

A Geometric Perspective on Machine Learning

Partha Niyogi

The University of Chicago

Thanks: M. Belkin, A. Caponnetto, X. He, I. Matveeva, H. Narayanan, V. Sindhwani, S. Smale,
S. Weinberger

High Dimensional Data

When can we avoid the curse of dimensionality?

- Smoothness

rate $\approx (1/n)^{\frac{s}{d}}$

splines, kernel methods, L_2 regularization...

- Sparsity

wavelets, L_1 regularization, LASSO, compressed sensing..

- Geometry

graphs, simplicial complexes, laplacians, diffusions

Geometry and Data: The Central Dogma

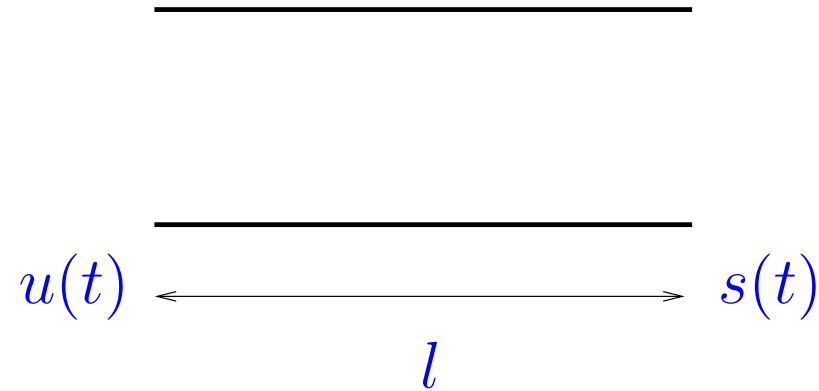
- Distribution of **natural data** is non-uniform and concentrates around low-dimensional structures.
- The shape (**geometry**) of the distribution can be exploited for efficient learning.

Manifold Learning

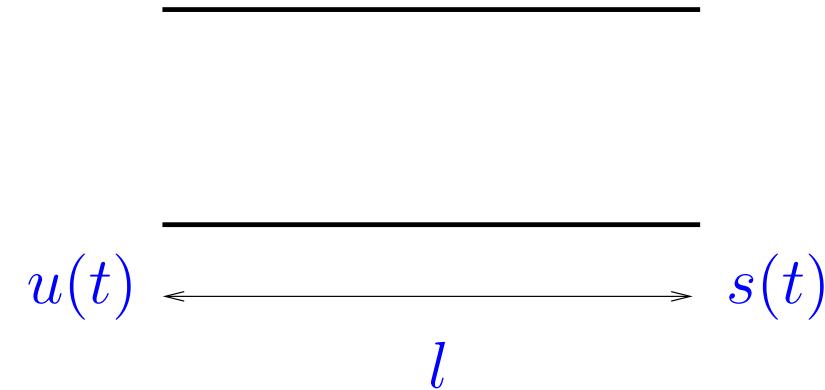
Learning when data $\sim \mathcal{M} \subset \mathbb{R}^N$

- Clustering: $\mathcal{M} \rightarrow \{1, \dots, k\}$
connected components, min cut
- Classification: $\mathcal{M} \rightarrow \{-1, +1\}$
 P on $\mathcal{M} \times \{-1, +1\}$
- Dimensionality Reduction: $f: \mathcal{M} \rightarrow \mathbb{R}^n \quad n \ll N$
- \mathcal{M} unknown: what can you learn about \mathcal{M} from data?
e.g. dimensionality, connected components
holes, handles, homology
curvature, geodesics

An Acoustic Example



An Acoustic Example



One Dimensional Air Flow

$$(i) \frac{\partial V}{\partial x} = -\frac{A}{\rho c^2} \frac{\partial P}{\partial t}$$

$$(ii) \frac{\partial P}{\partial x} = -\frac{\rho}{A} \frac{\partial V}{\partial t}$$

$V(x, t)$ = volume velocity

$P(x, t)$ = pressure

Solutions



$$u(t) = \sum_{n=1}^{\infty} \alpha_n \sin(n\omega_0 t) \in l_2$$

$$s(t) = \sum_{n=1}^{\infty} \beta_n \sin(n\omega_0 t) \in l_2$$

Formal Justification

- **Speech**

speech $\in l_2$ generated by vocal tract

Jansen and Niyogi (2005)

- **Vision**

group actions on object leading to different images

Donoho and Grimes (2004)

- **Robotics**

configuration spaces in joint movements

- **Graphics**

Manifold + Noise may be generic model in high dimensions.

Take Home Message

- **Geometrically** motivated approach to learning
nonlinear, nonparametric, high dimensions
- Emphasize the role of the **Laplacian** and **Heat Kernel**
 - Semi-supervised regression and classification
 - Clustering and Homology
 - Randomized Algorithms and Numerical Analysis

Pattern Recognition

P on $X \times Y$

$$X = \mathbb{R}^N; Y = \{0, 1\}, \mathbb{R}$$

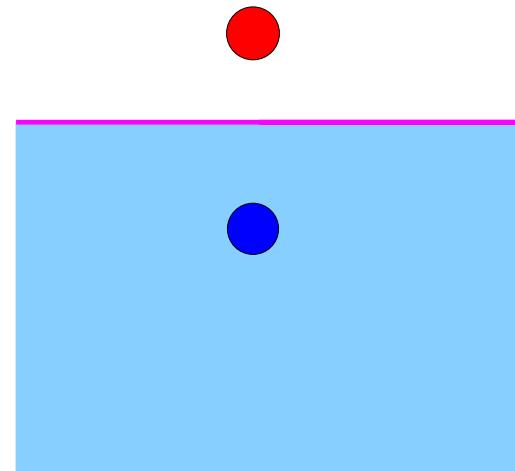
(x_i, y_i) labeled examples

find $f : X \rightarrow Y$

III Posed

Simplicity

Simplicity



Regularization Principle

$$f = \arg \min_{f \in H_K} \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \gamma \|f\|_K^2$$

Splines

Ridge Regression

SVM

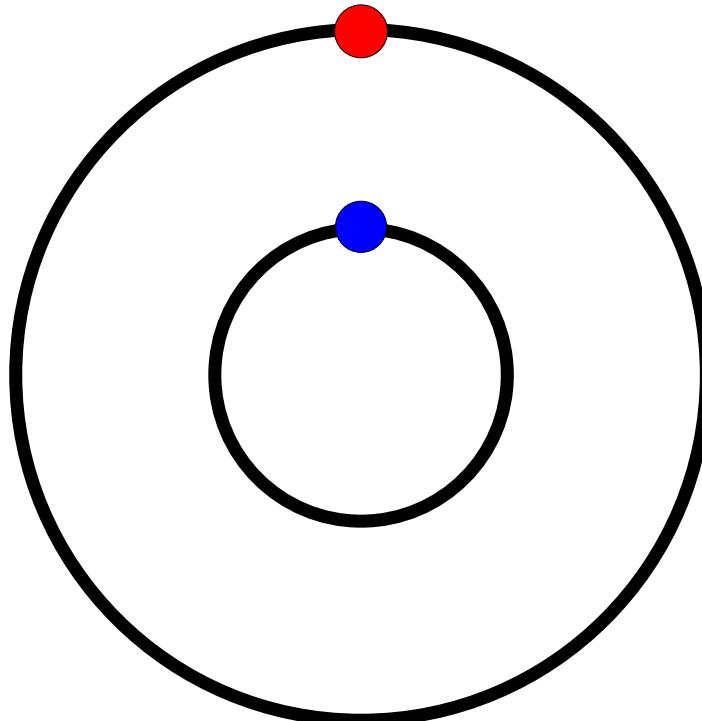
- $K : X \times X \rightarrow \mathbb{R}$ is a p.d. kernel

e.g. $e^{-\frac{\|x-y\|^2}{\sigma^2}}$, $(1 + x \cdot y)^d$, etc.

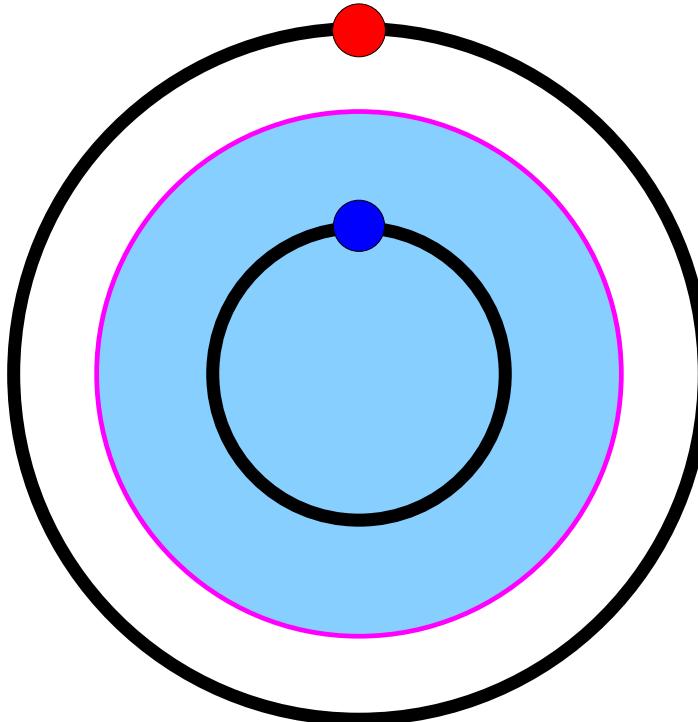
- H_K is a corresponding RKHS

e.g., certain Sobolev spaces, polynomial families, etc.

Simplicity is Relative



Simplicity is Relative



Intuitions

- $\text{supp } P_X$ has manifold structure
- *geodesic* distance v/s *ambient* distance
- geometric structure of data should be incorporated
- f versus $f_{\mathcal{M}}$

Manifold Regularization

$$\min_{f \in H_K} \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \gamma_A \|f\|_K^2 + \gamma_I \|f\|_I^2$$

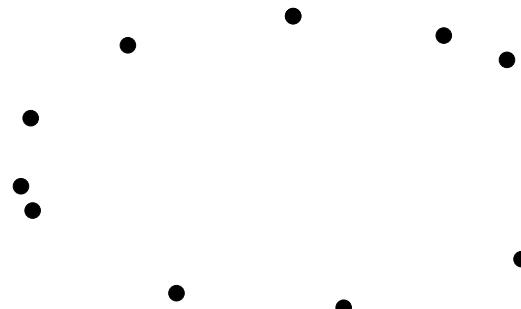
$$\|f\|_I^2 = \begin{cases} \text{Laplacian} & \int \langle \text{grad}_{\mathcal{M}} f, \text{grad}_{\mathcal{M}} f \rangle = \int f \Delta_{\mathcal{M}} f \\ \text{Iterated Laplacian} & \int f \Delta_{\mathcal{M}}^i f \\ \text{Heat kernel} & e^{-\Delta_{\mathcal{M}} t} \\ \text{Differential Operator} & \int f(Df) \end{cases}$$

Representer Theorem: $f = \sum_{i=1}^n \alpha_i K(x, x_i) + \int_{\mathcal{M}} \alpha(y) K(x, y)$

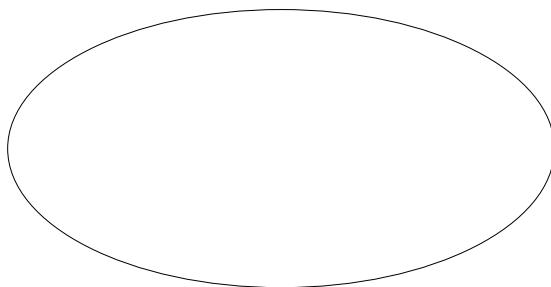
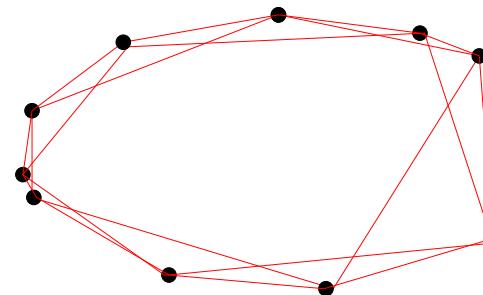
Belkin, Niyogi, Sindhwan (2004)

Approximating $\|f\|_I^2$

\mathcal{M} is unknown but $x_1 \dots x_M \in \mathcal{M}$



$$\|f\|_I^2 = \int_{\mathcal{M}} \langle \nabla_{\mathcal{M}} f, \nabla_{\mathcal{M}} f \rangle \approx \sum_{i \sim j} W_{ij} (f(x_i) - f(x_j))^2$$



Manifolds and Graphs

$$\mathcal{M}$$

$$\approx$$

$$G = (V, E)$$

$$e_{ij} \in E \text{ if } \|x_i - x_j\| < \epsilon$$
$$W_{ij} = e^{-\frac{\|x_i - x_j\|^2}{t}}$$

$$\Delta_{\mathcal{M}}$$

$$\approx$$

$$L = D - W$$

$$\int \langle \text{grad} f, \text{grad} f \rangle$$

$$\approx$$

$$\sum_{i,j} W_{ij} (f(x_i) - f(x_j))^2$$

$$\int f(\Delta f)$$

$$\approx$$

$$\mathbf{f}^T L \mathbf{f}$$

Manifold Regularization

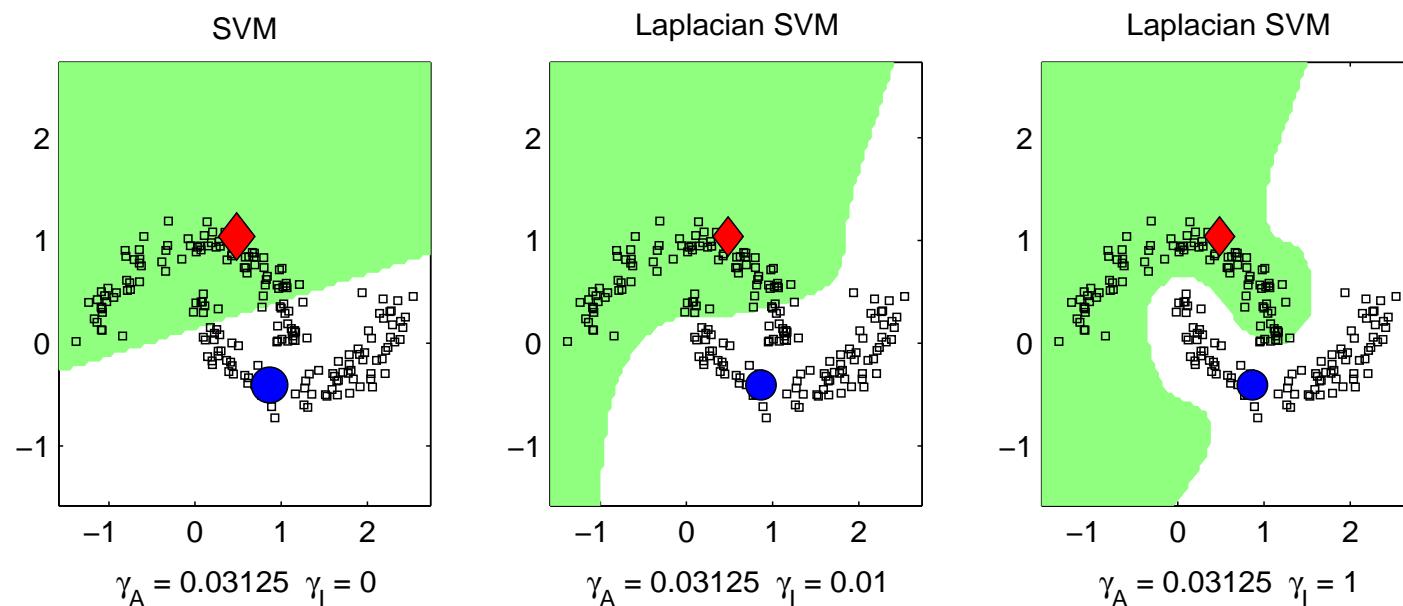
$$\frac{1}{n} \sum_{i=1}^n V(f(x_i), y_i) + \gamma_A \|f\|_K^2 + \gamma_I \sum_{i \sim j} W_{ij} (f(x_i) - f(x_j))^2$$

Representer Theorem: $f_{opt} = \sum_{i=1}^{n+m} \alpha_i K(x, x_i)$

$V(f(x), y) = (f(x) - y)^2$: Least squares

$V(f(x), y) = (1 - y f(x))_+$: Hinge loss (Support Vector Machines)

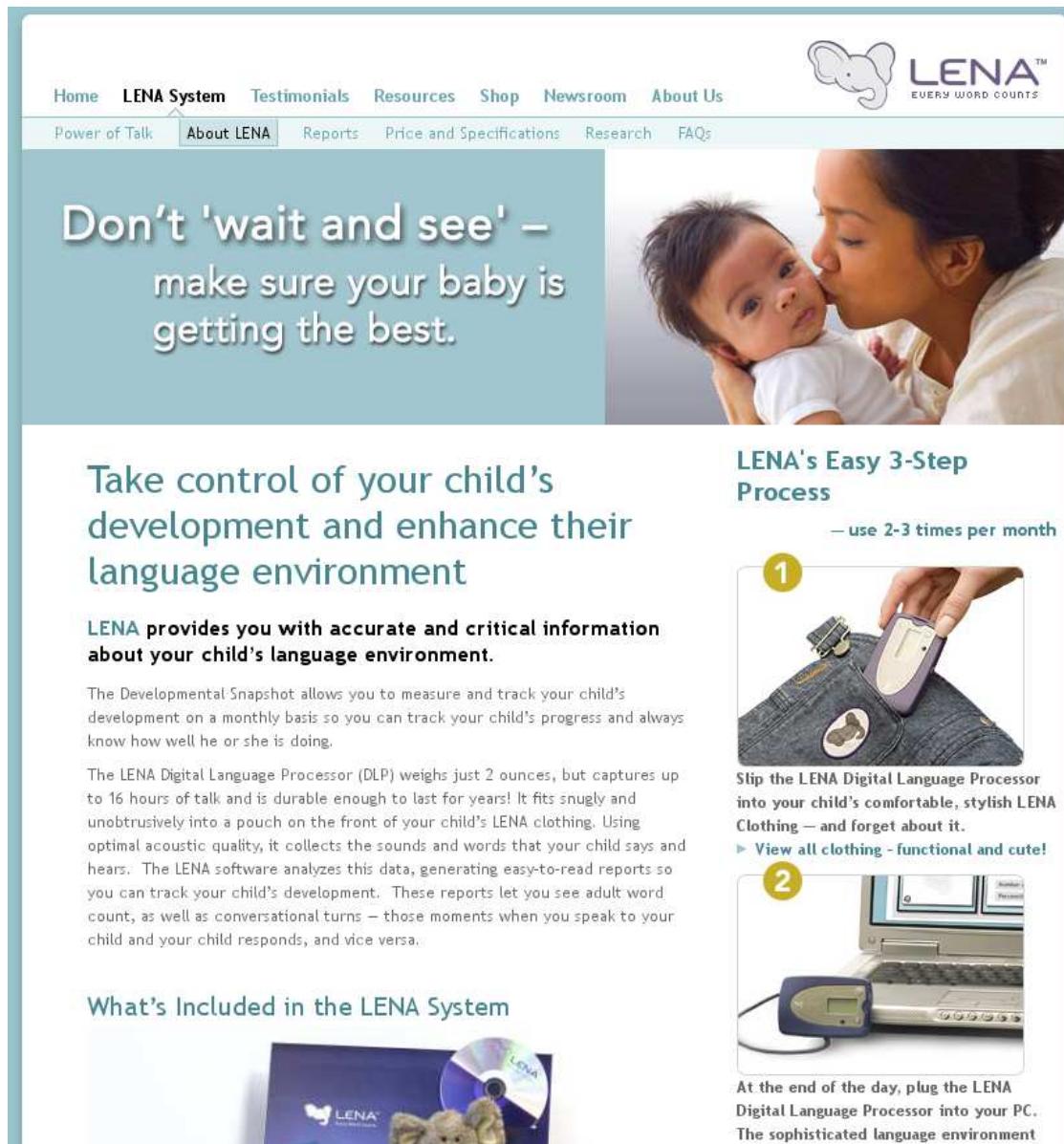
Ambient and Intrinsic Regularization



Experimental comparisons

Dataset →	g50c	Coil20	Uspst	mac-win	WebKB (link)	WebKB (page)	WebKB (page+link)
Algorithm ↓							
SVM (full labels)	3.82	0.0	3.35	2.32	6.3	6.5	1.0
RLS (full labels)	3.82	0.0	2.49	2.21	5.6	6.0	2.2
SVM (I labels)	8.32	24.64	23.18	18.87	25.6	22.2	15.6
RLS (I labels)	8.28	25.39	22.90	18.81	28.0	28.4	21.7
Graph-Reg	17.30	6.20	21.30	11.71	22.0	10.7	6.6
TSVM	6.87	26.26	26.46	7.44	14.5	8.6	7.8
Graph-density	8.32	6.43	16.92	10.48	-	-	-
∇ TSVM	5.80	17.56	17.61	5.71	-	-	-
LDS	5.62	4.86	15.79	5.13	-	-	-
LapSVM	5.44	3.66	12.67	10.41	18.1	10.5	6.4
LapRLS	5.18	3.36	12.69	10.01	19.2	11.0	6.9
LapSVM _{joint}	-	-	-	-	5.7	6.7	6.4
LapRLS _{joint}	-	-	-	-	5.6	8.0	5.8

Real World



The screenshot shows the LENA website homepage. The header includes a navigation bar with links: Home, LENA System (highlighted in blue), Testimonials, Resources, Shop, Newsroom, and About Us. Below the navigation is a sub-menu with links: Power of Talk, About LENA (highlighted in blue), Reports, Price and Specifications, Research, and FAQs. The main content area features a large image of a woman holding a baby. To the left, a teal box contains the text: "Don't 'wait and see' – make sure your baby is getting the best." Below this, a section titled "Take control of your child's development and enhance their language environment" is displayed. A sub-section below it states: "LENA provides you with accurate and critical information about your child's language environment." It explains that the Developmental Snapshot allows tracking of child development monthly. The LENA Digital Language Processor (DLP) is described as a durable, 2-ounce device that fits into a pouch on clothing. It collects sounds and words for analysis. The software generates reports for tracking development. The "What's Included in the LENA System" section shows a blue box and a CD. The right side of the page is titled "LENA's Easy 3-Step Process" with a sub-instruction: "use 2-3 times per month". Step 1 shows a hand slipping a purple DLP into a blue jeans pocket. Step 2 shows the DLP connected to a laptop computer. A note at the bottom right says: "At the end of the day, plug the LENA Digital Language Processor into your PC. The sophisticated language environment".

Home LENA System Testimonials Resources Shop Newsroom About Us

Power of Talk About LENA Reports Price and Specifications Research FAQs

Don't 'wait and see' – make sure your baby is getting the best.

Take control of your child's development and enhance their language environment

LENA provides you with accurate and critical information about your child's language environment.

The Developmental Snapshot allows you to measure and track your child's development on a monthly basis so you can track your child's progress and always know how well he or she is doing.

The LENA Digital Language Processor (DLP) weighs just 2 ounces, but captures up to 16 hours of talk and is durable enough to last for years! It fits snugly and unobtrusively into a pouch on the front of your child's LENA clothing. Using optimal acoustic quality, it collects the sounds and words that your child says and hears. The LENA software analyzes this data, generating easy-to-read reports so you can track your child's development. These reports let you see adult word count, as well as conversational turns – those moments when you speak to your child and your child responds, and vice versa.

What's Included in the LENA System

LENA's Easy 3-Step Process

use 2-3 times per month

1 Slip the LENA Digital Language Processor into your child's comfortable, stylish LENA Clothing — and forget about it.

2 View all clothing - functional and cute!

At the end of the day, plug the LENA Digital Language Processor into your PC. The sophisticated language environment

Graph and Manifold Laplacian

Fix $f : X \rightarrow \mathbb{R}$.

Fix $x \in \mathcal{M}$

$$[L_n f](x) = \frac{1}{nt_n(4\pi t_n)^{d/2}} \sum_j (f(x) - f(x_j)) e^{-\frac{\|x-x_j\|^2}{4t_n}}$$

Put $t_n = n^{-1/(d+2+\alpha)}$, where $\alpha > 0$

with prob. 1, $\lim_{n \rightarrow \infty} (L_n f)|_x = \Delta_{\mathcal{M}} f|_x$

Belkin (2003), Belkin and Niyogi (2004,2005)

also Lafon (2004), Coifman et al, Hein, Gine and Koltchinski

Random Graphs and Matrices

Given $x_1, \dots, x_n \in \mathcal{M} \subset \mathbb{R}^N$

$$W_{ij} = \frac{1}{t(4\pi t)^{d/2}} e^{-\frac{\|x_i - x_j\|^2}{t}}$$

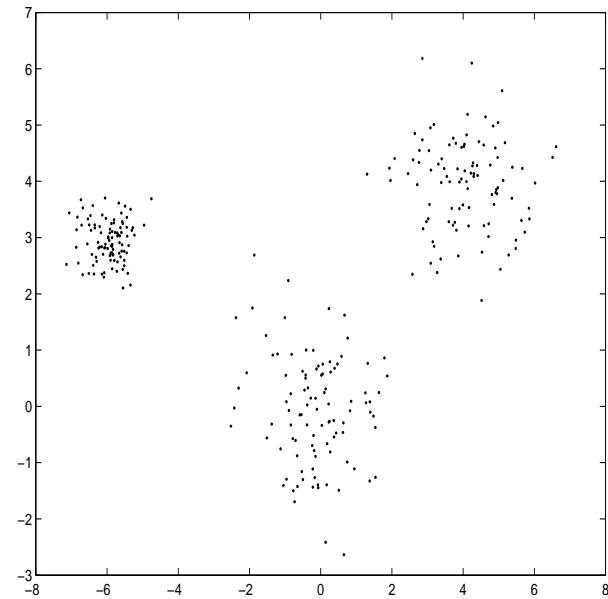
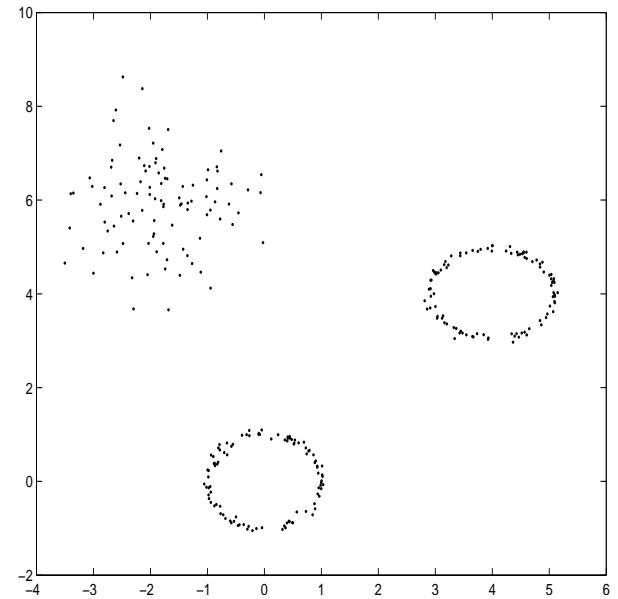
$$Eig[D - W] = Eig[L_n^{t_n}] \rightarrow Eig[\Delta_{\mathcal{M}}] \text{ } O(\frac{1}{n^{1/(d+3)}})$$

Belkin Niyogi 06,08

Allows us to reconstruct spaces of functions on the manifold.
(Patodi, Dodziuk: triangulated manifolds)

Manifold + Noise

Flexible, non-parametric, geometric probability model.



Remarks on Noise

1. Arbitrary probability distribution on the manifold: convergence to weighted Laplacian.
2. Noise off the manifold:

$$\mu = \mu_{\mathcal{M}} + \mu_{\mathbb{R}^N}$$

3. Noise off the manifold:

$$z = x + \eta \ (\sim N(0, \sigma^2 I))$$

We have

$$\lim_{t \rightarrow 0} \lim_{\sigma \rightarrow 0} L^{t, \sigma} f(x) = \Delta f(x)$$

Local and Global Analysis

$X =$ documents, signals, financial time series, sequences

$d(x, x')$ makes sense **locally**

- What is good global distance? What is global geometry/topology of X ?
- What is good space of functions on X that is *adapted to geometry* of X ?

Similarity Metrics

$$Sim_t(x, x') = K_t(x, x') = \alpha_t e^{\frac{-d^2(x, x')}{t}}$$

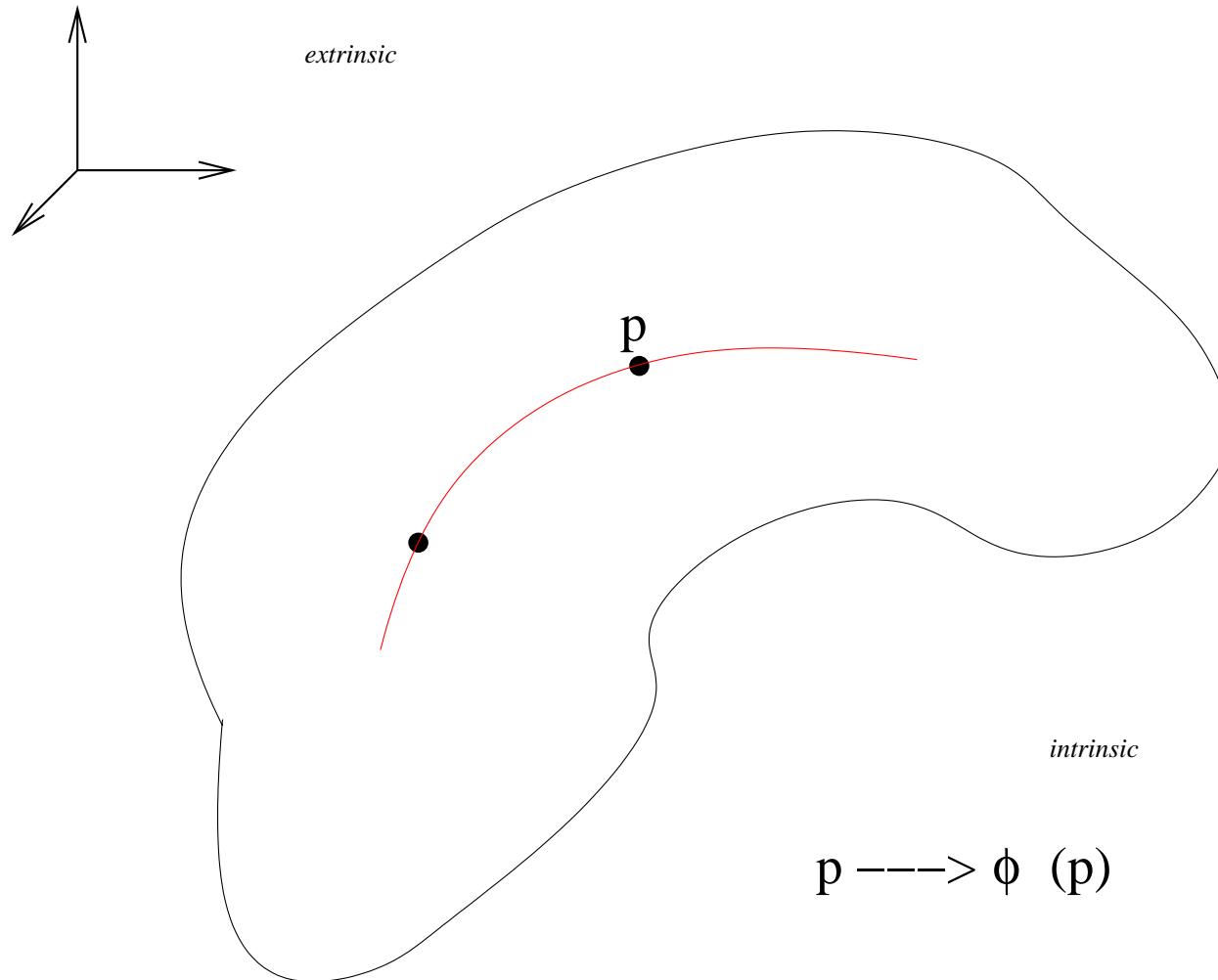
$$L_t f(x) = \int_X K_t(x, y)(f(x) - f(y))d\rho(y) \approx \frac{1}{n} \sum_{y \in X} K_t(x, y)(f(x) - f(y))$$

Choose t small $\rightarrow \lambda_i, \phi_i$

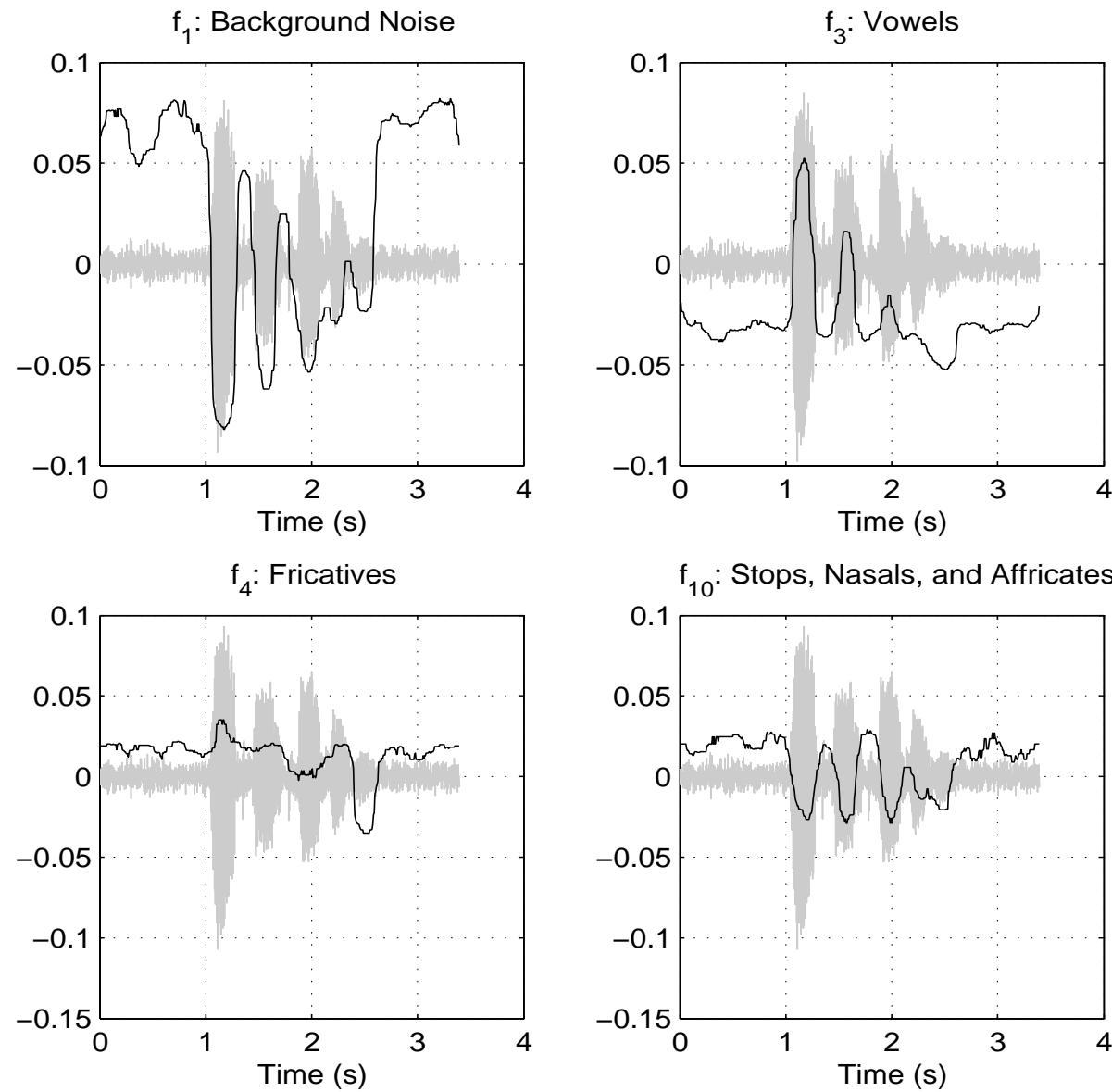
Choose T large $\rightarrow H_T(x, x') = \sum e^{-\lambda_i T} \phi_i(x) \phi_i(x')$

$$f = \sum_i \alpha_i \phi_i; \sum_i \alpha_i^2 g(\lambda_i)$$

Intrinsic Spectrograms

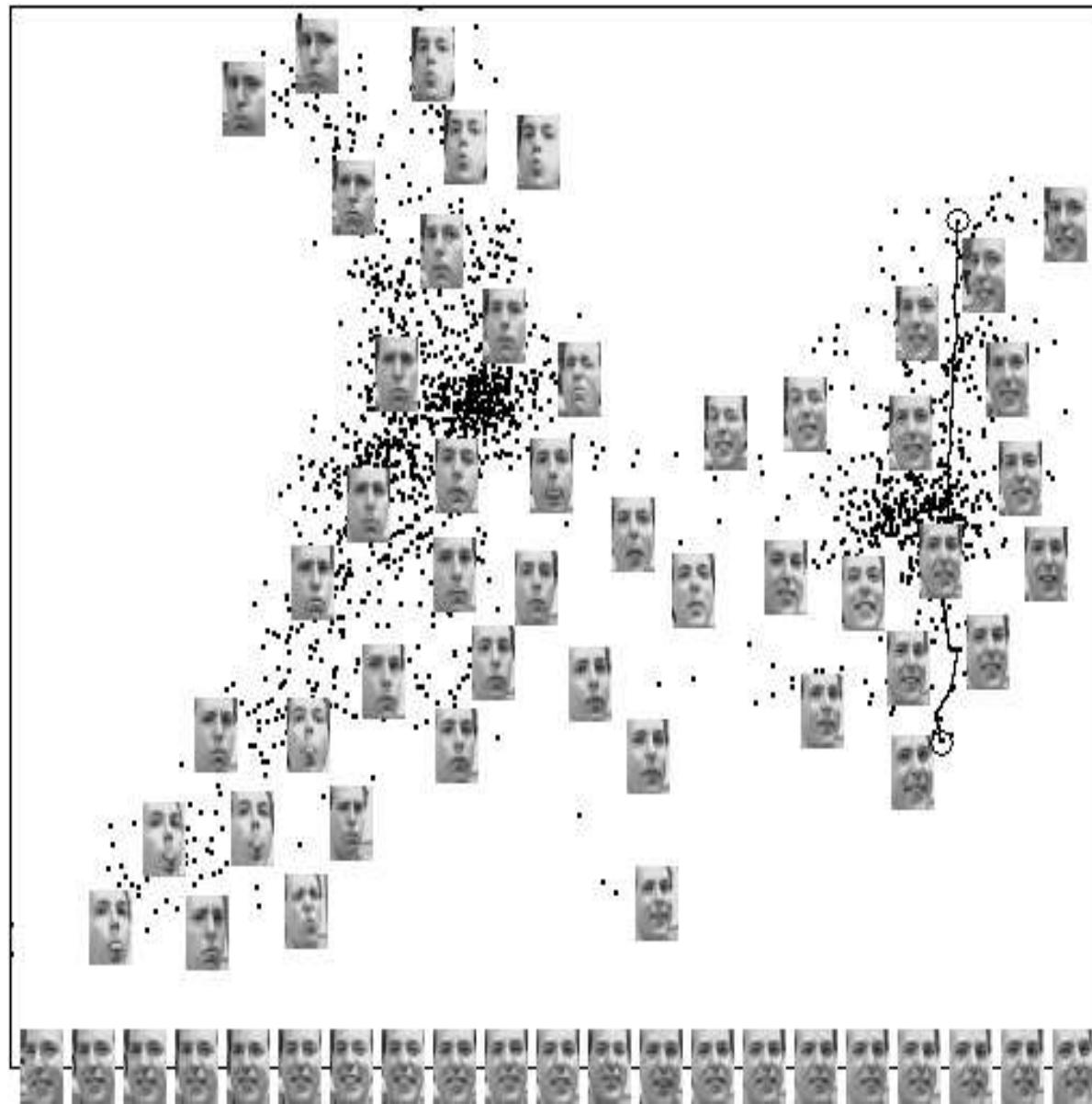


Speech and Intrinsic Eigenfunctions

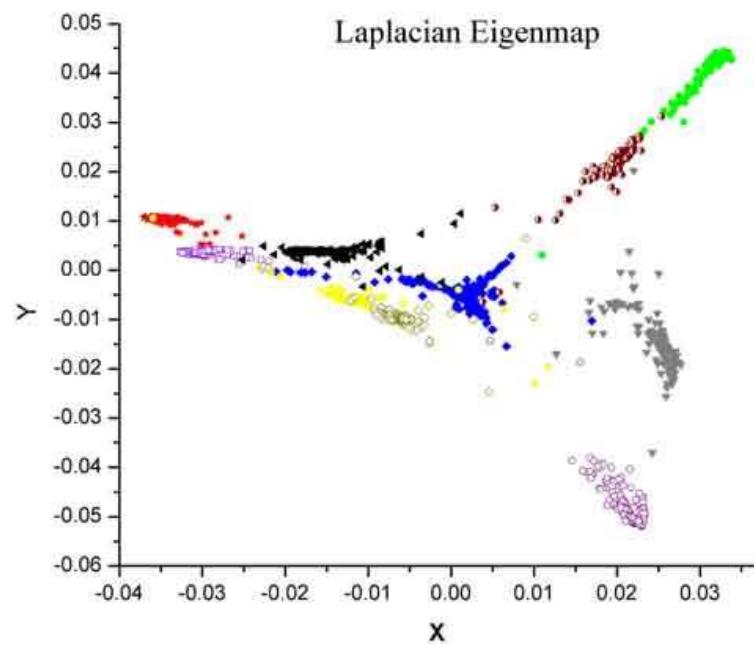
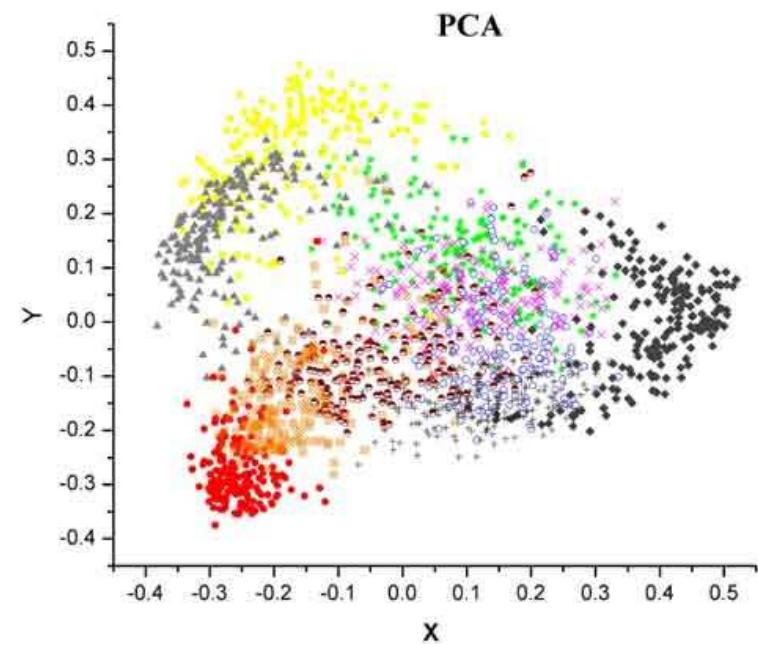


LaplacianFaces: Appearance Manifolds

X. He et al.



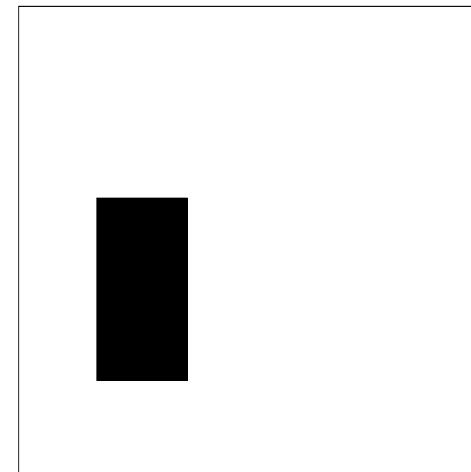
Visualizing Digits



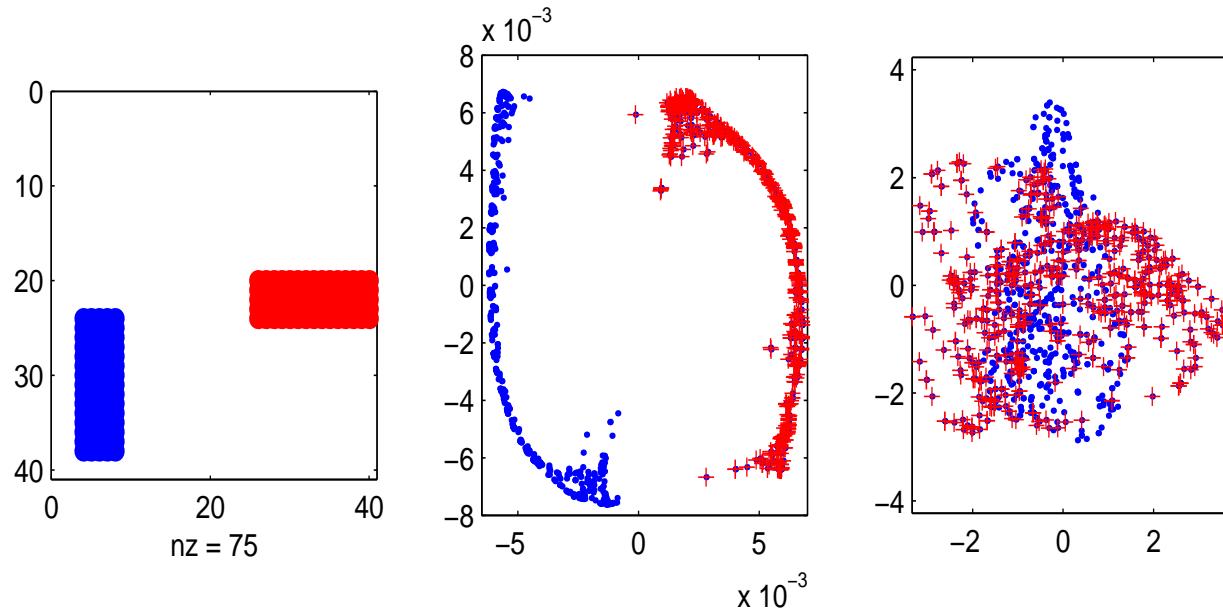
Vision Example

$$f : \mathbb{R}^2 \rightarrow [0, 1]$$

$$\mathcal{F} = \{f | f(x, y) = v(x - t, y - r)\}$$



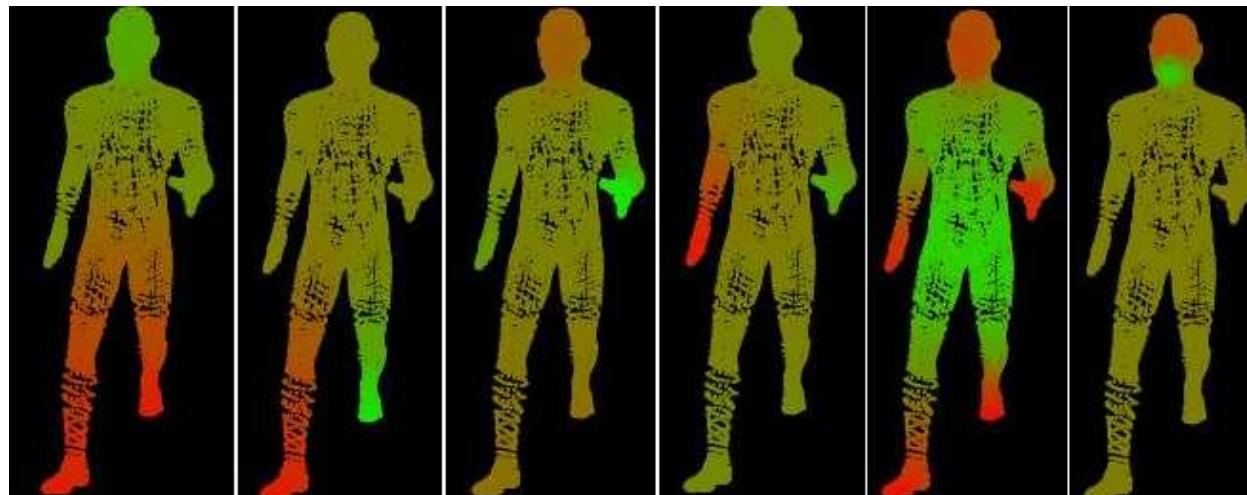
PCA versus Laplacian Eigenmaps



Computer Vision: Laplacian Eigenmaps

Machine vision: inferring joint angles.

Corazza, Andriacchi, Stanford Biomotion Lab, 05, Partiview, Surendran



Isometrically invariant representation.

Connections and Implications

- Clustering and Topology

sparse cuts, combinatorial Laplacians, complexes

(Niyogi, Smale, Weinberger, 2006, 2008; Narayanan, Belkin, Niyogi, 2006)

- Numerical Analysis

heat flow based algorithms, sampling, PDEs

(Belkin, Narayanan, Niyogi, 2006; Narayanan and Niyogi, 2008)

- Random Matrices and Graphs

results on spectra

Belkin and Niyogi, 2008

- Speech, Text, Vision

Intrinsic versus Extrinsic

He et al. 2005, Jansen and Niyogi, 2006

Learning Homology

$$x_1, \dots, x_n \in \mathcal{M} \subset \mathbb{R}^N$$

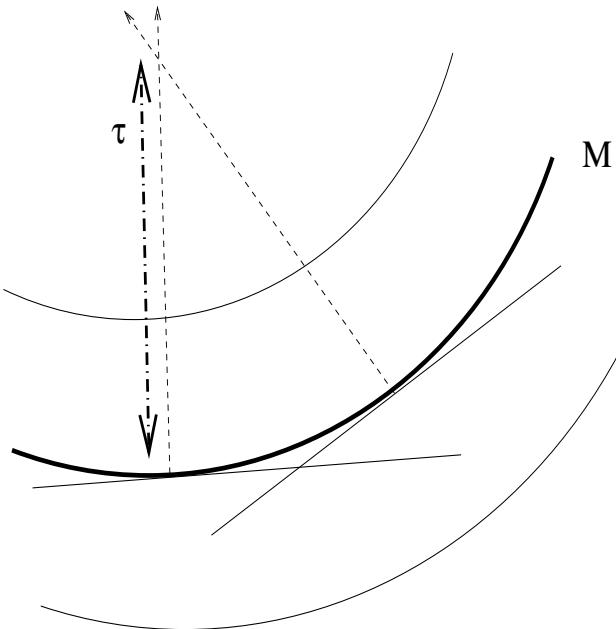
Can you learn **qualitative** features of \mathcal{M} ?

- Can you tell a torus from a sphere?
- Can you tell how many connected components?
- Can you tell the dimension of \mathcal{M} ?

(e.g. Carlsson, Zamorodian, Edelsbrunner, Guibas, Oudot, Lieutier, Chazal, Dey, Amenta, Choi,

Cohen-Steiner, de Silva etc.)

Well Conditioned Submanifolds



Tubular Neighborhood

Condition No. $\frac{1}{\tau}$

Min. distance to *medial axis*

Euclidean and Geodesic distance

$\mathcal{M} \subset \mathbb{R}^N$ condition $\sim \tau$

$p, q \in \mathcal{M}$ where $\|p - q\|_{\mathbb{R}^N} = d$.

For all $d \leq \frac{\tau}{2}$,

$$d_{\mathcal{M}}(p, q) \leq \tau - \tau \sqrt{1 - \frac{2d}{\tau}}$$

In fact, Second Fundamental Form Bounded by $\frac{1}{\tau}$

Homology

$$x_1, \dots, x_n \in \mathcal{M} \subset \mathbb{R}^N$$

$$U = \bigcup_{i=1}^n B_\epsilon(x_i)$$

If ϵ well chosen, then U deformation retracts to \mathcal{M} .

Homology of U is constructed using the *nerve* of U
and agrees with the homology of \mathcal{M} .

Theorem

$\mathcal{M} \subset \mathbb{R}^N$ with cond. no. τ

$\bar{x} = \{x_1, \dots, x_n\} \sim$ uniformly sampled i.i.d.

$$0 < \epsilon < \frac{\tau}{2} \quad \beta = \frac{\text{vol}(\mathcal{M})}{(\sin^{-1}(\epsilon/2\tau))^d \text{vol}(B_{\epsilon/8})}$$

Let $U = \bigcup_{x \in \bar{x}} B_\epsilon(x)$

$$n > \beta(\log(\beta) + \log(\frac{1}{\delta}))$$

with prob. $> 1 - \delta$,
homology of U equals the homology of \mathcal{M}

(Niyogi, Smale, Weinberger, 2004)

A Data-derived complex

$$x_1, \dots, x_n \in \mathbb{R}^N$$

Pick $\epsilon > 0$ and balls $B_\epsilon(x_i)$

Put j -face for every (i_0, \dots, i_j) such that

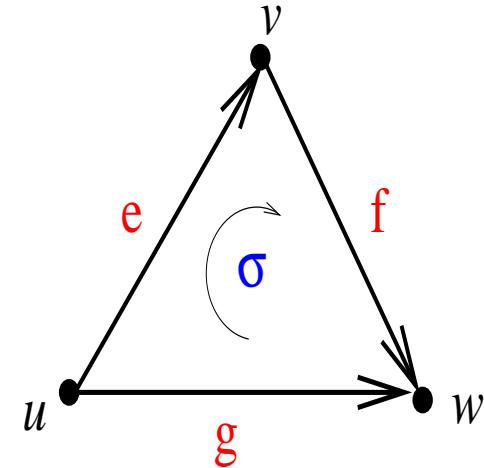
$$\cap_{m=0}^j B_\epsilon(x_{i_m}) \neq \emptyset$$

Chains and the Combinatorial Laplacian

j chain is a formal sum $\sum_{\sigma} \alpha_{\sigma} \sigma$

C_j is the vector space of j -chains

$$\partial_j : C_j \rightarrow C_{j-1}$$



$$\partial_j^* : C_{j-1} \rightarrow C_j$$

$$\Delta_j = \partial_j^* \partial_j + \partial_{j+1} \partial_{j+1}^*$$

Noise

P on \mathbb{R}^N

such that

$$P(x, y) = P(x)P(y|x) \text{ where } x \in \mathcal{M}, y \in N_x$$

$$a \leq P(x)$$

$$P(y|x) = \sigma^2 I_{N-d}$$

Small Noise

$$\sqrt{N - d}\sigma \leq c\tau$$

[Theorem]

There exists an algorithm that recovers homology that is polynomial in D .

Niyogi, Smale, Weinberger; 2008

Future Directions

- Machine Learning
 - Scaling Up
 - Multi-scale
 - Geometry of Natural Data
 - Geometry of Structured Data
- Algorithmic Nash embedding
- Random Hodge Theory
- Partial Differential Equations
- Graphics
- Algorithms