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Computer Science and Statistics

Separated in the 40’'s and 50's, but merging in the 90's and 00's

What computer science has done well: data structures and algorithms for
manipulating data structures

What statistics has done well: managing uncertainty and justification of
algorithms for making decisions under uncertainty

What machine learning attempts to do: hasten the merger along

— machine learning isn't a new field per se
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An issue to be grappled with: the two flavors of statistical inference
(frequentist and Bayesian)



Nonparametric Bayesian Inference (Theme 1)

e At the core of Bayesian inference lies Bayes' theorem:

posterior o likelithood x prior

e For parametric models, we let 8 be a Euclidean parameter and write:

p(0x) o< p(x|60)p(0)

e For nonparametric models, we let G be a general stochastic process (an
“infinite-dimensional random variable™) and write:

p(Glz) < p(z]|G)p(G)

which frees us to work with flexible data structures



Nonparametric Bayesian Inference (cont)

Examples of stochastic processes we'll mention today include distributions
on:

— directed trees of unbounded depth and unbounded fan-out
— partitions

— sparse binary infinite-dimensional matrices

— copulae

— distributions

General mathematical tool: completely random processes



Hierarchical Bayesian Modeling (Theme 11)

e Hierarchical modeling is a key idea in Bayesian inference

e |t's essentially a form of recursion

— in the parametric setting, it just means that priors on parameters can
themselves be parameterized

— In our nonparametric setting, it means that a stochastic process can have
as a parameter another stochastic process

e We'll use hierarchical modeling to build structured objects that are
reminiscent of graphical models—but are nonparametric

— statistical justification—the freedom inherent in using nonparametrics
needs the extra control of the hierarchy



What are “Parameters”?

e Exchangeability: invariance to permutation of the joint probability
distribution of infinite sequences of random variables

Theorem (De Finetti, 1935). If (x1,x2,...) are infinitely exchangeable,
then the joint probability p(x1, x2, ..., xN) has a representation as a mixture:

N
p(x1,T9,...,TN) = / <Hp(ach)> dP(G)

for some random element G.

e [ he theorem would be false if we restricted ourselves to finite-dimensional
G



Computational Consequences

e Having infinite numbers of parameters is a good thing; it avoids placing
artificial limits on what one can learn

e But how do we compute with infinite numbers of parameters?

e Important relationships to combinatorics



Stick-Breaking

A general way to obtain distributions on countably infinite spaces

A canonical example: Define an infinite sequence of beta random variables:

B ~ Beta(l, ap) Ek=1,2,...
And then define an infinite random sequence as follows:

k—1
7'('1:51, Wk:ﬁkH(l—ﬁl) k:2,3,...
=1

This can be viewed as breaking off portions of a stick:

By Bor (1-51)




Constructing Random Measures

It's not hard to see that > -, mx = 1 (with probability one)

Now define the following object:

G = Z 7Tk5¢k,
k=1

where ¢;. are independent draws from a distribution Gy on some space
Because > -, mr = 1, G is a probability measure—it is a random measure
The distribution of G is known as a Dirichlet process: G ~ DP(ag, Go)

What exchangeable marginal distribution does this yield when integrated
against in the De Finetti setup?
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Chinese Restaurant Process (CRP)

e A random process in which n customers sit down in a Chinese restaurant
with an infinite number of tables

— first customer sits at the first table
— mth subsequent customer sits at a table drawn from the following
distribution:

P(previously occupied table i | Fp,—1) o< ny (1)
P(the next unoccupied table | F,,_1) o« «q

where n; is the number of customers currently at table ¢ and where F,,, 1
denotes the state of the restaurant after m — 1 customers have been
seated

QOODC
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The CRP and Clustering

e Data points are customers; tables are clusters

— the CRP defines a prior distribution on the partitioning of the data and
on the number of tables

e This prior can be completed with:

— a likelihood—e.g., associate a parameterized probability distribution with

each table
— a prior for the parameters—the first customer to sit at table & chooses

the parameter vector for that table (¢;) from a prior G

| | - | .
|
|
| - " u
e So we now have a distribution—or can obtain one—for any quantity that
we might care about in the clustering setting
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CRP Prior, Gaussian Likelihood, Conjugate Prior

.:. o ;,;3
Sk = (pk: Xk) ~ N(a,b) © IW(a, §)

x; ~ N(¢k) for a data point ¢ sitting at table k

13



Posterior Inference for the CRP

e We've described how to generate data from the model; how do we go
backwards and generate a model from data?

e A wide variety of variational, combinatorial and MCMC algorithms have
been developed

e E.g., a Gibbs sampler is readily developed by using the fact that the Chinese
restaurant process is exchangeable

— to sample the table assignment for a given customer given the seating of
all other customers, simply treat that customer as the last customer to
arrive

— in which case, the assignment is made proportional to the number of
customers already at each table (cf. preferential attachment)

— parameters are sampled at each table based on the customers at that
table (cf. K means)

e (This isn’t the state of the art, but it's easy to explain on one slide)
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Exchangeability
As a prior on the partition of the data, the CRP is exchangeable

The prior on the parameter vectors associated with the tables is also
exchangeable

The latter probability model is generally called the Pélya urn model. Letting
0; denote the parameter vector associated with the ith data point, we have:

1—1

0;|01,...,0i—1 ~ @0G0+Z59j

g=1

From these conditionals, a short calculation shows that the joint distribution
for (61, ...,6,) is invariant to order (this is the exchangeability proof)

As a prior on the number of tables, the CRP is nonparametric—the number
of occupied tables grows (roughly) as O(logn)—we're in the world of
nonparametric Bayes
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Dirichlet Process Mixture Models

o N\

ao G ..-‘I |‘ ‘|‘|...

SRV

G ~ DP(OéoGo)
9@|G ~ G iGl,...,n
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Marginal Probabilities

e To obtain the marginal probability of the parameters 64, 6-, ..

integrate out G

Go

\

'
—»f 5}

., we need to

e This marginal distribution turns out to be the Chinese restaurant process

(more precisely, it's the Pdlya urn model)
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The Nested CRP
(Blei, Griffiths, & Jordan, 2009)

Each node in the tree is an entire Chinese restaurant

Each table in a given restaurant points to another restaurant

A customer starts at the root and selects a table, which leads to another

restaurant, and the process repeats infinitely often

We obtain a measure on trees of unbounded depth and unbounded branching

factors—the nested CRP
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Hierarchical Topic Models
(Blei, Griffiths, & Jordan, 2008)

e The nested CRP defines a distribution over paths in a tree

e At every node in the tree place a distribution on words (a “topic”) drawn
from a prior over the vocabulary

e To generate a document:

— pick a path down the infinite tree using the nested CRP

— repeatedly
x pick a level using the stick-breaking distribution
x select a word from the topic at the node at that level in the tree
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Topic Hierarchy from Psychology Today
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Multiple Estimation Problems

e \We often face multiple, related estimation problems

e E.g., multiple Gaussian means: x;; ~ N(6;,07)

oY T
¢

X]_j X2j anj

L] - - 2 n'
e Maximum likelihood: 6; = %ij—l Lij
)

e Maximum likelihood often doesn’'t work very well

— want to “share statistical strength” (i.e., “smooth”)
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Hierarchical Bayesian Approach

e The Bayesian or empirical Bayesian solution is to view the parameters 6, as
random variables, sampled from an underlying variable 6

o, o6 - &

2] Xmi

e Given this overall model, posterior inference yields shrinkage—the posterior
mean for each 6, combines data from all of the groups
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Hierarchical Modeling

e Recall the plate notation:

e Equivalent to:

‘+

X
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Multiple Clustering Problems

Suppose that we have M groups of data, each of which is to be clustered

Suppose that the groups are related, so that evidence for a cluster in one
group should be transferred to other groups

But the groups also differ in some ways, so we shouldn’t lump the data
together

How do we solve the multiple group clustering problem?

How do we solve problem when the number of clusters is unknown (within
groups and overall)?
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Protein Folding

e A protein is a folded chain of amino acids

e The backbone of the chain has two degrees of freedom per amino acid (phi
and psi angles)

e Empirical plots of phi and psi angles are called Ramachandran diagrams

raw ALA data

150

psl
-50 0 50

-150
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Protein Folding (cont.)

e We want to model the density in the Ramachandran diagram to provide an
energy term for protein folding algorithms

e We actually have a linked set of Ramachandran diagrams, one for each
amino acid neighborhood

e We thus have a linked set of clustering problems

— note that the data are partially exchangeable
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Haplotype Modeling

Consider M binary markers in a genomic region

There are 2™ possible haplotypes—i.e., states of a single chromosome

— but in fact, far fewer are seen in human populations

A genotype is a set of unordered pairs of markers (from one individual)

A B

C

a b

C

—

{A, a}
{B, b}
{C, c}

Given a set of genotypes (multiple individuals), estimate the underlying

haplotypes

This is a clustering problem
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Haplotype Modeling (cont.)

e A key problem is inference for the number of clusters

e Consider now the case of multiple groups of genotype data (e.g., ethnic
groups)

e Geneticists would like to find clusters within each group but they would also
like to share clusters between the groups
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Natural Language Parsing

e Given a corpus of sentences, some of which have been parsed by humans,
find a grammar that can be used to parse future sentences

S
NP VP
PP

o vado a Roma

e Much progress over the past decade; state-of-the-art methods are statistical
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Natural Language Parsing (cont.)

Key idea: lexicalization of context-free grammars

— the grammatical rules (S — NP VP) are conditioned on the specific
lexical items (words) that they derive

This leads to huge numbers of potential rules, and (adhoc) shrinkage
methods are used to control the counts

Need to control the numbers of clusters (model selection) in a setting in
which many tens of thousands of clusters are needed

Need to consider related groups of clustering problems (one group for each
grammatical context)

31



Nonparametric Hidden Markov Models

Zl 22 ZT
Xy X2 X7
e An open problem—how to work with HMMs and state space models that

have an unknown and unbounded number of states?

e Each row of a transition matrix is a probability distribution across “next
states”

e \We need to estimation these transitions in a way that links them across rows
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Image Segmentation

e Image segmentation can be viewed as inference over partitions
— clearly we want to be nonparametric in modeling such partitions

e Standard approach—use relatively simple (parametric) local models and
relatively complex spatial coupling

e Our approach—use a relatively rich (nonparametric) local model and
relatively simple spatial coupling

— for this to work we need to combine information across images; this brings
in the hierarchy
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Hierarchical Nonparametrics—A First Try

e |dea: Dirichlet processes for each group, linked by an underlying Gy:

G,
|

:

0.
X

ij

ij

e Problem: the atoms generated by the random measures G; will be distinct

— i.e., the atoms in one group will be distinct from the atoms in the other
groups—no sharing of clusters!

e Sometimes ideas that are fine in the parametric context fail (completely) in
the nonparametric context... :-(
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Hierarchical Dirichlet Processes
(Teh, Jordan, Beal & Blei, 2006)

e We need to have the base measure GGy be discrete

— but also need it to be flexible and random
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Hierarchical Dirichlet Processes
(Teh, Jordan, Beal & Blei, 2006)

e We need to have the base measure GGy be discrete

— but also need it to be flexible and random

e The fix: Let GGy itself be distributed according to a DP:

e Then
Gj ‘ a, GO ~ DP(O&()GQ)

has as its base measure a (random) atomic distribution—samples of G; will
resample from these atoms
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Hierarchical Dirichlet Process Mixtures

N

v%Q T
GOA¢G “ﬂl“u |||H|HI HHHH.

Golv,H ~ DP(vH)
Gi | «, Go ~ DP(CmGO)
zij | 0~ F(xij, 04)
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Chinese Restaurant Franchise (CRF)

e First integrate out the (G;, then integrate out G

I
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Chinese Restaurant Franchise (CRF)
eef eef eu Q cos
ars) $arw) o) $6r) oo
) 16 () (e

To each group there corresponds a restaurant, with an unbounded number
of tables in each restaurant

There is a global menu with an unbounded number of dishes on the menu

The first customer at a table selects a dish for that table from the global
menu

Reinforcement effects—customers prefer to sit at tables with many other
customers, and prefer to choose dishes that are chosen by many other
customers
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Protein Folding (cont.)

e \We have a linked set of Ramachandran diagrams, one for each amino acid
neighborhood

NONE, ALA, SER ARG , PRO, NONE
o o
=iy s
o | o
Lo Lo
7o 7o
o o
ol ak
o o
Lo | Kp]
T T
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log prob
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Protein Folding (cont.)

Marginal improvement over finite mixture
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Natural Language Parsing

e Key idea: lexicalization of context-free grammars

— the grammatical rules (S — NP VP) are conditioned on the specific
lexical items (words) that they derive

e This leads to huge numbers of potential rules, and (adhoc) shrinkage
methods are used to control the choice of rules
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HDP-PCFG
(Liang, Petrov, Jordan & Klein, 2007)

e Based on a training corpus, we build a lexicalized grammar in which the
rules are based on word clusters

e Each grammatical context defines a clustering problem, and we link the
clustering problems via the HDP

T PCFG HDP-PCFG

Fy Size Fy Size
1 60.4 2558 60.5 2557
4 76.0 3141 77.2 0710
8 74.3 4262 79.1 50629

16 66.9 19616 78.2 151377
20 644 27593 (7.8 202767

43



Nonparametric Hidden Markov models

Zl 22 ZT
i - >_> [ 2N N ] —»(
Xy X2 X7
e A perennial problem—how to work with HMMs that have an unknown and
unbounded number of states?

e A straightforward application of the HDP framework

— multiple mixture models—one for each value of the “current state”
— the DP creates new states, and the HDP approach links the transition
distributions
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Nonparametric Hidden Markov Trees
(Kivinen, Sudderth & Jordan, 2007)

e Hidden Markov trees in which the cardinality of the states is unknown a
priori

e \We need to tie the parent-child transitions across the parent states; this is
done with the HDP
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Nonparametric Hidden Markov Trees (cont.)

e Local Gaussian Scale Mixture (31.84 dB)
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Nonparametric Hidden Markov Trees (cont.)

e Hierarchical Dirichlet Process Hidden Markov Tree (32.10 dB)
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Image Segmentation
(Sudderth & Jordan, 2009)

e Image segmentation can be viewed as inference over partitions

e Image statistics are better captured by the Pitman-Yor stick-breaking
processes than by the Dirichlet process

— Pitman-Yor is based on Beta(1 — 1,72 + k71) instead of Beta(1, «); this
yields power laws

o

[EnN
o

—Segment Labels
——PY(0.39,3.70)
DP(11.40)

I
[N
T

[EnY
o
i’
4
4

[EnY
o
N

[EnY
o
o

|
IS
T

Proportion of forest Segments
=
o

10° 10" 10°
Segment Labels (sorted by frequency)
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Image Segmentation (cont)
(Sudderth & Jordan, 2000)

e So we want Pitman-Yor marginals at each site in an image

e The (perennial) problem is how to couple these marginals spatially

— to solve this problem, we again go nonparametric—we couple the PY
marginals using Gaussian process copulae
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Image Segmentation (cont)
(Sudderth & Jordan, 2000)

e A sample from the coupled HPY prior:
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Image Segmentation (cont)
(Sudderth & Jordan, 2000)

e Comparing the HPY prior to a Markov random field prior
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Image Segmentation (cont)
(Sudderth & Jordan, 2009)

-
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Beta Processes

The Dirichlet process yields a multinomial random variable (which table is
the customer sitting at?)

Problem: in many problem domains we have a very large (combinatorial)
number of possible tables
— it becomes difficult to control this with the Dirichlet process

What if instead we want to characterize objects as collections of attributes
(“sparse features”)?

Indeed, instead of working with the sample paths of the Dirichlet process,
which sum to one, let's instead consider a stochastic process—the beta

process—which removes this constraint

And then we will go on to consider hierarchical beta processes, which will
allow features to be shared among multiple related objects
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Completely random processes

Stochastic processes with independent increments

— e.g., Gaussian increments (Brownian motion)
— e.g., gamma increments (gamma processes)
— in general, (limits of) compound Poisson processes

The Dirichlet process is not a completely random processes

— but it's a normalized gamma process
The beta process assigns beta measure to small regions

Can then sample to yield (sparse) collections of Bernoulli variables
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Beta Processes
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Examples of Beta Process Sample Paths
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e Effect of the two parameters ¢ and v on samples from a beta process.



Beta Processes

e The marginals of the Dirichlet process are characterized by the Chinese
restaurant process

e \What about the beta process?
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Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)

e Indian restaurant with infinitely many dishes in a buffet line

e /N customers serve themselves

— the first customer samples Poisson(«) dishes
the ith customer samples a previously sampled dish with probability et

then samples Poisson(%) new dishes
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Indian Buffet Process (IBP)
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Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2005; Thibaux & Jordan, 2007)
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Hierarchical Beta Process
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e A hierarchical beta process is a beta process whose base measure is itself
random and drawn from a beta process.

62



Conclusions

Nonparametric Bayesian modeling: flexible data structures meet probabilistic
inference

The underlying theory has to do with exchangeability and partial
exchangeability

We haven't discussed inference algorithms, but many interesting issues and
new challenges arise

For more details, including tutorials:

http://www.cs.berkeley.edu/~jordan
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