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High Dimensional Data

When can we avoid the curse of dimensionality?

Smoothness
rate ≈ (1/n)

s
d

splines,kernel methods, L2 regularization...

Sparsity
wavelets, L1 regularization, LASSO, compressed sensing..

Geometry
graphs, simplicial complexes, laplacians, diffusions
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Geometry and Data: The Central Dogma

Distribution of natural data is non-uniform and
concentrates around low-dimensional structures.

The shape (geometry) of the distribution can be
exploited for efficient learning.
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Manifold Learning

Learning when data ∼ M ⊂ R
N

Clustering: M → {1, . . . , k}
connected components, min cut

Classification: M → {−1, +1}
P on M×{−1, +1}

Dimensionality Reduction: f : M → R
n n << N

M unknown: what can you learn about M from data?
e.g. dimensionality, connected components
holes, handles, homology
curvature, geodesics
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An Acoustic Example

u(t) s(t)

l

A Geometric Perspective onMachine Learning – p.5



An Acoustic Example

u(t) s(t)

l

One Dimensional Air Flow

(i) ∂V
∂x

= − A
ρc2

∂P
∂t

(ii) ∂P
∂x

= − ρ
A

∂V
∂t

V (x, t) = volume velocity
P (x, t) = pressure
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Solutions
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u(t) =
P∞

n=1 αn sin(nω0t) ∈ l2

s(t) =
P∞

n=1 βn sin(nω0t) ∈ l2
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Formal Justification

Speech
speech ∈ l2 generated by vocal tract

Jansen and Niyogi (2005)

Vision
group actions on object leading to different images

Donoho and Grimes (2004)

Robotics
configuration spaces in joint movements

Graphics

Manifold + Noise may be generic model in high dimensions.

A Geometric Perspective onMachine Learning – p.7



Take Home Message

Geometrically motivated approach to learning
nonlinear, nonparametric, high dimensions

Emphasize the role of the Laplacian and Heat Kernel
Semi-supervised regression and classification

Clustering and Homology

Randomized Algorithms and Numerical Analysis
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Pattern Recognition

P on X × Y X = R
N ; Y = {0, 1}, R

(xi, yi) labeled examples

find f : X → Y Ill Posed
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Simplicity
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Simplicity
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Regularization Principle

f = arg min
f∈HK

1

n

n
∑

i=1

(yi − f(xi))
2 + γ‖f‖2

K

Splines

Ridge Regression

SVM

K : X × X → R is a p.d. kernel
e.g. e

−
‖x−y‖2

σ2 , (1 + x · y)d, etc.

HK is a corresponding RKHS
e.g., certain Sobolev spaces, polynomial families, etc.
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Simplicity is Relative
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Simplicity is Relative
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Intuitions

supp PX has manifold structure

geodesic distance v/s ambient distance

geometric structure of data should be incorporated

f versus fM
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Manifold Regularization

min
f∈HK

1

n

n
∑

i=1

(yi − f(xi))
2 + γA‖f‖2

K + γI‖f‖2
I

‖f‖2
I =











Laplacian
R

〈gradMf, gradMf〉 =
R

f∆Mf

Iterated Laplacian
R

f∆M
if

Heat kernel e−∆Mt

Differential Operator
R

f(Df)

Representer Theorem: f =
Pn

i=1 αiK(x, xi) +
R

M α(y)K(x, y)

Belkin, Niyogi, Sindhwani (2004)
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Approximating ‖f‖2
I

M is unknown but x1 . . . xM ∈ M

‖f‖2
I =

∫

M

〈∇Mf,∇Mf〉 ≈
∑

i∼j

Wij(f(xi) − f(xj))
2
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Manifolds and Graphs

M ≈ G = (V,E)

eij ∈ E if ‖xi − xj‖ < ǫ

Wij = e−
‖xi−xj‖2

t

∆M ≈ L = D − W

∫

〈gradf, gradf〉 ≈ ∑

i,j Wij(f(xi) − f(xj))
2

∫

f(∆f) ≈ f
T Lf
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Manifold Regularization

1

n

n
∑

i=1

V (f(xi), yi) + γA‖f‖2
K + γI

∑

i∼j

Wij(f(xi) − f(xj))
2

Representer Theorem: fopt =
∑n+m

i=1 αiK(x, xi)

V (f(x), y) = (f(x) − y)2: Least squares

V (f(x), y) = (1 − yf(x))+: Hinge loss (Support Vector Machines)
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Ambient and Intrinsic Regularization
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Experimental comparisons
Dataset → g50c Coil20 Uspst mac-win WebKB WebKB WebKB

Algorithm ↓ (link) (page) (page+link)

SVM (full labels) 3.82 0.0 3.35 2.32 6.3 6.5 1.0

RLS (full labels) 3.82 0.0 2.49 2.21 5.6 6.0 2.2

SVM (l labels) 8.32 24.64 23.18 18.87 25.6 22.2 15.6

RLS (l labels) 8.28 25.39 22.90 18.81 28.0 28.4 21.7

Graph-Reg 17.30 6.20 21.30 11.71 22.0 10.7 6.6

TSVM 6.87 26.26 26.46 7.44 14.5 8.6 7.8

Graph-density 8.32 6.43 16.92 10.48 - - -

∇TSVM 5.80 17.56 17.61 5.71 - - -

LDS 5.62 4.86 15.79 5.13 - - -

LapSVM 5.44 3.66 12.67 10.41 18.1 10.5 6.4

LapRLS 5.18 3.36 12.69 10.01 19.2 11.0 6.9

LapSVMjoint - - - - 5.7 6.7 6.4

LapRLSjoint - - - - 5.6 8.0 5.8
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Real World
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Graph and Manifold Laplacian

Fix f : X → R.
Fix x ∈ M

[Lnf ](x) = 1
ntn(4πtn)d/2

∑

j(f(x) − f(xj))e
−

‖x−xj‖
2

4tn

Put tn = n−1/(d+2+α), where α > 0

with prob. 1, lim
n→∞

(Lnf)|x = ∆Mf |x

Belkin (2003), Belkin and Niyogi (2004,2005)

also Lafon (2004), Coifman et al,Hein, Gine and Koltchinski
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Random Graphs and Matrices

Given x1, . . . , xn ∈ M ⊂ R
N

Wij =
1

t(4πt)d/2
e−

‖xi−xj‖|
2

t

Eig[D − W ] = Eig[Ltn
n ] → Eig[∆M] O(

1

n1/(d+3)
)

Belkin Niyogi 06,08

Allows us to reconstruct spaces of functions on the manifold.

(Patodi, Dodziuk: triangulated manifolds)
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Manifold + Noise

Flexible, non-parametric, geometric probability model.
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Remarks on Noise

1. Arbitrary probability distribution on the manifold:
convergence to weighted Laplacian.

2. Noise off the manifold:

µ = µM + µRN

3. Noise off the manifold:

z = x + η (∼ N(0, σ2I))

We have
lim
t→0

lim
σ→0

Lt,σf(x) = ∆f(x)
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Local and Global Analysis

X = documents, signals, financial time series, sequences

d(x, x′) makes sense locally

What is good global distance? What is global
geometry/topology of X?

What is good space of functions on X that is adapted to
geometry of X?
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Similarity Metrics

Simt(x, x′) = Kt(x, x′) = αte
−d2(x,x′)

t

Ltf(x) =

∫

X
Kt(x, y)(f(x)−f(y))dρ(y) ≈ 1

n

∑

y∈X

Kt(x, y)(f(x)−f(y))

Choose t small → λi, φi

Choose T large → HT (x, x′) =
∑

e−λiT φi(x)φi(x
′)

f =
∑

i

αiφi;
∑

i

α2
i g(λi)
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Intrinsic Spectrograms
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Speech and Intrinsic Eigenfunctions
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LaplacianFaces: Appearance Manifolds

X. He et al.
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Visualizing Digits
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Vision Example

f : R
2 → [0, 1]

F = {f |f(x, y) = v(x − t, y − r)}

A Geometric Perspective onMachine Learning – p.31



PCA versus Laplacian Eigenmaps
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Computer Vision: Laplacian Eigenmaps

Machine vision: inferring joint angles.
Corazza, Andriacchi, Stanford Biomotion Lab, 05, Partiview, Surendran

Isometrically invariant representation.
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Connections and Implications

Clustering and Topology
sparse cuts, combinatorial Laplacians, complexes

(Niyogi, Smale, Weinberger, 2006,2008; Narayanan, Belkin, Niyogi, 2006)

Numerical Analysis
heat flow based algorithms, sampling, PDEs

(Belkin, Narayanan, Niyogi, 2006; Narayanan and Niyogi, 2008)

Random Matrices and Graphs
results on spectra

Belkin and Niyogi, 2008

Speech, Text, Vision
Intrinsic versus Extrinsic

He et al. 2005, Jansen and Niyogi, 2006
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Learning Homology

x1, . . . , xn ∈ M ⊂ R
N

Can you learn qualitative features of M?

Can you tell a torus from a sphere?

Can you tell how many connected components?

Can you tell the dimension of M?

(e.g. Carlsson, Zamorodian, Edelsbrunner, Guibas, Oudot, Lieutier, Chazal, Dey, Amenta,Choi,

Cohen-Steiner, de Silva etc.)
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Well Conditioned Submanifolds

τ Μ

Tubular Neighborhood

Condition No. 1
τ

Min. distance to medial axis
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Euclidean and Geodesic distance

M ⊂ R
N condition ∼ τ

p, q ∈ M where ||p − q||RN = d.

For all d ≤ τ
2 ,

dM(p, q) ≤ τ − τ

√

1 − 2d

τ

In fact, Second Fundamental Form Bounded by 1
τ
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Homology

x1, . . . , xn ∈ M ⊂ R
N

U = ∪n
i=1Bǫ(xi)

If ǫ well chosen, then U deformation retracts to M.

Homology of U is constructed using the nerve of U

and agrees with the homology of M.
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Theorem

M ⊂ R
N with cond. no. τ

x̄ = {x1, . . . , xn} ∼ uniformly sampled i.i.d.
0 < ǫ < τ

2 β = vol(M)
(sin−1(ǫ/2τ))dvol(Bǫ/8)

Let U = ∪x∈x̄Bǫ(x)

n > β(log(β) + log(
1

δ
))

with prob. > 1 − δ,
homology of U equals the homology of M

(Niyogi, Smale, Weinberger, 2004)
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A Data-derived complex

x1, . . . , xn ∈ R
N

Pick ǫ > 0 and balls Bǫ(xi)

Put j-face for every (i0, . . . , ij) such that

∩j
m=0Bǫ(xim) 6= φ
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Chains and the Combinatorial Laplacian

v

wu

e f

g

σ

j chain is a formal sum
∑

σ ασσ

Cj is the vector space of j-chains

∂j : Cj → Cj−1

∂∗
j : Cj−1 → Cj

∆j = ∂∗
j ∂j + ∂j+1∂

∗
j+1
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Noise

P on R
N

such that

P (x, y) = P (x)P (y|x) where x ∈ M, y ∈ Nx

a ≤ P (x)

P (y|x) = σ2IN−d
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Small Noise

√
N − dσ ≤ cτ

[Theorem]
There exists an algorithm that recovers homology that is
polynomial in D.

Niyogi, Smale, Weinberger; 2008
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Future Directions

Machine Learning

Scaling Up
Multi-scale
Geometry of Natural Data
Geometry of Structured Data

Algorithmic Nash embedding

Random Hodge Theory

Partial Differential Equations

Graphics

Algorithms
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