and yE ≥ 0, then optimal values are found.
Otherwise, update P and E .
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How block principal pivoting works

k = 10, Initially P = {1,2,3,4,5}, E = {6,7,8,9,10}
Update by CT

P CPxP = CT
P b, and yE = CT

E (CPxP − b)

P

P

P

P

P

E

E

E

E

E

0

0

0

0

0

0

0

0

0

0

yx
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How block principal pivoting works

Update by CT
P CPxP = CT
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P

P

P

P

P

E

E

E

E

E

+

-

-

+

-

0

0

0

0

0

0

0

0

0

0

-

+

-

+

+

yx
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Refined Exchange Rules

Active set algorithm is a special instance of single principal
pivoting algorithm (H. Kim and Park, SIMAX 08)

Block exchange rule without modification does not always work.

The residual is not guaranteed to monotonically decrease.
Block exchange rule may cycle (although rarely).
Modification: if the block exchange rule fails to decrease the
number of infeasible variables, use a backup exchange rule
With this modification, block principal pivoting algorithm finds the
solution of NLS in a finite number of iterations.
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Structure of NLS problems in NMF (J. Kim and Park, 08)

Matrix is long and thin, solutions vectors short, many right hand
side vectors.
minH≥0 ‖WH − A‖2F

minW≥0
∥∥HT W T − AT

∥∥2
F
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Efficient Algorithm for minX≥0 ‖CX − B‖2
F (J. Kim and Park, 08)

Precompute CT C and CT B
Update xP and yE by CT

P CPxP = CT
P b and yE = CT

E CPxP − CT
E b

All coefficients can be retrieved from CT C and CT B
CT C and CT B is small. Storage is not a problem.

→
Exploit common P and E sets among col. in B in each iteration.
X is flat and wide. → More common cases of P and E sets.

Proposed algorithm for NMF (ANLS/BPP):
ANLS framework + Block principal pivoting algorithm for NLS
with improvements for multiple right-hand sides
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Sparse NMF and Regularized NMF

Sparse NMF (for sparse H) (H. Kim and Park, Bioinformatics, 07)

min
W ,H

‖A−WH‖2F + η ‖W‖2F + β

n∑
j=1

‖H(:, j)‖21

 ,∀ij ,Wij ,Hij ≥ 0

ANLS reformulation (H. Kim and Park, 07) : alternate the following

min
H≥0

∥∥∥∥( W√
βe1×k

)
H −

(
A

01×n

)∥∥∥∥2

F

min
W≥0

∥∥∥∥( HT
√
ηIk

)
W T −

(
AT

0k×m

)∥∥∥∥2

F

Regularized NMF (Pauca, et al. 06):

min
W ,H

{
‖A−WH‖2F + η ‖W‖2F + β ‖H‖2F

}
,∀ij ,Wij ,Hij ≥ 0.

ANLS reformulation : alternate the following

min
H≥0

∥∥∥∥( W√
βIk

)
H −

(
A

0k×n

)∥∥∥∥2

F

min
W≥0

∥∥∥∥( HT
√
ηIk

)
W T −

(
AT

0k×m

)∥∥∥∥2

F
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Nonnegative PARAFAC

Consider a 3-way Nonnegative Tensor T ∈ Rm×n×p
+ and

its PARAFAC minA,B,C≥0 ‖T− [[ABC]]‖2F
where A ∈ Rm×k

+ , B ∈ Rn×k
+ , C ∈ Rp×k

+ .
The loading matrices (A,B, and C) can be iteratively estimated
by an NLS algorithm such as block principal pivoting method.
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Nonnegative PARAFAC (J. Kim and Park, in preparation)

Iterate until a stopping criteria is satisfied:
minA≥0

∥∥YBCAT − T(1)

∥∥
F

minB≥0
∥∥YACBT − T(2)

∥∥
F

minC≥0
∥∥YABCT − T(3)

∥∥
F where

YBC = B � C ∈ R(np)×k , T(1) ∈ R(np)×m,
YAC = A� C ∈ R(mp)×k , T(2) ∈ R(mp)×n,
YAB = A� B ∈ R(mn)×k , T(3) ∈ R(mn)×p unfolded matrices,
and F �G(mn)×(k) = [f1 ⊗ g1 f2 ⊗ g2 · · · fk ⊗ gk ] is the
Khatri-Rao product of F ∈ Rm×k and G ∈ Rn×k .

Matrices are longer and thinner, ideal for ANLS/BPP.
Can be similarly extended to higher order tensors.
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Experimental Results (NMF) (J. Kim and Park, 2011)

NMF Algorithms Compared
Name Description Author
ANLS-BPP ANLS / block principal pivoting J. Kim and HP 08
ANLS-AS ANLS / active set H. Kim and HP 08
ANLS-PGRAD ANLS / projected gradient Lin 07
ANLS-PQN ANLS / projected quasi-Newton D. Kim et al. 07
HALS Hierarchical ALS Cichocki et al. 07
MU Multiplicative updating Lee and Seung 01
ALS Alternating least squares Berry et al. 06
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Active-set vs. Block principal pivoting (J. Kim and Park, 2011)
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ATNT image data: 10, 304× 400, k = 10, TDT2 text data:19, 009× 3, 087, k = 160
Top:time per iteration, bottom:cumulative time
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Residual vs. Execution time (J. Kim and Park, 2011)
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Residual vs. Execution time (J. Kim and Park, 2011)
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Residual vs. Execution time (J. Kim and Park, 2011)
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BPP vs HALS : Influence of Sparsity (J. Kim and Park, 2011)
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Synthetic data 10, 000× 2, 000 created by factors with different sparsities
Left: 90% sparsity, Right: 95% sparsity
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Adaptive NMF for Varying Reduced Rank k → k̃
(He, Kim, Cichocki, and Park, in preparation)

Given (W ,H) with k , how to compute (W̃ , H̃) with k̃ fast?
E.g., model selection for NMF clustering

AdaNMF
Initialize W̃ and H̃ using W and H

If k̃ > k , compute NMF for A−WH ≈ ∆W ∆H. Set W̃ = [W ∆W ]
and H̃ = [H; ∆H]
If k̃ < k , initialize W̃ and H̃ with k̃ pairs of (wi ,hi ) with largest
‖wihT

i ‖F = ‖wi‖2‖hi‖2

Update W̃ and H̃ using HALS algorithm.
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Model Selection in NMF Clustering (He, Kim, Cichocki, and Park, in preparation)

Consensus matrix based on A ≈WH:

Ct
ij =

{
0 max(H(:, i)) = max(H(:, j))

1 max(H(:, i)) 6= max(H(:, j))
, t = 1, . . . , l

Dispersion coefficient ρ(k) = 1
n2

∑n
i=1
∑n

j=1 4(Cij − 1
2)2, where

C = 1
l
∑

Ct

Reordered Consensus Matrix, k=3
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Reordered Consensus Matrix, k=5

 

 

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

1800

2000 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reordered Consensus Matrix, k=6

 

 

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

1800

2000 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AdaNMF Recompute Warm−restart

4

5

6

7

8

9

10

11

12

E
xe

cu
tio

n
 t
im

e
 (

se
co

n
d
s)

Clustering results on MNIST digit images (784× 2000) by AdaNMF
with k = 3,4,5 and 6. Averaged consensus matrices, dispersion
coefficient, execution time
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Adaptive NMF for Varying Reduced Rank
(He, Kim, Cichocki, and Park, in preparation)
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Relative error vs. exec. time of AdaNMF and “recompute”. Given an
NMF of 600× 600 synthetic matrix with k = 60, compute NMF with
k̃ = 50,80.
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Adaptive NMF for Varying Reduced Rank
(He, Kim, Cichocki, and Park, in preparation)

Theorem: For A ∈ Rm×n
+ , If rank+(A) > k , then

min ‖A−W (k+1)H(k+1)‖F < min ‖A−W (k)H(k)‖F ,
where W (i) ∈ Rm×i

+ and H(i) ∈ Ri×n
+ .
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Rank path on synthetic data set: relative residual vs. k
ORL Face image (10304× 400) classification errors (by LMNN) on training
and testing set vs. k .
k -dim rep. HT of training data T by BPP minHT≥0 ‖WHT − T‖F
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NMF for Dynamic Data (DynNMF) (He, Kim, Cichocki, and Park, in preparation)

Given an NMF (W ,H) for A = [δA Â], how to compute NMF
(W̃ , H̃) for Ã = [Â ∆A] fast ?
(Updating and Downdating)

DynNMF (Sliding Window NMF)
Initialize H̃ as follows:

Let Ĥ be the remaining columns of H.
Solve min∆H≥0 ‖W ∆H −∆A‖2

F using block principal pivoting
Set H̃ = [Ĥ ∆H]

Run HALS on Ã with initial factors W̃ = W and H̃
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DynNMF for Dynamic Data (He, Kim, Cichocki, and Park, in preparation)

PET2001 data with 3064 images from a surveillance video.
DynNMF on 110,592× 400 data matrix each time, with 100 new
columns and 100 obsolete columns. The residual images track the
moving vehicle in the video.
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NMF as a Clustering Method (Kuang and Park, in preparation)

Clustering and Lower Rank Approximation are related.
NMF for Clustering: Document (Xu et al. 03), Image (Cai et al. 08), Microarray (Kim & Park 07), etc.

Equivalence of objective functions between k-means and NMF:
(Ding, et al., 05; Kim & Park, 08)

min
n∑

i=1

‖ai − wSi‖
2
2 = min ‖A−WH‖2F

Si = j when i-th point is assigned to j-th cluster (j ∈ {1, · · · , k})
k-means: W : k cluster centroids, H ∈ E
NMF: W : basis vectors for rank-k approximation,

H: representation of A in W space
(E: matrices whose columns are columns of an identity matrix )
NOTE: The equivalence of obj. functions holds when H ∈ E, A ≥ 0.
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NMF and K-means
min ‖A−WH‖2F s.t. H ∈ E

Paths to solution:
K-means: Expectation-Minimization
NMF: Relax the condition on H to H ≥ 0 with orthogonal rows or
H ≥ 0 with sparse columns - soft clustering

TDT2 text data set: (clustering accuracy aver. among 100 runs)
# clusters 2 6 10 14 18
K-means 0.8099 0.7295 0.7015 0.6675 0.6675

NMF/ANLS 0.9990 0.8717 0.7436 0.7021 0.7160

Sparsity constraint improves clustering result (J. Kim and Park, 08):
minW≥0,H≥0 ‖A−WH‖2F + η‖W‖2F + β

∑n
j=1 ‖H(:, j)‖21

# of times achieving optimal assignment
(a synthetic data set, with a clear cluster structure ):

k 3 6 9 12 15
NMF 69 65 74 68 44

SNMF 100 100 100 100 97

NMF and SNMF much better than k-means in general.
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NMF, K-means, and Spectral Clustering (Kuang and Park, in preparation)

Equivalence of objective functions is not enough to explain the
clustering capability of NMF:

NMF is more related to spherical k-means, than to k-means
→ NMF shown to work well in text data clustering

Symmetric NMF: minS≥0 ‖A− SST‖F , A ∈ R+
n×n : affinity matrix

Spectral clustering→ Eigenvectors (Ng et al. 01), A normalized if needed, Laplacian,...

Symmetric NMF (Ding et al.)→ can handle nonlinear structure, and
S ≥ 0 natually captures a cluster structure in S
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Summary/Discussions

Overview of NMF with Frobenius norm and algorithms
Fast algorithms and convergence via BCD framework
Adaptive NMF algorithms
Variations/Extensions of NMF : nonnegative PARAFAC and
sparse NMF
NMF for clustering
Extensive computational comparisons

NMF for clustering and semi-supervised clustering
NMF and probability related methods
NMF and geometric understanding
NMF algorithms for large scale problems, parallel
implementation? GPU?
Fast NMF with other divergences (Bregman and Csiszar
divergences)
NMF for blind source separation? Uniqueness?
More theoretical study on NMF especially for foundations for
computational methods

NMF Matlab codes and papers available at
http://www.cc.gatech.edu/∼hpark and
http://www.cc.gatech.edu/∼jingu
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