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Methods of Statistics, Machine Learning, and Data Mining

Mathematical methods
• summary statistics
• models fitted to data
• algorithms that process the data

Visualization methods
• displays of raw data
• displays of output of mathematical

methods
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Mathematical Methods

Critical in all phases of the analysis of data:
• from initial checking and cleaning
• to final presentation of results

Automated learning: adapt themselves to systematic patterns in data

Can carry out predictive tasks

Can describe the patterns in a way that provides fundamental understanding

Different patterns require different methods even when the task is the same
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Visualization Methods

Critical in all phases of the analysis of data:
• from initial checking and cleaning to
• final presentation of results

Allow us to learn which patterns occur out of an immensely broad collection of
possible patterns
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Visualization Methods in Support of Mathematical Methods

Typically not feasible to carry out all of the mathematical methods necessary to
cover the broad collection of patterns that could have been seen by visualization

Visualization provides immense insight into appropriate mathematical methods,
even when the task is just prediction

Automatic selection of best mathematical methods
• model selection criteria
• training-test framework
• risks finding best from of a group of poor performers
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Mathematical Methods in Support of Visualization

Typically not possible to understand the patterns in a data set just displaying the raw
data

Must also carry out mathematical methods and then visualize
• the output
• the remaining variation in the data after adjusting for output
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Tactics and Strategy

Mathematical methods exploit the
tactical power of the computer:
• an ability to perform massive

mathematical computations with
great speed

Visualization methods exploit the
strategic power of the human:
• an ability to reason using input from

the immensely powerful human
visual system

The combination provides the best chance
to retain the information in the data
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Machine Learning Algorithm Deep Blue vs. Human Kasparov

Why was Kasparov so distressed about the possibility that
IBM was cheating by allowing a human to assist the algorithm?
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IBM Machine Learning System Deep Blue vs. Human Kasparov

Why was Kasparov so distressed about the possibility that
IBM was cheating by allowing a human to assist the algorithm?

He knew he had no chance to beat a human-machine combination

The immense tactical power of the IBM
machine learning system

The strategic power, much less than his
own, of a grand master
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Conclusion

MATHEMATICAL METHODS

&

VISUALIZATION METHODS

ARE

SYMBIOTIC
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Plan for this Talk

Visualization Databases for Large Complex Datasets

Just a few minutes in this talk

Paper in Journal of Machine Learning Research (AISTATS 2009 Proceedings)

Web site with live examples: ml.stat.purdue.edu/vdb/

Approach to visualization that fosters comprehensive analysis of large complex
datasets
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Plan for this Talk

The ed Method for Nonparametric Density Estimation & Diagnostic Checking

Current work
• describe here to make the case for a tight coupling of a mathematical method

and visualization methods

Addresses the 50 year old topic of nonparametric density estimation

50 years of kernel density estimates and very little visualization for diagnostic
checking to see if the density patterns are faithfully represented

A new mathematical method built, in part, to enable visualization

Results
• much more faithful following of density patterns in data
• visualization methods for diagnostic checking
• simple finite sample statistical inference
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Visualization Databases for Large Complex Datasets

Saptarshi Guha Paul Kidwell Ryan Hafen William Cleveland

Department of Statistics, Purdue University
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Visualization Databases for Large Complex Datasets

Comprehensive analysis of large complex database that preserves the
information in the data is greatly enhanced by a visualization database (VDB)

VDB
• many displays
• some with many pages
• often with many panels per page

A large multi-page display for a single
display method
• results from parallelizing the data
• partition the data into subsets
• sample the subsets
• apply the visualization method to

each subset in the sample, typically
one per panel

Time of the analyst
• not increased by choosing a large

sample over a small one
• display viewers can be designed to

allow rapid scanning: animation with
punctuated stops

• Often, it is not necessary to view
every page of a display

Display design
• to enhance rapid scanning
• attention of effortless gestalt

formation that conveys information
rather than focused viewing



15
Visualization Databases for Large Complex Datasets

Already successful just with off-the-shelf tools and simple concepts

Can be greatly improved by research in visualization methods that targets VDBs and
large displays

Our current research projects
• subset sampling methods
• automation algorithms for choosing basic display elements
• display design for gestalt formation
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RHIPE

Our approach to VDBs allows embarrassingly parallel computation

Large amounts of computer time can be saved by distributed computing
environments

One is RHIPE (ml.stat.purdue.edu/rhipe)
• Saptarshi Guha, Purdue Statistics
• R-Hadoop Integrated Processing Environment
• Greek for “in a moment”
• pronounced “hree pay”

A recent merging of the R interactive environment for data analysis
(www.R-project.org) and the Hadoop distributed file system and compute engine
(hadoop.apache.org)

Public domain

A remarkable achievement that has had a dramatic effect on our ability to compute
with large data sets
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The ed Method for Nonparametric Density Estimation & Diagnostic Checking

Ryan Hafen William S. Cleveland

Department of Statistics, Purdue University
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Normalized British Income Data (7201 observations)
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Kernel Density Estimation (KDE): Most-Used Method

Let xj for j = 1 to m be the observations, ordered from smallest to largest

Fixed-bandwidth kernel density estimate
with bandwidth h

Kernel K(u) ≥ 0,
∫

∞

−∞
K(u)du = 1

f̂(x) =
1

mh

m
∑

j=1

K
(

x− xj

h

)

K often unit normal probability density,
so h = standard deviation

xj closer to x adds more to f̂(x) than a
further xj

As the bandwidth h increases, f̂(x)
gets smoother
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KDE for Incomes: Gaussian Kernel, Sheather-Jones h
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Three Problems of Nonparametric Density Estimation: Problem 1

We want
• an estimate to faithfully follow the density patterns in the data
• tools that convince us this is happening with our current set of data

There are a few reasonable things
• plot estimates with different bandwidths, small to large
• model selection criteria
• SiZer (Chaudhuri and Marron)

Problem 1: There does not exist a set of comprehensive diagnostic tools.
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Kernel Density Estimates with Gaussian Kernel for Income Data

British Income
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Bandwidth Selection Criterion

Treated as if the criterion automatically provides a good fit to patterns

Silverman

British Income
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There are many criteria

Choosing h replaced by choosing a criterion

Useful, but only a small part of comprehensive diagnosis
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Three Problems of Nonparametric Density Estimation: Problem 2

KDEs are simple and can be made to run very fast, which make us want to use them

Price for the simplicity

Discussed extensively in the literature
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Three Problems of Nonparametric Density Estimation: Problem 2

E(̂f(x)) =
∫

f(x − u)K(u)du, K(u) ≥ 0

This expected value can be far from f(x)
• chop peaks
• fill in valleys
• underestimate density at data boundaries when there is a sharp cutoff in density

(e.g., the world’s simplest density, a uniform)

General assessment: remedies such as changing h or K with x do not fix the
problems, and introduce others

Problem 2: KDEs have much trouble following faithfully the density patterns in data.
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The Three Problems of Nonparametric Density Estimation: Problem 3

Problem 3: Very little technology for statistical inference.
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Regression Analysis (Function Estimation)

Not the impoverished situation of nonparametric density estimation

For example the following model:

yi = g(xi) + εi

• yi for i = 1 to n are measurements of a response

• xi is a p-tuple of measurements of p explanatory variables

• εi are error terms: independent, identically distributed with mean 0

Regression analysis has a wealth of models, mathematical methods,
visualization methods for diagnostic checking, and inference technology
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The ed Method for Density Estimation

Take a model building approach

Turn density estimation to a regression analysis to exploit the rich environment for
analysis

In addition seek to make the regression simple by fostering εi that have a normal
distribution

In fact, it is even more powerful than most regression settings because we know the
error variance
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British Income Data: The Modeling Begins Right Away
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Log British Income Data: The Modeling Begins Right Away
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British Income: The Modeling Begins Right Away

Observations used for nonparametric density estimation
• income less than 3.75
• log base 2 income larger than −2.75
• reduces the number of observations by 39 to 7162

Not realistic to suppose we can get good relative density estimates in these tails by
nonparametric methods

Incomes: xj normalized pounds sterling (nps) for j = 1 to m = 7162, ordered from
smallest to largest



32
Histogram of British Incomes

Consider a histogram interval with length g

Estimate of density for the interval is

κ/m

g

fraction of observations

nps

g is fixed and think of κ as a random variable
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Order Statistics and Their Gaps

xj normalized pounds sterling (nps) for j = 1 to m = 7162, ordered from smallest
to largest

Order statistic κ-gaps:

g
(κ)
1 = xκ+1 − x1

g
(κ)
2 = x2κ+1 − xκ+1

g
(κ)
3 = x3κ+1 − x2κ+1

...

For κ = 10:

g
(10)
1 = x11 − x1

g
(10)
2 = x21 − x11

g
(10)
3 = x31 − x21

...

Gaps have units nps

Number of observation in each interval is κ
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Balloon Densities

Gaps: g
(κ)
i = xiκ+1 − x(i−1)κ+1, i = 1, 2, . . . , n

b
(κ)
i =

κ/m

g
(κ)
i

fraction of observations

nps

=
κ

xiκ+1 − x(i−1)κ+1

fraction of observations

nps

g
(κ)
i is positioned at the midpoint of the gap interval [x(i−1)κ+1, xiκ+1]

x
(κ)
i =

xiκ+1 + x(i−1)κ+1

2
nps

Now κ is fixed and we think of g
(κ)
i as a random variable
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A Very Attractive Property of the Log Balloon Estimate

y
(κ)
i = log(b

(κ)
i ), i = 1, . . . , n

Distributional Properties: The “Theory”

“Approximately” independent and distributed like a constant plus the log of a
chi-squared distribution with 2κ degrees of freedom

E(y
(κ)
i ) = log f(x

(κ)
i ) + log κ− ψ0(κ)

Var(y
(κ)
i ) = ψ1(κ)

ψ0 = digamma function ψ1 = trigamma function
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ed Step 1: Log Balloon Densities

Start with the log balloon densities as “the raw data”

Two considerations in the choice of κ

(1) small enough that there is as little distortion of the density as possible by the
averaging that occurs

(2) large enough that y
(κ)
i is approximately normal

• κ = 10 is quite good and κ = 20 nearly perfect (in theory)
• we can give this up and even take κ = 1 but next steps are more complicated
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ed: Log Balloon Densities vs. Gap Midpoints for Income with κ = 10
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ed Step 2: Smooth Log Balloon Densities Using Nonparametric Regression
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ed Step 2

Smooth y
(κ)
i as a function of x

(κ)
i using nonparametric regression: loess

Fit polynomials locally of degree δ in a moving fashion like a moving average of a
time series

Bandwidth parameter 0 < α ≤ 1

Fit at x uses the [αn] closest points to x, the neighborhood of x

Weighted least-squares fitting where weights decrease to 0 as distances of
neighborhood points increase to the neighborhood boundary

Loess possesses all of the statistical-inference technology of parametric fitting for
linear models
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ed: Three Tuning Parameters

κ: gap length

α: bandwidth

δ: degree of polynomial in local fitting
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Notational Change

Midpoints of gap intervals: x
(κ)
i → xi

Log balloon densities: y
(κ)
i → yi
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ed Step 2

A Model Building Approach

A starter model for the log balloon densities yi as a function of gap midpoints xi

• based on “theory”
• hope for a good approximation to the underlying patterns in the data

yi = y(xi) + εi

y(x) = log(f(x)) = log density
• well approximated by polynomials of degree δ locally in neighbors of x

determined by α
• expect δ to be 2 or 3 to reach up to the tops of peaks and the bottoms of valleys

εi
• independent
• identically distributed with mean 0
• distribution well approximated by the normal

Use the comprehensive set of tools of regression
diagnostics to investigate assumptions
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Model Diagnostics

Important quantities used in carrying out diagnostics

ŷ(x) = ed log density fit from nonparametric regression

ŷi = ŷ(xi) = fitted values at xi = gap midpoints

ε̂i = yi − ŷi = residuals

f̂(x) = exp(ŷ(x)) = ed density estimate

Loess possesses all of the statistical-inference
technology of parametric linear regression

σ̂2
ε = estimate of error variance

• in theory, variance = γ1(κ), which is 0.105 for κ = 10

ν = equivalent degrees of freedom of the fit (number of parameters)
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ed Log Raw Density Estimate for Income: Fit vs. Income

British Income
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ed Log Density Estimate for Income: Residuals vs. Income

British Income
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ed Density Estimate for Income: Fit vs. Income

British Income
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ed Log Density Estimate for Income: Residual Variance vs. Degrees Freedom
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Mallows Cp Model Selection Criterion

A visualization tool for showing the trade-off of bias and variance, which is far more
useful than just a criterion that one minimizes or is optimizing

M : an estimate of mean-squared error

ν: degrees of freedom of fit

M estimates

Bias Sum of Squares

σ2
+

Variance Sum of Squares

σ2

M =

∑

i ε̂
2
i

σ̂2(ε)
− (n− ν) + ν

E(M) ≈ ν when the fit follows the pattern in the data

The amount by which M exceeds ν is an estimate of the bias

Cp: M vs. ν
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ed Log Density Estimate for Income: Cp Plot
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Model Selection for British Incomes

From Cp plot, plots of residuals, and plots of fits

Gap size: κ = 10

Polynomial degree: δ = 2

Bandwidth parameter: α = 0.16

Equivalent degrees of freedom: ν = 19
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ed Log Density Estimate for Income: Fit vs. Income
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ed Log Density Estimate for Income: Residuals vs. Income
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ed Log Density Estimate for Income: Absolute Residuals vs. Income
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ed Log Density Estimate for Income: Lag 1 Residual Correlation Plot
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ed Log Density Estimate for Income: Normal Quantile Plot of Residuals

Normal Quantiles

R
es

id
ua

ls

−1.0

−0.5

0.0

0.5

1.0

−0.5 0.0 0.5 1.0



56
ed Density Estimate and KDE for Income: Fits vs. Income

British Income
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ed Log Density Estimate and Log KDE for Income: Residuals vs. Income
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ed Log Density Estimate for Income: 99% Pointwise Confidence Intervals
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Queuing Delays of Internet Voice-over-IP Traffic

264583 observations

From a study of quality of service for different traffic loads

Semi-empirical model for generating traffic

Simulated queueing on a router
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Silverman Bandwidth KDE for Delay: Fit vs. Delay
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Silverman Bandwidth Log KDE for Delay: Residuals vs. Delay
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ed Log Raw Density Estimates for Delay: κ = 100 Because of Ties
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ed Log Density Estimates for Delay: 3 Independent Fits for Three Intervals

Polynomial degrees δ and bandwidths α for loess fits

Interval 1: δ = 1, α = 0.75

Interval 2: δ = 2, α = 0.5

Interval 3: δ = 1, α = 1.5
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ed Log Density Estimates for Delay: 3 Fits vs. Delay
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ed Log Density Estimates, 3 Fits for Delay: Residuals vs. Delay
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Silverman Bandwidth KDE for Delay: 3 Fits

Unit normal kernel so h = standard deviation

Interval 1: h = 0.00346

Interval 2: h = 0.00532

Interval 3: h = 0.00971



67
Silverman Bandwidth KDE for Delay: 3 Fits vs. Delay
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Silverman Bandwidth Log KDE, 3 Fits for Delay: Residuals vs. Delay
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Computation

We use existing algorithms for loess to get faster computations for ed than direct
computation

Still, are the ed computations fast enough, especially for extensions to higher
dimensions?

Alex Gray and collaborators have done some exceptional work in algorithms for fast
computation of KDEs and nonparametric regression

Nonparametric Density Estimation: Toward Computational Tractability. Gray, A. G.
and Moore, A. W. In SIAM International Conference on Data Mining, 2003. Winner
of Best Algorithm Paper Prize.

How can we tailor this to our needs here?
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RHIPE

ed presents embarrassingly parallel computation

Large amounts of computer time can be saved by distributed computing
environments

One is RHIPE (ml.stat.purdue.edu/rhipe)
• Saptarshi Guha, Purdue Statistics
• R-Hadoop Integrated Processing Environment
• Greek for “in a moment”
• pronounced “hree pay”

A recent merging of the R interactive environment for data analysis
(www.R-project.org) and the Hadoop distributed file system and compute engine
(hadoop.apache.org)

Public domain

A remarkable achievement that has had a dramatic effect on our ability to compute
with large data sets


