

Temporal pattern mining in symbolic time point and time interval data

Fabian Moerchen Siemens Corporate Research Princeton, NJ

Temporal pattern mining in symbolic time point and time interval data

- I. Introduction
- II. Symbolic temporal data models
- III. Temporal concepts and operators
- IV. Patterns and algorithms for time point data
- V. Patterns and algorithms for time interval data
- VI. Related topics

SIEMENS

Temporal Data Mining

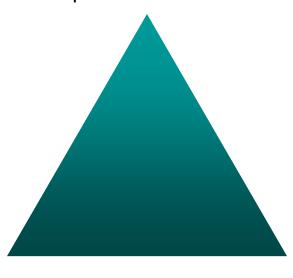
Temporal Data Mining

- Any data mining task involving some dimension of time.
 - Includes temporal association rules, evolutionary clustering, spatiotemporal data minig, trajectory clustering, ...
- Time Series Data Mining
 - Mining of sequence(s) of observations over time
 - Clustering
 - Classification
 - Indexing
 - Anomaly detection
 - Prediction
 - ...
 - Temporal pattern mining
 - Temporal pattern languages
 - Pattern mining algorithms

Different aspects of temporal pattern mining

Temporal Data Models

How is temporal data represented? Time point vs. time interval



Temporal Concepts

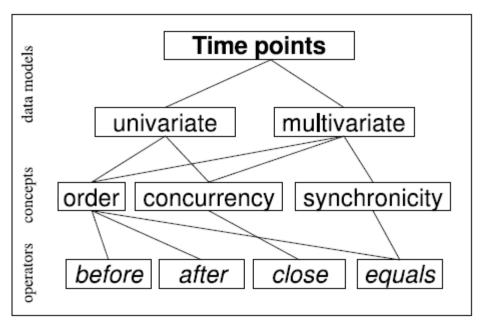
What are the desired semantics?

Order vs. concurrency

Temporal Operators

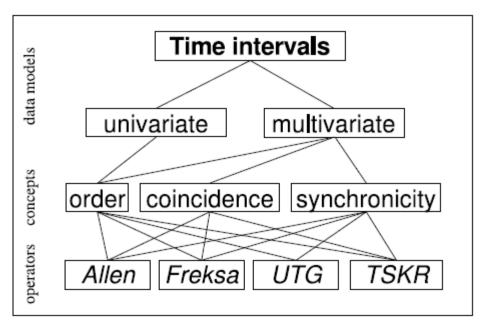
How are data elements compared and combined by the algorithms?

Time point models, concepts, and operators



- In time point data models observation are associated with a specific point in time.
- If several 'dimensions' are observed in parallel the model is multivariate.
- Most commonly mined concept is order or the less strict concurrency.

Time interval models, concepts, and operators



- In time interval data models observation are associated with the time between two time points.
- If several 'dimensions' are observed in parallel the model is multivariate.
- Most methods mine all three temporal concepts: order, concurrency, synchronicity.

SIEMENS

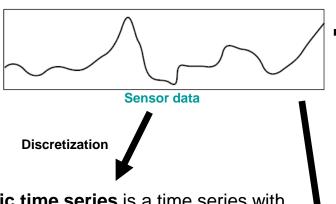
Definition of terminology

- Time is continuous, computers are binary.
- We assume temporal data is represented with discrete time points.
- A time series is a set of unique time points.
- A time sequence is a multi set of time points.
- A pair of time points defines a time interval, inclusively.
- Two intervals overlap if there is at least one time point that lies within both intervals.
- An interval series is a set of non overlapping time intervals.
- An interval sequence can include overlapping and equal time intervals.
- The series data types can be univariate or multivariate.

SIEMENS

Common models and transformations

A **numeric time series** is a time series with numerical values for each time point.



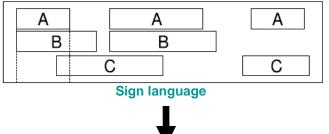
A **symbolic time series** is a time series with nominal values for each point.

ĄBCBDADBBCBAAABBCBDBABDABA

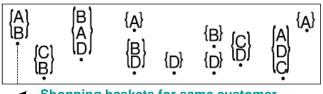
DNA sequences

A **symbolic interval sequence** has

overlapping intervals with nominal values.



An **itemset sequence** is a time sequence with sets of nominal values assigned to each time point.

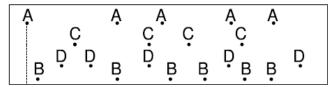


Shopping baskets for same customer

A **symbolic time sequence** has nominal values with possible duplicate time points

Discretization Segmentation

Motif discovery



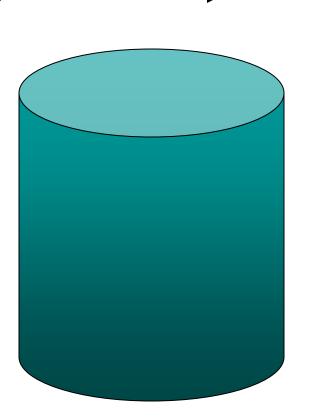
Events from machine service logs

Common data bases

SIEMENS

Single long observation

- Stock prices
- Sensor data
- DNA sequence
- Documents
- Machine logs



Windowing

Many (short) observations

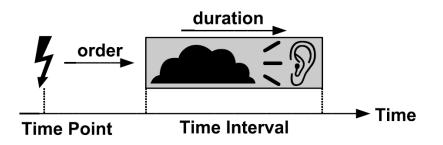
- Website click streams
- Shopping profiles
- Gene expressions
- Headlines
- Twitter
- Scenes in video
- Musical melodies
- Shapes

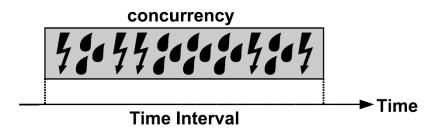
Temporal Concepts and Operators

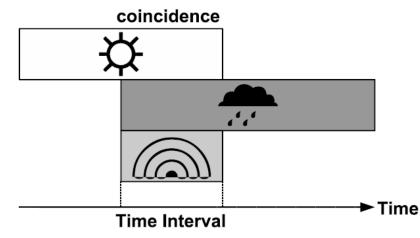
Temporal Concepts

SIEMENS

Semantic categories for temporal operators







- **Duration** is the persistence of an event over several time points.
- Order is the sequential occurrence of time points or time intervals.
- **Concurrency** is the closeness of two or more temporal events in time in no particular order.
- **Coincidence** describes the intersection of several intervals.
- **Synchronicity** is the synchronous occurrence of two temporal events.
- **Periodicity** is the repetition of the same event with a constant period.

Time point operators

Time point operators expressing strict order: before / after (→)

$$A \longrightarrow B$$

Time point operator expressing concurrency: close



Time point operator expressing synchronicity: equals

- Special cases
 - With constraints: shortly before, closely after
 - With specific granularity: next business day

SIEMENS

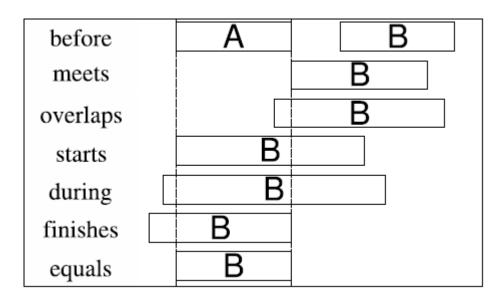
Time interval operators

Time interval operators

- Allen's interval relations [Allen 1983]
- Freksa's semi-interval relations [Freksa 1992]
- Reichs's interval and interval point relations [Reich 1994]
- Roddick's Midpoint interval relations [Roddick/Mooney 2005]
- Other operators [Villafane 1999], [Ultsch 1996], [Moerchen 2006]

SIEMENS

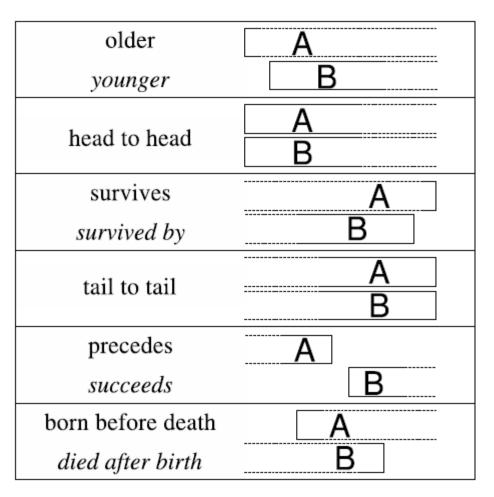
Allen's interval relations



- 13 relations forming an algebra.
- Any two intervals have exactly one of the relations.
- Invented in AI for temporal reasoning: given facts associated with time interval derive additional facts or answer specific questions.
- Later widely used in data mining.
- Disadvantages for knowledge discovery!
- Thresholds and fuzzy extensions solve some of the problems.

SIEMENS

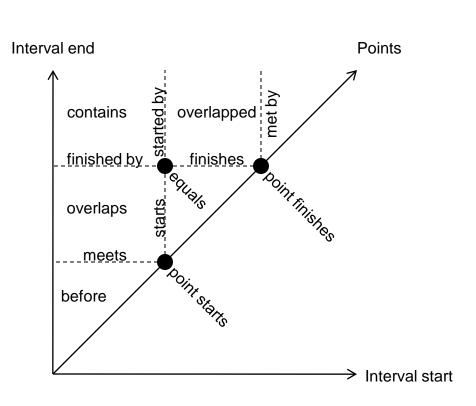
Freksa's semi-interval relations



- Semi-intervals: one interval boundary unknown.
- Two relations between start or endpoints of the two intervals suffice to uniquely identify the relation.
- Easier to represent incomplete or coarse knowledge.
- Not widely used in data mining (yet).
 - [Rainsford/Roddick 1999]
 - [Moerchen/Fradkin 2010]

SIEMENS

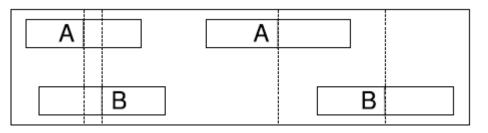
Reich's interval/point relations



- Extension of Allen's relation to points.
- Only 5 more relations while [Vilain 1982] had 13.
 - point finishes and inverse
 - point starts and inverse
 - point equals
- Also proposed relations for branching time to reason in multiple future worlds.
- Supported in principle by [Moerchen/Fradkin 2010]

SIEMENS

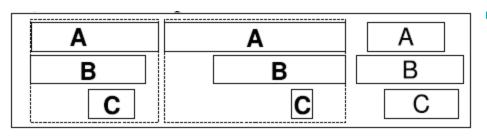
Roddick's mid-point interval relations



- Allen's relation extended by relation of each interval midpoints to the other interval.
- Two versions of overlaps shown: midpoints within other intervals (largely overlap) or not (overlap to some extend).
- 9 versions of overlaps
- Total of 49 relations!
- Designed to coarse data with arbitrary local order.
- Shares disadvantages with Allen's relations, in some respects even worse.

SIEMENS

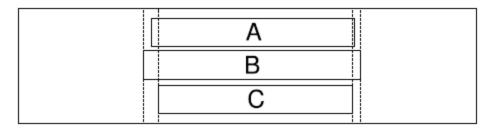
Other interval relations



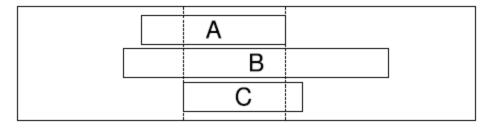
- A contains B contains C
 - Contains is equivalent to

(A equals B) or (B starts A) or (B during A) or (B ends A)

[Villafane 1999]



- A,B,C approximately equal
 - Allow slight variations.
 - N-ary operator
 - [Ultsch 1996]



- A,B,C coincide
 - Intersection of intervals
 - N-ary operator
 - [Moerchen 2006]

Temporal patterns Time point patterns

SIEMENS

Frequent and closed patterns

Frequent patterns

- Frequency = number of occurrences / size of database.
- Specify minimum frequency for patterns to be significant.
- Redundancy problem: Even if a sub-pattern has exactly same frequency as a super-pattern both are reported as frequent.

Closed frequent patterns

- Cannot make the pattern more specific without decreasing the support.
- Sequence example (adapted from [Wang/Han 2004])

Database
CAABC
ABCB
CABC
ABBCA
ВС

A B observed 4x
B C observed 5x
A B C also observed 4x
C A B C observed 2x
other extensions of A B C observed 1x

B C is closed
A B C is closed
A B is not

Copyright © Siemens AG 2011. All rights reserved.

SIEMENS

Substring patterns

Substring patterns

- Sequence of symbols without gaps
- Expresses concept of order
- Example: **B** → **C** → **B**

Regular expression patterns

- Extension to allow gaps (via wildcards), negations, repetitions, etc.
- Example: B → ¬C → A | B

SIEMENS

Substring pattern algorithms

Algorithms for substring patterns

 Special data structures are used to represent the data and derive frequent patterns efficiently.

Suffix trees

- Allowing wildcards [Vilo 2002]
- Reporting over/under represented patterns [Apostolico et al. 2000]

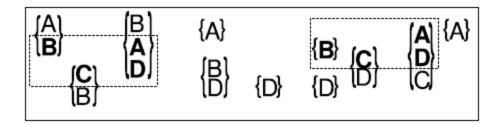
Suffix arrays

- Optimal time [Fischer et al. 2006]
- Space efficient [Fischer et al. 2007]
- Many applications in bioinformatics
 - Finding discriminative patterns
 - Sequence alignment

SIEMENS

Sequential patterns

- Sequential patterns [Agrawal/Srikant 1995]
 - Sequence of (sets of) symbols
 - Expresses concept of order
 - Example: {B} → {C} → {A,D}



- Observed sets of symbols at each time point can contain more symbols.
- Gaps are allowed.
- Motivated by example of repeated purchases by customers, i.e., database of many short sequences.

SIEMENS

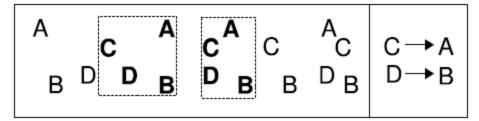
Sequential pattern algorithms

- Algorithms for sequential patterns
 - AprioriAll [Agrawal/Srikant 1995],
 - SPADE [Zaki 1998]
 - PrefixSpan [Pei et al. 2001]
- Algorithms for closed sequential patterns
 - CloSpan [Yan et al. 2003]
 - BIDE (BIDirectional Extension checking) [Wang/Han 2004]
 - BIDEMargin [Fradkin/Moerchen 2010]
 - enforces margin of support difference among reported patterns
- Variations
 - Regular expressions [Garofalakis et al. 1999]
 - Multivariate data [Pinto et al. 2001]
 - Allow mismatches [Kum et al. 2003][Zhu et al. 2007]
 - Generators [Lo et al. 2008]

SIEMENS

Episode patterns

- Episode patterns [Mannila et al. 1995, 1996, 1997]
 - Constrained partial order of (sets of) symbols.
 - Expresses concepts of order and concurrency.
 - Example: C → A and D → B within a time window



- Serial episodes: Order relation between symbols (or episodes).
- Parallel episodes: Symbols or episodes observed within time window.
- Episodes: in principle arbitrary partial order of symbols, but often combination of serial and parallel episodes.
- Motivated by patterns in long message stream from telecommunication equipment.

SIEMENS

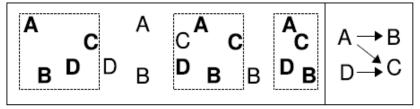
Episode pattern algorithms

- Apriori-style algorithms for episodes.
 - Given maximum window length
 - WINEPI: percentage of windows with the pattern [Mannila et al. 1995]
 - MINEPI: windows that do not contain sub-windows with the pattern [Mannila/Toivonen 1996]
 - Given maximum gap [Meger/Rigotti 2004]
- Algorithms for closed (groups of) episodes [Harms et al. 2001]
- Determining significance beyond the concept of frequency.
 - Significance of episodes against Bernoulli and Markov background models [Gwadera et al. 2005]
 - Formal relation of Episodes with HMM [Laxman et al. 2005]

SIEMENS

Partial order patterns

- Partial order patterns [Casas-Garriga 2005]
 - Partial order of (sets of) symbols.
 - Expresses concepts of order and concurrency.
 - Example: A → B and A → C and D → C



- Order between some symbols (A and D) is unspecified (hence partial).
- Not equivalent to serial-parallel episodes! [Pei et al. 2006]
 - Example above cannot be expressed as combination of parallel and serial episodes.
 - Definition of [Mannila et al. 1995] captures this but algorithms focus on serial/parallel episodes and many other authors have done the same (or even only deal with serial episodes).

Closed partial order pattern algorithms

- Three step algorithm [Casas-Garriga 2005] [Moerchen 2006]
 - Mine closed sequential patterns.
 - Mine maximal conjunctive groups of non-redundant sequential patterns that are observed in the same windows. [Casas-Garriga 2005]
 - [Moerchen 2006]
 - Interpret sequential patterns as items and windows as itemsets.
 - Mine closed itemsets = maximal groups.
 - Remove redundant sequential patterns in each group
 - Convert each group to partial order [Casas-Garriga 2005]
 - Every sequential patterns is a path in the directed graph.

SIEMENS

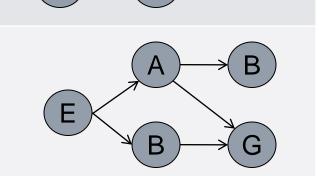
Closed partial order example

4 0		2. Closed seq. patterns		S1	S2	S 3
	quences	{E}{A}	3x	X	X	X
S1	{D}{E}{A}	{E}{A}{B}	2x		X	X
S2	{E}{ABF}{G}{BDE}	{E}{A}{G}	2x		X	Χ
S3	{E}{A}{B}{G}	{E}{B}{G}	2x		X	X
					71	, (

3. Closed item (=seq. pattern) sets

{E}{A} 3x {E}{A}{B}, {E}{A}{G}, {E}{B}{G} 2x

4. Closed partial orders

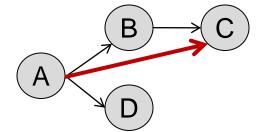


Copyright © Siemens AG 2011. All rights reserved.

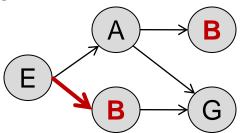
SIEMENS

Closed partial order pattern algorithms

- Efficient algorithm for closed partial orders [Pei et al. 2006]
 - Interpret edges in partial order as items.
 - TranClose: mine closed item (=edge) sets of transitive closure
 - ABC has edges A → B, A → C, B → C
 - Reduce resulting patterns



- Frecpo: PrefixSpan-like algorithms with pruning
 - Directly generates transitive reduction.
 - Forbidden edges: not $A \rightarrow C$ if already $A \rightarrow B$ and $B \rightarrow C$.
- Both do not allow for repeating symbols in patterns.
 - E → B is forbidden but it's not the 'same' B



SIEMENS

Conjunctive sequential patterns

- Mining conjunctive groups of sequential patterns [Raïssi et al. 2008].
- Closed sequential pattern mining algorithms use equivalence classes based on prefix.
- Non-derivable does not work for single sequential patterns and these classes.
 - Lower bound is always 0
- In contrast conjunctive groups of sequential patterns form equivalence classes.
 - see also [Casas-Garriga 2005], [Harms et al. 2001]
- Conjunctive groups can be used just similar to itemsets.
 - Mine closed groups of sequential patterns [Moerchen 2006]
 - Non-derivable groups of sequential patterns [Raïssi et al. 2008]
 - Generate sequential association rules [Raïssi et al. 2008]
 - Mine generators for groups of sequential patterns.

SIEMENS

Sequential patterns vs. Episodes vs. Partial Orders

Supports	Sequential Patterns	Episodes parallel	serial	serial/ parallel	Partial Orders	
Itemsets	✓	✓ Unordered set of symbols	Typically not discussed	Typically not discussed	√ Often straightforward extension	
Full partial order	*	*	*	Typically not discussed	✓	
Closedness	✓ Easy - CloSpan	✓ Easy - Closed itemsets	✓ Easy - Equivalent to seq. patterns	Requires looking at groups of episodes	Requires looking at groups of seq. pat.	
Condensed representation	✓ several	✓	✓	*	✓ Margin-closed	

SIEMENS

Summary

- Use substrings if no gaps required.
- Use closed sequential patterns if gaps are and strict ordering are required.
- Partial orders are the most flexible representation but also more complex to mine.

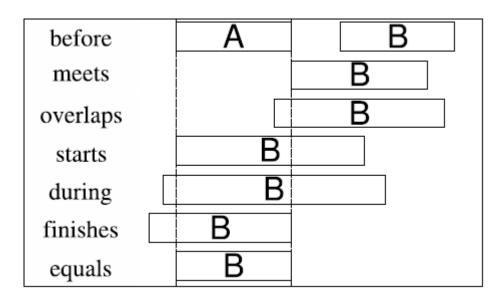
gaps required.		Multivariate symbolic time series		duration	order	concurrency	synchronicity	partial order
al patterns if gaps are e required.	Univariate symbolic time series		Symbolic time sequence					
most flexible so more complex to								
Substrings	√				√			
Sequential Patterns	√	√	√		√		√	
Episodes	√	✓	✓		1	1		✓
Partial orders	√	√	√		\	/	√	√

Temporal patterns Time interval patterns

Temporal Operators

SIEMENS

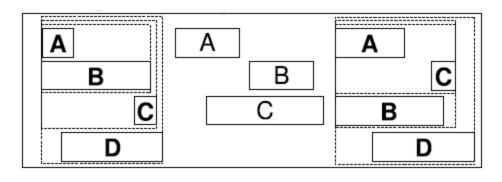
Allen's interval relations



- 13 relations forming an algebra.
- Any two intervals have exactly one of the relations.
- Invented in AI for temporal reasoning: given facts associated with time interval derive additional facts or answer specific questions.
- Later widely used in data mining.
- Disadvantages for knowledge discovery!
- Thresholds and fuzzy extensions solve some of the problems.

SIEMENS

Patterns using Allen's relations



A1 patterns [Kam/Fu 2000]

- Combine two intervals with relation from Allen.
- Combine resulting pattern with another single interval.
- Ambiguous representation [Moerchen 2006]:

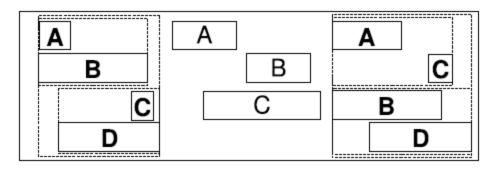
(((A starts B) overlaps C) overlaps D)

or

(((A before C) started by B) overlaps D)

SIEMENS

Patterns using Allen's relations



Fluents [Cohen 2001]

- Combine two intervals with relation from Allen.
- Combine two patterns.
- Ambiguous representation [Moerchen 2006]:

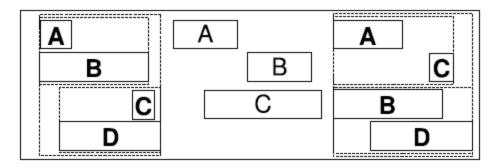
(A starts B) overlaps (C during D)

or

(A before C) starts (B overlaps D).

SIEMENS

Patterns using Allen's relations



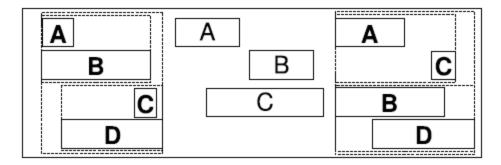
	А	В	С	D
Α	Equals	Starts	before	overlaps
В	Started by	Equals	overlaps	overlaps
С	after	Overlapped by	Equals	during
D	Overlapped by	Overlapped by	contains	Equals

[Hoeppner 2001]

- Set of intervals with pairwise relations of Allen.
- K(K-1)/2 relations for K intervals.
- Not ambiguous but difficult to write out as rule [Moerchen 2006].
- Transitivity of Allen's relations can be used to derive some relations from others.

SIEMENS

Patterns using Allen's relations



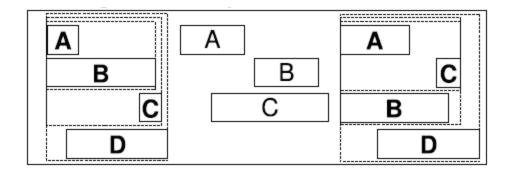
$$A^{+}=B^{+}>D^{+}>A^{-}>C^{+}>B^{-}>C^{-}>D^{-}$$

Sequence of interval boundaries [Wu/Chen 2007]

- Represent each interval with start and end points (A+ vs. A-).
- Pattern with K intervals represented by sequence of 2K boundaries.
- Not ambiguous and equivalent to Hoeppner, but more compact:

SIEMENS

Patterns using Allen's relations

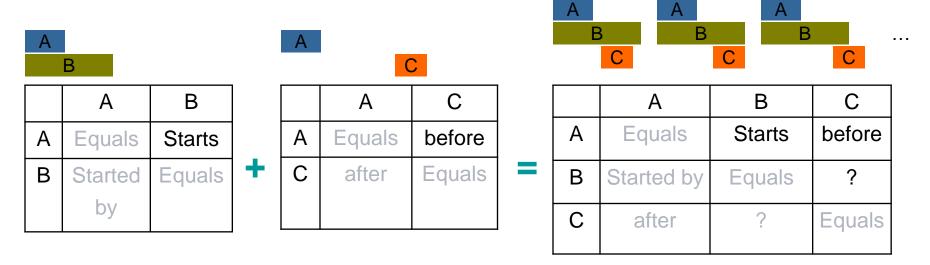


Nested representation with counters [Patel et al 2008]

- Fix ambiguity of nested representation by adding counters for 5 relations
- K+5(K-1)
- Not as compact as Wu/Chen and not very readable.

Allen's relations pattern mining algorithms

- Apriori-style [Hoeppner 2001]
 - Combine two length k patterns with common k-1 prefix.
 - Use transitivity of Allen's relations to prune some candidates for the relations of the two kth intervals.



- B {contains, ended by, overlaps, meets, before} C
- Pruned relations: {after, met by, overlapped by, started by}

Allen's relations pattern mining algorithms

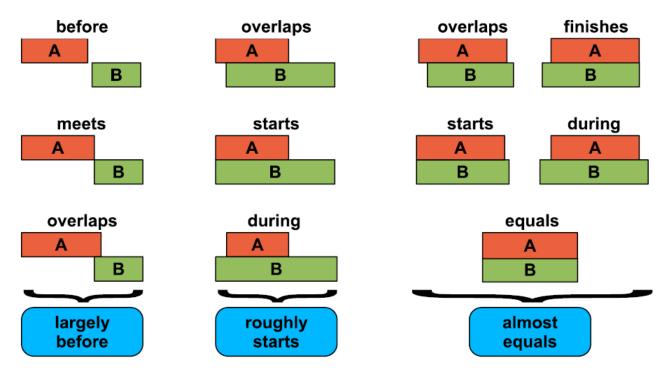
- Early work using only Apriori-style algorithms. Recently more efficient algorithms have been proposed:
 - H-DFS (Hybrid Depth First Search) [Papaterou et al. 2005]
 - Enumeration tree
 - ARMADA [Winarko/Roddick 2006]
 - Adaptation of sequential pattern mining algorithm to intervals.
 - TPrefixSpan [Wu/Chen 2007]
 - PrefixSpan using interval boundaries pruning patterns that are not valid interval patterns.
 - IEMiner [Patel et al 2008] (compares to TPrefixSpan and H-DFS)
 - Apriori using nested representation with counters and pruning.
 - KarmaLego [Moskovitch/Shahar 2009] (compares to Armada and H-DFS)
 - Enumeration tree exploiting transitivity.

Excursus: What's wrong with Allen?

Excursus

Disadvantages of Allen's relation

Allen is not robust

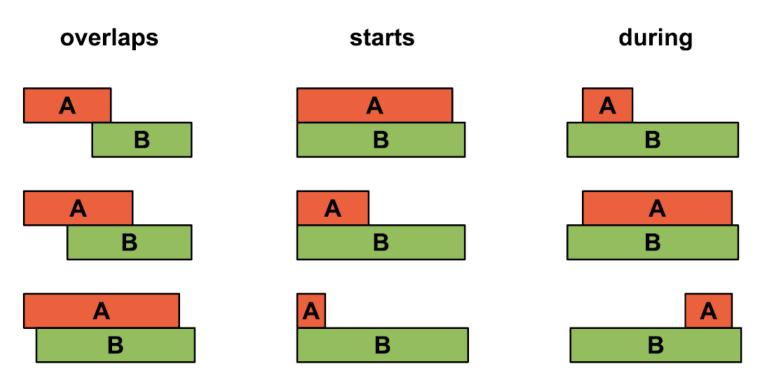


Small changes can result in different relations that intuitively describe the same pattern.

Excursus

Disadvantages of Allen's relation

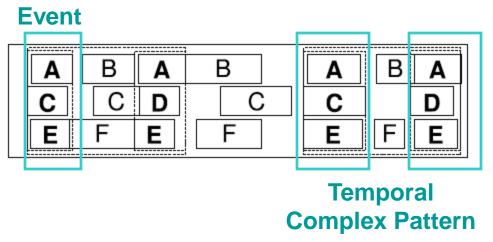
Allen is ambiguous



The same relation describes intuitively different patterns.

SIEMENS

Unification-based Temporal Grammar

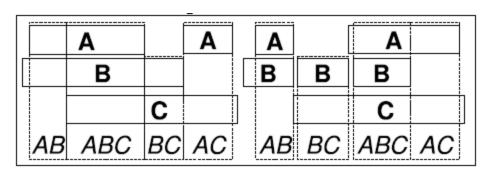


Unification-based Temporal Grammar (UTG) [Ultsch 1996]

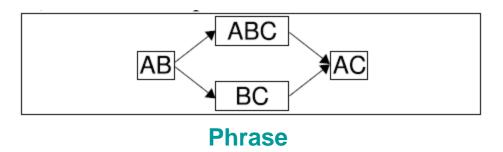
- Events: several intervals occur more or less simultaneous.
- Temporal Complex Patterns: sequence of Events.
- Annotations for duration of intervals and gaps.
- Detection of patterns can be formulated Prolog (hence unification-based)

SIEMENS

Time Series Knowledge Representation



Chords



Time Series Knowledge Representation (TSKR)

[Moerchen 2006]

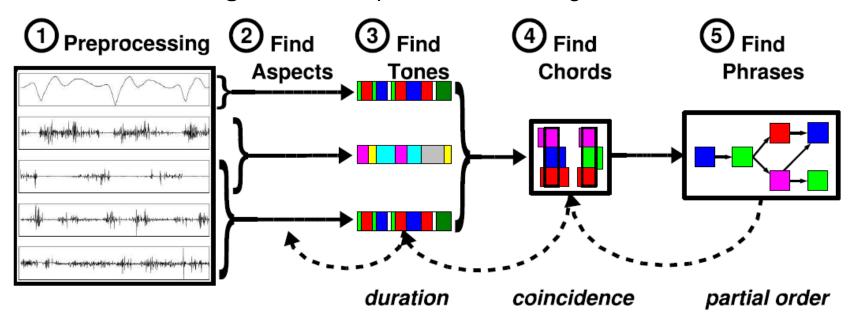
- Extension of UTG
- Tones represent duration with intervals.
- Chords represent coincidence of Tones.
- Phrases represent partial order of Chords
- Compact, unambiguous representation with details on demand.
- Robust against noise in the interval boundaries.

Copyright © Siemens AG 2011. All rights reserved.

SIEMENS

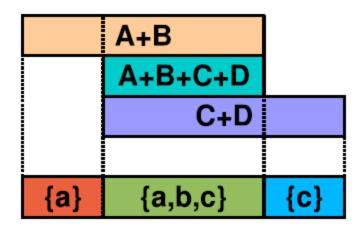
TSKR mining algorithms

- Time Series Knowledge Mining [Moerchen 2006]
 - Methodology for mining from multivariate time series.
 - Tone mining: discretization, segmentation, clustering.
 - Chord mining: variation of itemset mining.
 - Phrase mining: variation of partial order mining.



SIEMENS

Phrase mining algorithm

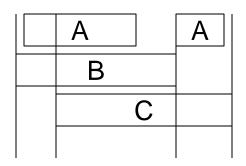


Phrase mining

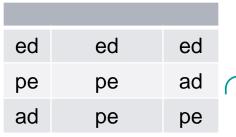
- Transform Chords to itemset sequence: set of Chords observed over time interval.
- Mine sequential patterns with additional constraints: Only one Chord can be picked per time interval.
- Mine closed groups of sequential patterns.
- Convert to partial order.

SIEMENS

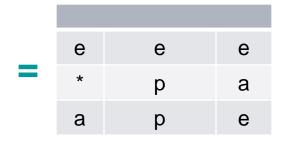
Templates for (partial) presence/absence



Α	A	•
	В	
	С	



ре	ed	pe
ad	pe	ad
ad	pe	ed

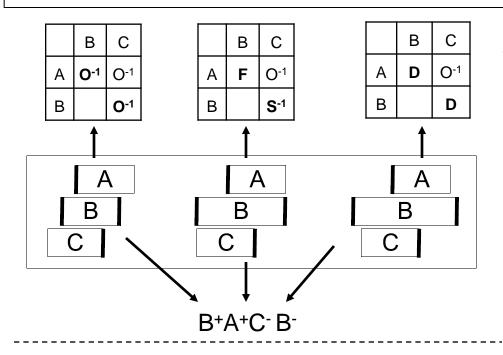


Templates [Peter/Hoeppner 2010]

- Segment time axis
- 5 Interval predicates
 - present (∀)
 - absent (∀¬)
 - unconstrained (*)
 - exists (∃)
 - disappears (∃¬)
- Algorithm to search classification rules (not frequent patterns)
- Picks time segments and captures constraints on duration

SIEMENS

Semi-interval Partial Order (SIPO) patterns



A+B+C-B-A+C-B+B-C-A+B+B-

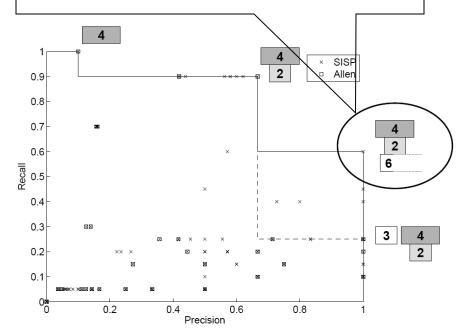
Semi-Interval Partial Order (SIPO) [Moerchen/Fradkin 2010]

- Sequential pattern of interval boundaries without constraints.
 - Superset of full interval (Allen) patterns.
 - Matches more similar situations in the data.
 - Partial order patterns of interval boundaries.
 - Even less constraints.
 - Even more matches.
- Can be applied to mixed time point / time interval data!

SIEMENS

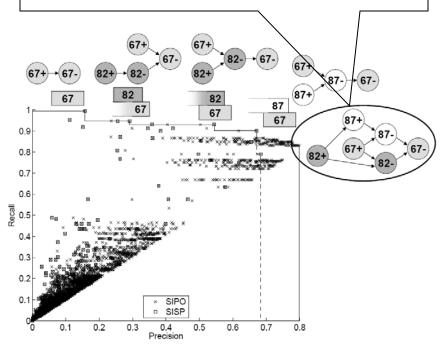
Semi-interval patterns for classification

Semi interval sequential pattern (SISP) with better precision/recall than any full interval pattern.



'Name' class in Australian Sign language dataset.

Semi interval partial order (SIPO) pattern with better precision/recall than any SISP or full interval pattern.



'I' class in American Sign language dataset.

SIEMENS

coin

Summary

- Use Allen only if exact interval boundaries matter and Allen semantics are required.
- SIPO: superset of Allen patterns allowing for missing boundaries (Freksa) and partial order.
- TSKR and Templates: alternative approaches that match partial intervals.

Allen

UTG

TSKR

Templates

SIPO

					series
					e symbolic
٧	٧	٧	٧	٧	time series
					variate
٧	٧	٧	٧	٧	uence
					olic time
1	1	1	1	1	ation
√	√	√	√	1	der
✓	√	√		1	idence
√		√	√	1	ronicity
1		1			al order

Symbolic Univariat

Copyright © Siemens AG 2011. All rights reserved.

Temporal pattern mining

in symbolic time point and time interval data

Summary

- Introduced data models, patterns, and algorithms for point and interval data.
- Online version: additional material on preprocessing to convert other data into symbolic temporal data and applications using temporal patterns for data mining.

Research opportunities

- Algorithms: efficiency, error tolerant patterns, data streams,...
- Interestingness: pattern significance, expert knowledge, ...
- Classification: directly mine patterns predict events (early).
- Anomaly detection: learn to distinguish normal from abnormal behavior for symbolic temporal data based on patterns.
- Applications in medicine, finance, maintenance, meteorology, ...

Temporal pattern mining in symbolic time point and time interval data

Thank you!

Please send any feedback to fabian.moerchen@siemens.com

www.siemens.com

www.usa.siemens.com/en/about_us/research/home.htm

More material:

www.timeseriesknowledgemining.org (bibliography, slides, etc.)

Fabian Moerchen: **Unsupervised pattern mining from symbolic temporal data**, SIGKDD Explorations 9(1), ACM, pp. 41-55, 2007