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Examining the Relative Influence of Familial, Genetic and Covariate
Information in Flexible Risk Models.

Smoothing Spline ANOVA (SS-ANOVA) models are a well known
approach to penalized likelihood regression given heterogenous attribute
variables, with the ability to model their various interactions. In many
circumstances, one may observe attributes, along with some relationships
between objects in the training set. We describe a new approach to in-
corporating relationship or (dis)similarity information in an SS-ANOVA
model. For the objects under study, we have attributes along with re-
lationship information between (some) pairs of objects in the study. As
an example we consider a demographic study with the response a par-
ticular disease that is known to run in families. The data includes envi-
ronmental/clinical observations, genetic data and pedigree information
in a study where a large fraction of the population have relatives in the
study. One issue is to evaluate the relative influence of the three distinct
sources of information.
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The Log Likelihood for Bernoulli responses

• Given: yi, x(i), i = 1, 2, · · · , n

y ∈ {0, 1}, x = (x1, x2, · · · , xd)

• Estimate: p(x) = Prob(y = 1|x)

• The log odds ratio (logit): f(x) = log p(x)
1−p(x)

• The negative log likelihood:

L(y, f) =
n∑

i=1

−yif(x(i)) + log(1 + ef(x(i)))

• Recover p(x) = ef(x)/(1 + ef (x)).
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Penalized Log Likelihood Estimate

The penalized log likelihood estimate of f is obtained by finding f

in some prescribed function space to minimize

I(f) = L(y, f) + λJ(f)

where J(f) is a penalty functional on f and λ is a tuning
parameter which balances fit to the data and complexity/wiggliness
of f . We will fit f in a function space which admits a useful
ANOVA decomposition-a Reproducing Kernel Hilbert Space
(RKHS), using a Smoothing Spline ANOVA model.
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Reproducing Kernel Hilbert Spaces (RKHS)

• f will be in an RKHS (the mother of all kernels!).

• What is an RKHS?

• Let K(s, t) be a positive definite function on T ⊗ T . This
means for any t1, · · · , tk,

∑k
r,s=1 K(tr, ts) ≥ 0.

• Moore-Aronszajn Theorem: To every positive definite function
K(·, ·) there corresponds a unique RKHS and vice versa.
K(·, t∗) ∈ HK and

∑
r crK(·, tr) ∈ HK and limits ∈ HK .

• f ∈ HK ⇒< f(·),K(·, t∗) >= f(t∗)

• ‖
∑

crK(·, tr)‖2
HK

=
∑

rs crcsK(tr, ts)
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ANOVA Decomposition of Functions of Several Variables

x ≡ (x1, · · · , xd) ∈ X ≡ X (1) ⊗ · · · ⊗ X (d)

f(x) = f(x1, · · · , xd).

Let dµα be a probability measure on X (α) and define the averaging
operator Eα on X by

(Eαf)(x) =
∫
X (α)

f(x1, · · · , xd)dµα(xα).
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ANOVA Decomposition of Functions of Several Variables (continued)

The averaging operators Eα give a (unique) ANOVA decomposition
of f :

f(x1, · · · , xd) = µ +
∑
α

fα(xα) +
∑
αβ

fαβ(xα, xβ) + · · ·

where

µ =
∏
α

Eαf =
∫
· · ·

∫
f(x1, · · · , xd)dµ1(x1) · · · dµd(xd)

fα = (I − Eα)
∏
β 6=α

Eβf

fαβ = (I − Eα)(I − Eβ)
∏

γ 6=α,β

Eγf

...
... Eαfα = 0, EαEβfαβ = 0, etc.
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ANOVA Decomposition of Functions of Several Variables (continued)

f(x) = µ +
d∑

α=1

fα(xα) +
∑
α≤β

fαβ(xα, xβ) + · · ·

• The series is truncated at some point.

• Terms satisfy ANOVA-like side conditions (identifiable).

• SS-ANOVA representation with weights on kernels :

f(·) =
m∑

j=1

djφj(·) +
n∑

j=1

cjKθ(·, x(j))

where the φj are all unpenalized components + possibly more:

Kθ(·, ·) =
d∑

α=1

θαKα(·, ·) +
∑
α≤β

θαβKαβ(·, ·) + · · ·

• Kernels depend only on components of x in the subscripts.
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Since ‖f‖2
HθK

= θ−1‖f‖2
HK

The SS-ANOVA penalty functional has
the form:

J(f) =
n∑

i,j=1

cicj

 d∑
α=1

θ−1
α Kα(x(i), x(j)) +

∑
α≤β

θ−1
αβKαβ(x(i), x(j)) + · · ·


The θs are tuning parameters along with λ and with an
identifiability constraint. For each trial set of tuning parameters,
the ci are to be fitted. Calling the fitted result fλθ, the fitted fλθ

are evaluated for the best set of tuning parameters via a tuning
criteria. A popular criteria for tuning SS-ANOVA models with
RKHS squared norm penalties and Bernoulli data is GACV.
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Figure 1: Grace Wahba,
Spline Models for Observa-
tional Data (1990)

Figure 2: Chong Gu,
Smoothing Spline ANOVA
Models (2002)

X. Lin et. al. Smoothing spline ANOVA models for large data sets
with Bernoulli observations and the randomized GACV. Ann.
Statist, 28:1570–1600, 2000.

10 April 27, 2010



SS-ANOVA Model in the Beaver Dam Eye Study

• The Beaver Dam Eye Study (BDES) is an ongoing
population-based study of age related ocular disorders, begun
in 1988.

• An SS-ANOVA model for association of a number of
environmental/clinical (E/C) variables based on 2585 women
with complete E/C data appears in Lin, Wahba, et al Ann.
Statist 28 (2000).

• 684 women have at least one relative also in the study.
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• The predictor variables of present interest are:

code units description

horm yes/no current usage of hormone replacement therapy

hist yes/no history of heavy drinking

bmi kg/m2 body mass index

age years age at baseline

sysbp mmmHg systolic blood pressure

chol mg/dL serum cholesterol

smoke yes/no history of smoking

Table 1: E/C covariates for BDES pigmentary abnormalities SS-
ANOVA model
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• The fitted E/C model that we are using in the present study is

f(t) = µ + f1(sys) + f2(chol) + f12(sys, chol)

+ dage · age + dbmi · bmi

+ dhorm · I1(horm) + ddrin · I2(drin) + dsmoke · I3(smoke)

• This is the same model that was fitted in Ann. Statist. 2000
with the exception that smoke was not included there.

• f1, f2 and f12 are splines.

13 April 27, 2010



BERNOULLI OBSERVATIONS AND THE ranGACV 1595
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Fig. 9. Estimated probability of pigmentary abnormality as a function of cholesterol by three
levels of bmi and age and four levels of sys, horm=no, drin=no.

Estimated probability from an SS- ANOVA logistic regression
model. Each x-axis is cholesterol, each set of four lines is four values
of systolic blood pressure, each plot fixes body mass index and age
to the shown values. hist = 0, horm = 0. From Ann. Stat. 2000.
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Modeling E/C, genetic and pedigree data in an extended SS-ANOVA

model

f(t) = µ + dSNP1,1 · I(X1 = 12) + dSNP1,2 · I(X1 = 22)

+ dSNP2,1 · I(X2 = 12)dSNP2,2 · I(X2 = 22)

+ f1(sysbp) + f2(chol) + f12(sysbp, chol)

+ dage · age + dbmi · bmi

+ dhorm · I1(horm) + ddrin · I2(drin) + dsmoke · I3(smoke)

+ fped(z(t)).

• First two lines: Genetic (SNP) data. Two SNPS each with
three levels, (1,1), (1,2), (2,2). (Usual methodology)

• Next three lines E/C variables

• Last line: Pedigree/relationship data goes here. Will explain.
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A Pedigree from BDES
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Example pedigree from the Beaver Dam Eye Study. Red nodes-with
pigmentary abnormalities, blue nodes-without pigmentary
abnormalities. Circles are females, rectangles are males.

16 April 27, 2010



A Relationship (Sub)Graph From the Pedigree
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Relationship graph for subjects in the pedigree. Edge labels are
distances defined by the kinship coefficient. Persons 26 and 35 are
siblings [1], persons 8 and 10 are aunt and niece [2] and persons 26
and 40 are cousins [3]. Unrelated pairs have dashed lines.
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Relationship Data Encoded with RKE

• To include relationship/pedigree data into an SS-ANOVA
model, we encode it with the Regularized Kernel Estimation
algorithm (RKE). (Lu et al, PNAS 2005)

• Given n objects and pairwise dissimilarity measures dij

between a sufficient number of the
(
n
2

)
pairs, the RKE encodes

this information in an n× n positive definite matrix Rdist(i, j)
defined on the n objects. The dij will be obtained from
relationship coefficients (will be numbers 1, 2, 3, 4, or 5), by a
biologically motivated transformation. (dij = −2log2(2φij))
where φ is Malecot’s kinship coefficient).
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Relationship Data Encoded With RKE (continued)

The distance encoding matrix Rdist is obtained by solving the
convex cone optimization problem:

min
R�0

∑
(i,j)∈Ω

|dij −Bij(R)|+ λRKEtrace(R) (1)

where R � 0 means R is in the convex cone of all real non-negative
definite matrices of dimension n, Ω is all or a (sufficiently rich)
subset of the

(
n
2

)
pairs of indices, and

Bij(R) ≡ R(i, i) + R(j, j)− 2R(i, j) ≡ d̂ij , the natural squared
distance induced by R. Small eigenvalues in the fitted Rdist are
deleted. Rdist(i, j) gives a (unique up to rotation) embedding z(i)
of the ith subject. This (implicitly) goes into fped(z(i)) in the
extended SS-ANOVA model.
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Embedding of Pedigree by RKE
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z(i) for the five persons in the relationship graph. The x-axis of
this plot is order of magnitudes larger than the other two axes. The
unrelated edges in the relationship graph occur along this
dimension, while the other two dimensions encode the relationship
distance.
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Relationship Data Encoded With RKE (continued)

The RKE embedding is unique up to rotation, but only the
distances d̂ij are relevant. These distances can be used with any
RK that only depends on ‖z(i)− z(j)‖, that is,
Kped(z(i), z(j)) = k(‖z(i)− z(j)‖. These kernels are known as
Radial Basis Functions (RBFs). A Matern RBF is used in the
present work. The Matern family of RBF’s is a two-parameter
family, and the parameters are to be chosen. Letting t stand for
person i, then fped(z(i)) in the extended SS-ANOVA model will be
of the form of a liniear combination of Kped(·, z(j)), j = 1, 2, · · · , n.

Note that unlike the rest of the SS-ANOVA model, fped(z(i)) is
only defined for persons in pedigrees.
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Qualitative Results

An important goal of the study is to explore the relative
contribution of each source of data. Since there three sources of
information: (S=SNPS, P=Pedigrees,C= Environmental/Clinical)
there are seven models we can consider:

• S = SNPS (genetic data) only

• C = Environmental/Clinical (E/C) data only

• S + C

• P = Pedigrees only

• S + P

• C + P

• S + C + P

Compare models by evaluating the AUC (Area Under the Curve).
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Comparing Models by Their Area Under the (ROC) Curve (AUC)

ROC curves for models with two or all three data sources
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Each person in a test set is classified by thresholding their value of
p(x). As the threshold goes from 0 to 1, plot “True positive rate”
against “False positive rate”. Dashed line-random classification.
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Results

S−only C−only S+C P−only S+P C+P S+C+P

Mean AUC for each model
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Figure 9: AUC comparison of models. S-only is a model with only genetic markers, C-only is a model with only environ-
mental covariates and S+C is a model containing both data sources. P-only is a model with only pedigree data, P+S is
a model with both pedigree data and genetic marker data, P+C is a model with both pedigree data and environmental
covariates, P+S+C is a model with all three data sources. Error bars are one standard deviation from the mean. Yellow
bars indicate models containing pedigree data. For models containing pedigrees, the best AUC score for each model is
plotted. All AUC scores are given in Table 2.

ROC curves for models with two data sources
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Figure 10: ROC curves for models with two data sources. Although all three models have comparative AUC (shown in
parenthesis in the legend), the relationship between the curves varies across ROC space. The S+C model dominates the
low false positive rate portion of space, while models including pedigree data dominate in the high true positive rate
portion.

10 H. Corrada Bravo et al.

The mean AUC for each of the seven models is given in the plot
above, in order: Red: S-only, C-only and S+C. Pedigrees are added
in yellow: P-only, S+P, C+P and S+C+P.
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Summary and Conclusions

We have described the log likelihood for Bernoulli responses,
Reproducing Kernel Hilbert Spaces, and Smoothing Spline ANOVA
models. We discussed how Smoothing Spline ANOVA models were
originally applied to data from the Beaver Dam Eye Study - to
examine association of clinical/environmental variables with
pigmentary abnormalities. Pigmentary abnormalities are a
precursor to Age Related Maculopathy, which is known to run in
families. We described some of the the pedigree data from the Eye
Study, and we developed a new method for incorporating this
information into a Smoothing Spline ANOVA model, using
Regularized Kernel Estimation. We can see the relative importance
of clinical/environmental variables, certain genetic information, and
pedigree information in modeling risk of pigmentary abnormalities.
The approach has promise for many other applications where
relationship or (dis)similarity information is available.
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Related and Further Work:

Enhancements of the existing model

1. Include interactions between Environmental/Clinical variables
and genetic markers (and pedigrees?).

2. “Tune” the dissimilarity information, that is, instead of
1,2,3,4,5 as dissimilarity levels in the pedigree data, use a
“tuned” monotone function of them. For example for
subjective data, one might ask an evaluator to assign labels of
one of “very close”, “close” “distant”, “very distant” and it is
desired to assign numerical values, e. g.
1, 1 + δ1, 1 + δ1 + δ2, 1 + δ1 + δ2 + δ3 where the δs are three
positive values to be chosen according to some prediction
criteria
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Combine variable selection with dissimilarity data

1. Methods for dealing with a very large number of candidate
SNP or other genetic marker patterns. See W. Shi, G. Wahba,
S. Wright, K. Lee, B. Klein, and R. Klein. LASSO
Patternsearch algorithm with applications to ophthalmology
and genomic data. (LPS method). Statistics and Its Interface,
1:137–153, 2008. f(·) =

∑p
r=1 erBr(·), where Br(·) is the ith

pattern (groups) of SNPs, which typically have three values.
J(f) =

∑p
r=1 |er| = JLPS(f)

2. Efficient software for p extremely large, from Steve Wright:
http://www.cs.wisc.edu/~swright/LPS

3. Combine LASSO Patternsearch with SS-SANOVA - continued
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Combine variable selection with dissimilarity data continued

4. Now can set

f(·) =
m∑

j=1

djφj(·) +
n∑

j=1

cjKθ(·, x(j)) +
p∑

r=1

erBr(·)

and with penalty λLPSJLPS + λSS−ANOV AJSS−ANOV A.

5. Best prediction is not the same as best variable selection (Leng,
Lin and Wahba, A note on the LASSO and related procedures
in model selection, Statistica Sinica, 16 (4) 1273-1284 (2006),
perhaps because it costs more to leave out an important
variable then to include an unimportant one. What is the right
tradeoff between prediction (SS-ANOVA) and
sparsity(LASSO-Patternsearch) λs?.
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Combine variable selection with dissimilarity datacontinued

In multiple correlated Bernoulli responses-

6. Extend F. Gao, G. Wahba, R. Klein and B. Klein, Smoothing
spline ANOVA for multivariate Bernoulli observations, with
applications to ophthalmology data, with discussion. J. Amer.
Statist. Assoc., 96:127–160, 2001.

What is the appropriate choice of distance/dissimilarity in any
project-very important.
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Noisy covariates, errors in variables, missing data

7. Missing Data: X. Ma, B. Dai, R. Klein, B. Klein K. Lee and G.
Wahba, Penalized Likelihood Regression in Reproducing
Kernel Hilbert Spaces with Randomized Covariate Data,
UWisconsin Statistics Department TR1158, April, 2010.
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