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When can we avoid the curse of dimensionality?

o Smoothness

rate ~ (1/n)d

splines,kernel methods, L» regularization...
s Sparsity

wavelets, L regularization, LASSO, compressed sensing..

» Geometry

graphs, simplicial complexes, laplacians, diffusions




o Distribution of natural data i1s non-uniform and
concentrates around low-dimensional structures.

» The shape (geometry) of the distribution can be
exploited for efficient learning.




Learning when data ~ M c RY

s Clustering: M — {1,... k}
connected components, min cut

» Classification: M — {—1,+1}
Pon M x {—1,+1}

s Dimensionality Reduction: f: M — R" n << N
s M unknown: what can you learn about M from data?

e.g. dimensionality, connected components
holes, handles, homology
curvature, geodesics







One Dimensional Air Flow

yov — __A 9P inée — _p oV
(i) ox —  pcZ Ot (i) ox ~ A 0Ot

V(x,t) = volume velocity
P(x,t) = pressure
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» Speech

speech € [, generated by vocal tract

Jansen and Niyogi (2005)

» Vision
group actions on object leading to different images

Donoho and Grimes (2004)

o Robotics

configuration spaces in joint movements

» Graphics

Manifold + Noise may be generic model in high dimensions.




s Geometrically motivated approach to learning

nonlinear, nonparametric, high dimensions

s Emphasize the role of the Laplacian and Heat Kernel
s Semi-supervised regression and classification
» Clustering and Homology

» Randomized Algorithms and Numerical Analysis




PonX xY X =RV;Y ={0,1},R
(x;,v;) labeled examples

find f: X =Y Il Posed
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Splines
Ridge Regression

SVM

s K: X xX —Risap.d. kernel

2
_ ==yl

eg.e o2 ,(1+z-y)9, etc.

s Hpg Is a corresponding RKHS

e.g., certain Sobolev spaces, polynomial families, etc.










s Supp Px has manifold structure
» geodesic distance v/s ambient distance
» geometric structure of data should be incorporated

s f Versus f
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M s unknown but 21 ...z € M
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% D V(i) yi) +all e+ Y Wi (f (i) = f(x5))?

i=1 i~]
Representer Theorem: f,,; = S\ 0, K (x, ;)

V(f(z),y) = (f(z) — y)?: Least squares

V(f(x),y) = (1 —yf(x))+: Hinge loss (Support Vector Machines)




SVM Laplacian SVM Laplacian SVM
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Experimental comparisons

Dataset — g50c Coil20 | Uspst || mac-win | WebKB | WebKB WebKB
Algorithm | (link) (page) | (page+link)
SVM (full labels) 3.82 0.0 3.35 2.32 6.3 6.5 1.0
RLS (full labels) 3.82 0.0 2.49 2.21 5.6 6.0 2.2
SVM (I labels) 8.32 24.64 | 23.18 18.87 25.6 22.2 15.6
RLS (I labels) 8.28 25.39 | 22.90 18.81 28.0 28.4 21.7
Graph-Reg 17.30 6.20 21.30 11.71 22.0 10.7 6.6
TSVM 6.87 26.26 | 26.46 7.44 14.5 8.6 7.8
Graph-density 8.32 6.43 16.92 10.48 - - -
VTSVM 5.80 17.56 | 17.61 5.71 - - -
LDS 5.62 4.86 15.79 5.13 - - -
LapSVM 5.44 3.66 12.67 10.41 18.1 10.5 6.4
LapRLS 5.18 3.36 12.69 10.01 19.2 11.0 6.9
LapSVM;sint - - - - 5.7 6.7 6.4
LapRLS j5int - - - - 5.6 8.0 5.8
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Home LEMNA System  Testimonials Resources Shop Mewsroom About Us
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EUERY WORD COURTS

Power of Talk A Reportz Price and Specifications

Don't ‘wait and see’ —

make sure your baby,is
getting the best.

Rezsarch FAQSs

Take control of your child’s
development and enhance their
language environment

LEMNA provides you with accurate and critical information
about your child’s language environment.

The Developmental Snapshot allows vou to measure and track vour child's
development on a monthly basis so vou can track your child’s progress and always
know how well he or she iz daing.

The LENA Digital Language Processor (DLP) weighs just 2 cunces, but captures up
to 16 hours of talk and iz durable enough to last for vears! |t fits znugly and
unebtruzively into a pouch on the front of vour child’s LENA clothing, Using
optimal acoustic quality, it collects the sounds and words that vour child says and
hears, The LENA zoftware analyze: this data, genersting easv-to-read reports so
vou can track vour child’s development. Theze reports let vou zee adult word
count, as well as conversational turns — those moments when vou speak to vour

child and your child responds, and vice versa.

What's Included in the LENA System

LENA's Easy 3-Step
Process

—use 2-3 times per month

Slip the LEMA Digital Language Processor
into your child’s comfortable, stylish LENA
Clothing — and forget about it.

» View all clothing - functional and cute!

At the end of the day, pl:l.:lg the LENA
Digital Language Processor into your PC.
The sophisticated language environment




FIX f: X — R.
FiIX z € M

2
lz—a,|

Lo f)(2) = mmmiyare 2o (f (@) = flag))e™

Put ¢, = n~1/(d+2+2) \where o > 0

with prob. 1, lim (Lnf)|x — A/\/lf|£13

n—oo

Belkin (2003), Belkin and Niyogi (2004,2005)

also Lafon (2004), Coifman et al,Hein, Gine and Koltchinski



Given zq,...,z, € M C RV

1 ;= ;1112
Wi = B
I A a2©
1
. o . tn .
EiglD — W] = Eig[Ly] ~ Eigla] O(—7557)

Belkin Niyogi 06,08
Allows us to reconstruct spaces of functions on the manifold.

(Patodi, Dodziuk: triangulated manifolds)




Flexible, non-parametric, geometric probability model.




1. Arbitrary probability distribution on the manifold:
convergence to weighted Laplacian.

2. Noise off the manifold:

f= pp + RN

3. Noise off the manifold:

s =+ (~ N(0,0°T)
We have
lim lim L7 f(x) = Af(x)

t—0 oc—0



X = documents, signals, financial time series, seguences

d(:c, CIZ/) makes sense locally

» What is good global distance? What is global
geometry/topology of X?

s What is good space of functions on X that is adapted to
geometry Of X?
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intrinsic
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f: Background Noise f3: Vowels
0.1 : : : 0.1
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f 4 Fricatives flO: Stops, Nasals, and Affricates




X. He et al.
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Computer Vision: Laplacian Eigenmaps

Machine vision: inferring joint angles.

Corazza, Andriacchi, Stanford Biomotion Lab, 05, Partiview, Surendran

Isometrically invariant representation.
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» Clustering and Topology

sparse cuts, combinatorial Laplacians, complexes

(Niyogi, Smale, Weinberger, 2006,2008; Narayanan, Belkin, Niyogi, 2006)

» Numerical Analysis

heat flow based algorithms, sampling, PDEs

(Belkin, Narayanan, Niyogi, 2006; Narayanan and Niyogi, 2008)

» Random Matrices and Graphs

results on spectra

Belkin and Niyogi, 2008

» Speech, Text, Vision

Intrinsic versus Extrinsic

He et al. 2005, Jansen and Niyogi, 2006




1, ..., oy € M CRY

Can you learn qualitative features of M?

® Canyou tell a torus from a sphere?
® Can you tell how many connected components?

® Can you tell the dimension of M?

(e.g. Carlsson, Zamorodian, Edelsbrunner, Guibas, Oudot, Lieutier, Chazal, Dey, Amenta,Choi,

Cohen-Steiner, de Silva etc.)
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Condition No. %

Min. distance to medial axis




M c RY condition ~ 7
p,q € M where ||p — q||gpy = d.

Foralld < 3,

2d
dm(p, q) ST—T\/l——

-

In fact, Second Fundamental Form Bounded by %




1, ..., oy € M CRY

U — U?:l Be (sz)

If ¢ well chosen, then U deformation retracts to M.

Homology of U is constructed using the nerve of U
and agrees with the homology of M.




M c RY with cond. no. 7
T ={x1,...,2,} ~ uniformly sampled i.i.d.

; B vol(M)
0<e< 5 f = (sin™'(e/27))%v0l (B, /s)

n > B(log(3) + log(%))

with prob. > 1 — ¢,
homology of U equals the homology of M

(Niyogi, Smale, Weinberger, 2004)




xl,...,anRN

Pick ¢ > 0 and balls B.(z;)

Put j-face for every (i, ...,i;) such that

H%IQBG (xzm) 7é qb




7 chainis a formal sum > _a,0

C; Is the vector space of j-chains

8j . Cj — Cj_l

3; :Cj1 — C}

Aj = 8;-‘8]- + @j+1(9;-<+1
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P onRY
such that

P(x,y) = P(x)P(y|z) where x €¢ M,y € N,




VN —do < ecr

[Theorem]
There exists an algorithm that recovers homology that is

polynomial in D.

Niyogi, Smale, Weinberger; 2008




s Machine Learning

» Scaling Up

s Multi-scale

» Geometry of Natural Data

» Geometry of Structured Data

s Algorithmic Nash embedding
s Random Hodge Theory

» Partial Differential Equations
» Graphics

» Algorithms
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