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Computer Science and Statistics

• Separated in the 40’s and 50’s, but merging in the 90’s and 00’s

• What computer science has done well: data structures and algorithms for
manipulating data structures

• What statistics has done well: managing uncertainty and justification of
algorithms for making decisions under uncertainty

• What machine learning attempts to do: hasten the merger along

– machine learning isn’t a new field per se
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Computer Science and Statistics

• Separated in the 40’s and 50’s, but merging in the 90’s and 00’s

• What computer science has done well: data structures and algorithms for
manipulating data structures

• What statistics has done well: managing uncertainty and justification of
algorithms for making decisions under uncertainty

• What machine learning attempts to do: hasten the merger along

– machine learning isn’t a new field per se

• An issue to be grappled with: the two flavors of statistical inference
(frequentist and Bayesian)
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Nonparametric Bayesian Inference (Theme I)

• At the core of Bayesian inference lies Bayes’ theorem:

posterior ∝ likelihood × prior

• For parametric models, we let θ be a Euclidean parameter and write:

p(θ|x) ∝ p(x|θ)p(θ)

• For nonparametric models, we let G be a general stochastic process (an
“infinite-dimensional random variable”) and write:

p(G|x) ∝ p(x|G)p(G)

which frees us to work with flexible data structures
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Nonparametric Bayesian Inference (cont)

• Examples of stochastic processes we’ll mention today include distributions
on:

– directed trees of unbounded depth and unbounded fan-out
– partitions
– sparse binary infinite-dimensional matrices
– copulae
– distributions

• General mathematical tool: completely random processes
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Hierarchical Bayesian Modeling (Theme II)

• Hierarchical modeling is a key idea in Bayesian inference

• It’s essentially a form of recursion

– in the parametric setting, it just means that priors on parameters can
themselves be parameterized

– in our nonparametric setting, it means that a stochastic process can have
as a parameter another stochastic process

• We’ll use hierarchical modeling to build structured objects that are
reminiscent of graphical models—but are nonparametric

– statistical justification—the freedom inherent in using nonparametrics
needs the extra control of the hierarchy
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What are “Parameters”?

• Exchangeability : invariance to permutation of the joint probability
distribution of infinite sequences of random variables

Theorem (De Finetti, 1935). If (x1, x2, . . .) are infinitely exchangeable,

then the joint probability p(x1, x2, . . . , xN) has a representation as a mixture:

p(x1, x2, . . . , xN) =

∫

(

N
∏

i=1

p(xi |G)

)

dP (G)

for some random element G.

• The theorem would be false if we restricted ourselves to finite-dimensional
G
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Computational Consequences

• Having infinite numbers of parameters is a good thing; it avoids placing
artificial limits on what one can learn

• But how do we compute with infinite numbers of parameters?

• Important relationships to combinatorics
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Stick-Breaking

• A general way to obtain distributions on countably infinite spaces

• A canonical example: Define an infinite sequence of beta random variables:

βk ∼ Beta(1, α0) k = 1, 2, . . .

• And then define an infinite random sequence as follows:

π1 = β1, πk = βk

k−1
Y

l=1

(1 − βl) k = 2, 3, . . .

• This can be viewed as breaking off portions of a stick:

1 2
...

1β β (1−β  )
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Constructing Random Measures

• It’s not hard to see that
∑∞

k=1 πk = 1 (with probability one)

• Now define the following object:

G =
∞
∑

k=1

πkδφk
,

where φk are independent draws from a distribution G0 on some space

• Because
∑∞

k=1 πk = 1, G is a probability measure—it is a random measure

• The distribution of G is known as a Dirichlet process: G ∼ DP(α0, G0)

• What exchangeable marginal distribution does this yield when integrated
against in the De Finetti setup?
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Chinese Restaurant Process (CRP)

• A random process in which n customers sit down in a Chinese restaurant
with an infinite number of tables

– first customer sits at the first table
– mth subsequent customer sits at a table drawn from the following

distribution:

P (previously occupied table i | Fm−1) ∝ ni

P (the next unoccupied table | Fm−1) ∝ α0
(1)

where ni is the number of customers currently at table i and where Fm−1

denotes the state of the restaurant after m − 1 customers have been
seated
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The CRP and Clustering

• Data points are customers; tables are clusters

– the CRP defines a prior distribution on the partitioning of the data and
on the number of tables

• This prior can be completed with:

– a likelihood—e.g., associate a parameterized probability distribution with
each table

– a prior for the parameters—the first customer to sit at table k chooses
the parameter vector for that table (φk) from a prior G0
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• So we now have a distribution—or can obtain one—for any quantity that
we might care about in the clustering setting
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CRP Prior, Gaussian Likelihood, Conjugate Prior

φk = (µk, Σk) ∼ N(a, b) ⊗ IW (α, β)

xi ∼ N(φk) for a data point i sitting at table k

13



Posterior Inference for the CRP

• We’ve described how to generate data from the model; how do we go
backwards and generate a model from data?

• A wide variety of variational, combinatorial and MCMC algorithms have
been developed

• E.g., a Gibbs sampler is readily developed by using the fact that the Chinese
restaurant process is exchangeable

– to sample the table assignment for a given customer given the seating of
all other customers, simply treat that customer as the last customer to
arrive

– in which case, the assignment is made proportional to the number of
customers already at each table (cf. preferential attachment)

– parameters are sampled at each table based on the customers at that
table (cf. K means)

• (This isn’t the state of the art, but it’s easy to explain on one slide)
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Exchangeability

• As a prior on the partition of the data, the CRP is exchangeable

• The prior on the parameter vectors associated with the tables is also
exchangeable

• The latter probability model is generally called the Pólya urn model. Letting
θi denote the parameter vector associated with the ith data point, we have:

θi | θ1, . . . , θi−1 ∼ α0G0 +

i−1
∑

j=1

δθj

• From these conditionals, a short calculation shows that the joint distribution
for (θ1, . . . , θn) is invariant to order (this is the exchangeability proof)

• As a prior on the number of tables, the CRP is nonparametric—the number
of occupied tables grows (roughly) as O(log n)—we’re in the world of
nonparametric Bayes
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Dirichlet Process Mixture Models

Gα 0

G0

θi

xi

G ∼ DP(α0G0)

θi |G ∼ G i ∈ 1, . . . , n

xi | θi ∼ F (xi | θi) i ∈ 1, . . . , n
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Marginal Probabilities

• To obtain the marginal probability of the parameters θ1, θ2, . . ., we need to
integrate out G

Gα 0

G0

θi

xi

α 0

G0

θi

xi

• This marginal distribution turns out to be the Chinese restaurant process
(more precisely, it’s the Pólya urn model)
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The Nested CRP
(Blei, Griffiths, & Jordan, 2009)

... ...

...

...

• Each node in the tree is an entire Chinese restaurant

• Each table in a given restaurant points to another restaurant

• A customer starts at the root and selects a table, which leads to another
restaurant, and the process repeats infinitely often

• We obtain a measure on trees of unbounded depth and unbounded branching
factors—the nested CRP

18



Hierarchical Topic Models
(Blei, Griffiths, & Jordan, 2008)

• The nested CRP defines a distribution over paths in a tree

• At every node in the tree place a distribution on words (a “topic”) drawn
from a prior over the vocabulary

• To generate a document:

– pick a path down the infinite tree using the nested CRP
– repeatedly
∗ pick a level using the stick-breaking distribution
∗ select a word from the topic at the node at that level in the tree
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Topic Hierarchy from JACM

the ; of ; a

n ; algorithm ; time

spanning ; heap ; structure
regular ; language ; expression
distance ; s ; points
colors ; dgr ; coloring
the ; of ; a
pages ; hierarchical ; page
building ; block ; which
classification ; metric ; allocation
set ; optimal ; structure

queries ; classes ; complexity
quantum ; part ; classical
graphs ; planar ; inference
learning ; learnable ; c
data ; access ; overhead

programs ; language ; rulesabstract ; program ; theory
sets ; magic ; predicates

networks ; network ; routing

routing ; adaptive ; routers
closed ; queuing ; asymptotic
traffic ; latency ; total
balancing ; load ; locations
inference ; task ; optimization
class ; have ; property

system ; model ; performance
online ; task ; decision
availability ; data ; contention
methods ; parsing ; retrieval
circuit ; cache ; verification

proof ; np ; questionzeroknowledge ; argument ; round
that ; time ; problems

trees ; tree ; searchnodes ; binary ; average

n ; processors ; protocol
shared ; waitfree ; objects
channel ; transmission ; cost
networks ; processors ; those
more ; trees ; derived

constraints ; constraint ; algebra
database ; dependencies ; boolean
recursion ; query ; optimal
subclass ; satisfiability ; by

n ; log ; functions
m ; parallel ; d
show ; oblivious ; protection
studied ; makes ; the

logic ; knowledge ; systems
temporal ; logic ; exponential
known ; large ; very
compilation ; queries ; online

automata ; lower ; boundedautomaton ; states ; global
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Topic Hierarchy from Psychology Today

the ; of ; and

a ; model ; memory

response ; stimulus ; reinforcement

speech ; reading ; words

action ; social ; self

group ; iq ; intelligence

hippocampus ; growth ; hippocampal

numerals ; catastrophe ; stream

rod ; categorizer ; child

self ; social ; psychology

sex ; emotions ; gender

reasoning ; attitude ; consistency

genetic ; scenario ; adaptations

motion ; visual ; binocularcolor ; image ; monocular

drug ; food ; brainconditioning ; stress ; behavioral
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Multiple Estimation Problems

• We often face multiple, related estimation problems

• E.g., multiple Gaussian means: xij ∼ N(θi, σ
2
i )

2 θm1

x2 xmjjx1j

θ θ

• Maximum likelihood: θ̂i = 1
ni

∑ni
j=1 xij

• Maximum likelihood often doesn’t work very well

– want to “share statistical strength” (i.e., “smooth”)
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Hierarchical Bayesian Approach

• The Bayesian or empirical Bayesian solution is to view the parameters θi as
random variables, sampled from an underlying variable θ

θ θ2 θm1

x2 xmjjx1j

θ

• Given this overall model, posterior inference yields shrinkage—the posterior
mean for each θk combines data from all of the groups
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Hierarchical Modeling

• Recall the plate notation:

θ

θ i

xij

• Equivalent to:

θ θ2 θm1

x2 xmjjx1j

θ
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Multiple Clustering Problems

• Suppose that we have M groups of data, each of which is to be clustered

• Suppose that the groups are related, so that evidence for a cluster in one
group should be transferred to other groups

• But the groups also differ in some ways, so we shouldn’t lump the data
together

• How do we solve the multiple group clustering problem?

• How do we solve problem when the number of clusters is unknown (within
groups and overall)?
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Protein Folding

• A protein is a folded chain of amino acids

• The backbone of the chain has two degrees of freedom per amino acid (phi
and psi angles)

• Empirical plots of phi and psi angles are called Ramachandran diagrams
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Protein Folding (cont.)

• We want to model the density in the Ramachandran diagram to provide an
energy term for protein folding algorithms

• We actually have a linked set of Ramachandran diagrams, one for each
amino acid neighborhood

• We thus have a linked set of clustering problems

– note that the data are partially exchangeable
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Haplotype Modeling

• Consider M binary markers in a genomic region

• There are 2M possible haplotypes—i.e., states of a single chromosome

– but in fact, far fewer are seen in human populations

• A genotype is a set of unordered pairs of markers (from one individual)

A B c

b Ca

{A, a}
{B, b}
{C, c}

• Given a set of genotypes (multiple individuals), estimate the underlying
haplotypes

• This is a clustering problem
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Haplotype Modeling (cont.)

• A key problem is inference for the number of clusters

• Consider now the case of multiple groups of genotype data (e.g., ethnic
groups)

• Geneticists would like to find clusters within each group but they would also
like to share clusters between the groups
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Natural Language Parsing

• Given a corpus of sentences, some of which have been parsed by humans,
find a grammar that can be used to parse future sentences

a Romavado

S

NP VP

PP

Io

• Much progress over the past decade; state-of-the-art methods are statistical
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Natural Language Parsing (cont.)

• Key idea: lexicalization of context-free grammars

– the grammatical rules (S → NP VP) are conditioned on the specific
lexical items (words) that they derive

• This leads to huge numbers of potential rules, and (adhoc) shrinkage
methods are used to control the counts

• Need to control the numbers of clusters (model selection) in a setting in
which many tens of thousands of clusters are needed

• Need to consider related groups of clustering problems (one group for each
grammatical context)
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Nonparametric Hidden Markov Models

xTx2x1

z zT2z1

• An open problem—how to work with HMMs and state space models that
have an unknown and unbounded number of states?

• Each row of a transition matrix is a probability distribution across “next
states”

• We need to estimation these transitions in a way that links them across rows
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Image Segmentation

• Image segmentation can be viewed as inference over partitions

– clearly we want to be nonparametric in modeling such partitions

• Standard approach—use relatively simple (parametric) local models and
relatively complex spatial coupling

• Our approach—use a relatively rich (nonparametric) local model and
relatively simple spatial coupling

– for this to work we need to combine information across images; this brings
in the hierarchy
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Hierarchical Nonparametrics—A First Try

• Idea: Dirichlet processes for each group, linked by an underlying G0:

x

G

ij

ij

i

θ

0α

G 0

• Problem: the atoms generated by the random measures Gi will be distinct

– i.e., the atoms in one group will be distinct from the atoms in the other
groups—no sharing of clusters!

• Sometimes ideas that are fine in the parametric context fail (completely) in
the nonparametric context... :-(
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Hierarchical Dirichlet Processes

(Teh, Jordan, Beal & Blei, 2006)

• We need to have the base measure G0 be discrete

– but also need it to be flexible and random
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Hierarchical Dirichlet Processes

(Teh, Jordan, Beal & Blei, 2006)

• We need to have the base measure G0 be discrete

– but also need it to be flexible and random

• The fix: Let G0 itself be distributed according to a DP:

G0 | γ,H ∼ DP(γH)

• Then
Gj |α, G0 ∼ DP(α0G0)

has as its base measure a (random) atomic distribution—samples of Gj will
resample from these atoms
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Hierarchical Dirichlet Process Mixtures

Gα 0

G0

θ

x

i

ij

ij

γ

H

G0 | γ, H ∼ DP(γH)

Gi |α, G0 ∼ DP(α0G0)

θij |Gi ∼ Gi

xij | θij ∼ F (xij, θij)
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Chinese Restaurant Franchise (CRF)

• First integrate out the Gi, then integrate out G0

Gα 0

G0

θ

x

i

ij

ij

γ

H

α 0

θ

x

ij

ij

γ

H
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Chinese Restaurant Franchise (CRF)

φ

φ
φ

22

21 23

24

26

25 27

28

33

34

31

32

35
36

= =ψ
12 =ψ

=ψ=ψ =ψ =ψ

=ψ=ψ

11 131 2 1

3 121 22 23 24

31

3 1

1 232

ψ

θ
θ

θ θ

θ
θ

θ
θ

θ

θ θ
θ

17

15

16

1211

13

14
18

θθ
θ

θθθ
θ
θ

φ φ

φφ φ φ

φφ

• To each group there corresponds a restaurant, with an unbounded number
of tables in each restaurant

• There is a global menu with an unbounded number of dishes on the menu

• The first customer at a table selects a dish for that table from the global
menu

• Reinforcement effects—customers prefer to sit at tables with many other
customers, and prefer to choose dishes that are chosen by many other
customers
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Protein Folding (cont.)

• We have a linked set of Ramachandran diagrams, one for each amino acid
neighborhood
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Protein Folding (cont.)

Marginal improvement over finite mixture
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Natural Language Parsing

• Key idea: lexicalization of context-free grammars

– the grammatical rules (S → NP VP) are conditioned on the specific
lexical items (words) that they derive

• This leads to huge numbers of potential rules, and (adhoc) shrinkage
methods are used to control the choice of rules
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HDP-PCFG

(Liang, Petrov, Jordan & Klein, 2007)

• Based on a training corpus, we build a lexicalized grammar in which the
rules are based on word clusters

• Each grammatical context defines a clustering problem, and we link the
clustering problems via the HDP

T PCFG HDP-PCFG
F1 Size F1 Size

1 60.4 2558 60.5 2557
4 76.0 3141 77.2 9710
8 74.3 4262 79.1 50629
16 66.9 19616 78.2 151377
20 64.4 27593 77.8 202767
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Nonparametric Hidden Markov models

xTx2x1

z zT2z1

• A perennial problem—how to work with HMMs that have an unknown and
unbounded number of states?

• A straightforward application of the HDP framework

– multiple mixture models—one for each value of the “current state”
– the DP creates new states, and the HDP approach links the transition

distributions
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Nonparametric Hidden Markov Trees

(Kivinen, Sudderth & Jordan, 2007)

• Hidden Markov trees in which the cardinality of the states is unknown a
priori

• We need to tie the parent-child transitions across the parent states; this is
done with the HDP
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Nonparametric Hidden Markov Trees (cont.)

• Local Gaussian Scale Mixture (31.84 dB)
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Nonparametric Hidden Markov Trees (cont.)

• Hierarchical Dirichlet Process Hidden Markov Tree (32.10 dB)
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Image Segmentation
(Sudderth & Jordan, 2009)

• Image segmentation can be viewed as inference over partitions

• Image statistics are better captured by the Pitman-Yor stick-breaking
processes than by the Dirichlet process

– Pitman-Yor is based on Beta(1− γ1, γ2 + kγ1) instead of Beta(1, α); this
yields power laws

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

Segment Labels (sorted by frequency)

P
ro

po
rt

io
n 

of
 fo

re
st

 S
eg

m
en

ts

 

 

Segment Labels
PY(0.39,3.70)
DP(11.40)

48



Image Segmentation (cont)
(Sudderth & Jordan, 2009)

• So we want Pitman-Yor marginals at each site in an image

• The (perennial) problem is how to couple these marginals spatially

– to solve this problem, we again go nonparametric—we couple the PY
marginals using Gaussian process copulae
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Image Segmentation (cont)
(Sudderth & Jordan, 2009)

• A sample from the coupled HPY prior:
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Image Segmentation (cont)
(Sudderth & Jordan, 2009)

• Comparing the HPY prior to a Markov random field prior
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Image Segmentation (cont)
(Sudderth & Jordan, 2009)
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Beta Processes

• The Dirichlet process yields a multinomial random variable (which table is
the customer sitting at?)

• Problem: in many problem domains we have a very large (combinatorial)
number of possible tables

– it becomes difficult to control this with the Dirichlet process

• What if instead we want to characterize objects as collections of attributes
(“sparse features”)?

• Indeed, instead of working with the sample paths of the Dirichlet process,
which sum to one, let’s instead consider a stochastic process—the beta
process—which removes this constraint

• And then we will go on to consider hierarchical beta processes, which will
allow features to be shared among multiple related objects
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Completely random processes

• Stochastic processes with independent increments

– e.g., Gaussian increments (Brownian motion)
– e.g., gamma increments (gamma processes)
– in general, (limits of) compound Poisson processes

• The Dirichlet process is not a completely random processes

– but it’s a normalized gamma process

• The beta process assigns beta measure to small regions

• Can then sample to yield (sparse) collections of Bernoulli variables
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Beta Processes
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Examples of Beta Process Sample Paths

• Effect of the two parameters c and γ on samples from a beta process.
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Beta Processes

• The marginals of the Dirichlet process are characterized by the Chinese
restaurant process

• What about the beta process?
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Indian Buffet Process (IBP)

(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

• Indian restaurant with infinitely many dishes in a buffet line

• N customers serve themselves

– the first customer samples Poisson(α) dishes
– the ith customer samples a previously sampled dish with probability mk

i+1
then samples Poisson(α

i
) new dishes
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Indian Buffet Process (IBP)

(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

• Indian restaurant with infinitely many dishes in a buffet line

• N customers serve themselves

– the first customer samples Poisson(α) dishes
– the ith customer samples a previously sampled dish with probability mk

i+1
then samples Poisson(α

i
) new dishes
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Indian Buffet Process (IBP)

(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

• Indian restaurant with infinitely many dishes in a buffet line

• N customers serve themselves

– the first customer samples Poisson(α) dishes
– the ith customer samples a previously sampled dish with probability mk

i+1
then samples Poisson(α

i
) new dishes
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Indian Buffet Process (IBP)

(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

• Indian restaurant with infinitely many dishes in a buffet line

• N customers serve themselves

– the first customer samples Poisson(α) dishes
– the ith customer samples a previously sampled dish with probability mk

i+1
then samples Poisson(α

i
) new dishes
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Hierarchical Beta Process
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• A hierarchical beta process is a beta process whose base measure is itself
random and drawn from a beta process.
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Conclusions

• Nonparametric Bayesian modeling: flexible data structures meet probabilistic
inference

• The underlying theory has to do with exchangeability and partial
exchangeability

• We haven’t discussed inference algorithms, but many interesting issues and
new challenges arise

• For more details, including tutorials:

http://www.cs.berkeley.edu/∼jordan
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