
Finding Frequent Itemsets in High-Speed Data Streams

Xingzhi Sun Maria E. Orlowska Xue Li
School of Information Technology and Electrical Engineering

The University of Queensland, Australia
{sun, maria, xueli}@itee.uq.edu.au

Abstract

Finding frequent itemsets from data streams is one of im-
portant tasks of stream data mining. In a time-varying data
stream, when the significant change on the frequent itemsets
is detected, it is ideal to compute the new frequent itemsets
as quickly as possible. Traditional stream data mining al-
gorithms mainly focus on finding the frequent itemsets in
one scan, which saves the disk access time. However, the
computation cost of processing data is also an important
factor in the stream management. In this paper, we propose
a new approach that can avoid disk access and meanwhile
simplify the computation of data processing. The basic idea
is: during the mining of the frequent itemsets, we make ev-
ery data pass on the significant amount of new coming data
rather than scan the old data multiple times. Preliminary
experiment results are reported to demonstrate the perfor-
mance of our approach.

1 Introduction

Nowadays, a growing number of applications generate
data streams [2, 6], such as telecom call records, web click-
streams, data collected in sensor networks and etc. Gener-
ally, the data streams have the following characteristics: 1)
data are coming continuously and at a very rapid rate, 2) the
size of data is unbounded, and 3) data (including the pat-
terns hidden in the data) are time-varying. Because the tra-
ditional database management system is designed for finite
and persistent datasets, the tasks of managing data streams
provide researchers with many new challenges and oppor-
tunities. In general, the stream data mining research tar-
gets on extractingapproximateknowledge/patterns by only
scanning the data streamonceso that the mining results can
be obtained as quickly as possible.

Finding frequent itemsets is one of the most important
data mining tasks. In some applications, one may be only
interested in the frequent itemsets in the recent period of
time. For example, in the telecommunication network fault

analysis, it is important to know what are the frequent item-
sets happening before the faults on the network during the
recent period of time. In a time-varying data stream, the fre-
quency of itemsets may change with time. This will invalid
some old frequent itemsets and also introduce new ones.
When changes are detected (e.g., a large fraction of old
frequent itemsets are found no longer valid during the test
against new arriving data), the frequent itemsets need to be
re-computed to reflect the features of new data and the result
should be available as quickly as possible.

In this paper, we discuss how to find frequent itemset
from a high speed data stream. The research problem is
specified in Figure 1. LetS be a data stream in which each
transaction record comes with a timestamp at a rapid rate.
The interval[ts, te] gives the range of data for computing
frequent itemsets, wherets andte are two timestamps. We
assume that data in[ts, te] cannot fit in the main memory.
Traditionally, these data are stored into the hard disk. Af-
ter timestampte, certain algorithm can be applied to com-
pute frequent itemsets and the result setR can be obtained
at the timestamptr. In this paper, to meet the real time
requirement, we try to propose an approach togradually
compute the frequent itemsets when data arrive such that
the approximateresult setR′ can be obtained att′r where
t′r − te ¿ tr − te.

Figure 1. A fragment of sequence

To shorten the response timet′r − te, previous studies
[8, 5, 9] focus on avoiding disk access. That is, data are
not stored into the hard disk and are only buffered in the
main memory. After being processed, historic data in the
main memory are replaced by new arriving data and only
the summary of historic data is maintained. Finally, the ap-

proximate knowledge is derived from the summary. The
research driven by the above basic idea targets on finding
an appropriate summary such that 1) the size of summary is
far less than that of original data, 2) approximate knowledge
can be derived from the summary, and 3) the summary can
be maintained incrementally.

Generally, the response time is related to the disk access
time and the data processing time. In some cases, only con-
trolling the disk access time cannot be sufficient to process
the data stream. For example, if data come with a very high
speed and the data processing speed is relatively slow due
to the complexity of the algorithm, when the data buffered
in the main memory are computed, there are already large
amounts of new data accumulated. In this case, the new ar-
riving data cannot be buffered into the main memory due
to the size limit. Then, the data have to be stored into hard
disk, or the sampling technique needs to be applied. Appar-
ently, both will have negative impact on the stream process-
ing.

In this paper, we investigate the problem of finding fre-
quent itemsets in data streams from a different angle. That
is, besides avoiding disk access, we also try to reduce the
data processing time. It is well-known that finding accurate
frequent itemsets needs multiple scans on the data. Our ba-
sic idea is: in a data stream, whenenoughamount of data
are observed, we compute the part of mining result from one
scan on these data, then we make the subsequent scans on
the new coming data until the complete set of frequent item-
sets is discovered. Especially, we use Chernoff bound [3] to
find how many transactions are significant enough to show
the statistical features of the data stream. Then, using this
number, we can partition the streaming data into fragments
and thek-th fragment corresponds to a data scan required
for finding thek-lengthed frequent itemsets. Thus we only
need to scan the whole data stream once and the computa-
tion cost is dramatically reduced because in each fragment
we only compute a set of fixed-lengthed frequent itemsets.

The rest of this paper is organized as follows. Section
2 gives the background of finding frequent itemsets in data
streams. Our approach is proposed and discussed in Section
3. The preliminary experiment results are shown in Section
4. Finally, we conclude this paper in Section 5.

2 Background

In this section, we give the background of our
study. First, we review the problem of mining frequent
itemsets and then discuss some related work of finding fre-
quent itemsets on the context of data streams.

The frequent itemset mining is introduced in [1] by
Agrawal and Srikant. To facilitate our discussion, we give
the formal definitions as follows.

Let I = {i1, . . . , im} be a set ofitems. An itemsetX

is a subset ofI. X is calledk-itemset if |X| = k, where
k is thesize(or length) of the itemset. AtransactionT is
a pair(tid,X), wheretid is a unique identifier of a trans-
action andX is an itemset. A transaction(tid,X) is said
to containan itemsetY iff X ⊇ Y. A datasetD is a set of
transactions.

Given a datasetD, thesupport of an itemsetX, denoted
asSupp(X), is the fraction of transactions inD that contain
X. An itemsetX is frequentif Supp (X) is no less than a
given thresholds0. An important property of the frequent
itemsets, called theApriori property, is that every nonempty
subset of a frequent itemset must also be frequent.

The problem of finding frequent itemsets can be spec-
ified as: given a datasetD and a support thresholds0, to
find any itemset whose support inD is no less thans0. In
this paper, the datasetD corresponds to the segment of data
streamS in interval[ts, te].

The algorithmApriori is introduced in [1] to find the fre-
quent itemsets based on the Apriori property. Basically,
(k + 1)-candidate frequent itemsets are generated byk-
frequent itemsets to reduce the searching space. The algo-
rithm consists of the following steps.

1. Candidate generation: Generating candidate frequent
itemsets, each of which hask items (k is initialized as
1 when the algorithm starts).

2. Support counting: Scanning the dataset to find the sup-
port of each candidate itemset and prune those whose
support is less than the threshold.

3. k = k + 1, go to step 1.

It is clear that the Apriori algorithm needs at mostl + 1
scans if the maximum size of frequent itemset isl. On the
context of data streams, to avoid disk access, previous stud-
ies focus on finding the approximation of frequent itemsets
with a bound of space complexity.

In [8], the authors propose two algorithms, calledStick-
SamplingandLossy-counting, to support(ε, δ) approxima-
tion for the frequentitemsproblem with a bound of space
complexity. That is, given an error boundε and a probabilis-
tic boundδ, both algorithms guarantee that with confidence
1−δ, 1) all items (not itemsets) whose true support exceeds
s0 are output, 2) no item whose true support is less than
s0 − ε is output, and 3) computed support is less than the
true support by at mostε. Specially, with(ε, δ) approxima-
tion, the space complexity of Stick-Sampling and Lossy-
counting areO

(
1
ε log

(
s−1
0 δ−1

))
and O

(
1
ε log (εN)

)
re-

spectively, whereN is the total number of transactions. In
[8], the authors also propose a Buffer-Trie-SetGen approach
to extend finding frequent items to finding frequent item-
sets. In this approach, when a transaction (a set of items)
arrives, all of its non-empty subsets are enumerated and

treated as “items”. However, this leads to the difficulty of
determine the upper bound of the number of entries.

The work [9] also applies the Buffer-Trie-SetGen ap-
proach to compute the frequent itemsets. However, the pro-
posed algorithm is false-negative oriented, i.e., some fre-
quent itemsets may not be included in the mining result.
This algorithm is effective to reduce the memory consump-
tion because a large number of infrequent itemsets (false-
positive ones) are excluded from the mining result. Experi-
ments shows that the quality of mining results can be guar-
antied by controlling the predefined parameters.

In [5], data stream is partitioned into data fragments,
each of which can fit in the main memory. Given a sup-
port error0 < ε < s0, to guarantee the computed support in
the range of[Supp(X)− ε, Supp(X)] , the itemsets whose
support is no less thanε (calledsemi-frequent itemsets) are
found in each data fragments. All semi-frequent itemsets
are incrementally maintained in a compact data structure,
which is a pattern tree with tilt time window frame embed-
ded on its nodes. At timete, given a window sizeT , the
approximate frequent itemsets in[te − T, te] can be derived
from the pattern tree.

We can see that previous studies mainly focus on avoid-
ing disk access but disregard the cost of data processing.
Considering the work [5], suppose that time interval∆t is
required to find the semi-frequent itemsets in a data frag-
ment. If the streaming data arrive at a very rapid raterN ,
during the period of computing the data fragment in the
buffer, rN ∗ ∆t amount of new arriving data are accumu-
lated. These data may not be buffered due to the limited
size of memory. From the above discussion, we believe that
for data stream management, besides the attempt of avoid-
ing disk access, data processing time should also be consid-
ered.

Our consideration for simplifying the computing process
is: instead of scanning the entire data multiple times, we
make each data pass on a fraction of data stream and al-
ways perform the next scan on the new arriving data. This
idea is inspired by the previous work [4], which studies the
decision tree induction in a high-speed data stream. In [4],
when enough data (determined by the Hoeffding bound) are
observed, the root attribute of the decision tree is selected.
Then subsequent data are passed through the induced por-
tion to further choose a split attribute until the decision tree
is built completely. In this paper, we apply the similar idea
on the context of frequent itemset mining.

3 Our Proposed Approach

In this section, we propose a new approach to solve the
problem defined in Section 1. Remember that as shown in
Figure 1, our goal is to quickly find approximate frequent
itemsets from the data segment of data streamS in the in-

terval [ts, te]. To minimize the response timet′r − te, our
approach should satisfy the following requirements during
the mining process: 1) no disk access is needed and 2) the
data in the buffer can be processed very quickly.

The new proposed approach, called SApriori, follows
the basic structure of the Apriori algorithm. As stated in
Section 2, the Apriori algorithm can find frequent item-
sets by scanning the dataset at mostl + 1 times, wherel
is the maximum size of frequent itemsets. The pseudo code
of S Apriori is shown in Figure 2. Letn0 be theenough
number of transactions that can reflect the true support of
itemsets (we will discuss how to determinen0 later). At
the beginning stage, we find 1-frequent itemsetsF1 from
the firstn0 transactions. Candidate 2-frequent itemsets are
then generated based onF1 and their supports are computed
by scanning the nextn0 transactions. Such process contin-
ues until there are no candidate frequent itemsets generated.
Apparently, if the number of actual scans isl0, the data used
in computing frequent itemset isl0 ∗n0. Note that although
different lengthed frequent itemsets are found from differ-
ent data fragments, due to the candidate generation process,
the Apriori property still holds for the mining result. That is,
our mining result ensures that any subset of frequent item-
sets is frequent.

Algorithm
Input: A data streamS and the support thresholds0.
Output: Approximate frequent itemsetsF in a segment ofS
Method:

Determinen0;
Scann0 transactions and findF1 = {frequent 1-itemset};
for(k = 2; Fk−1 6= φ; k + +) do

Ck =Candidatek-itemsets generated fromFk−1;
Scan the nextn0 transactions and

computeSupp(X) for anyX ∈ Ck

Fk = {X ∈ Ck|(Supp(X)) ≥ s0};
Approximate frequent itemsetsF =

⋃
k Fk;

Figure 2. S Apriori algorithm

After introducing our basic idea, we further discuss our
approach by answering the following three questions.

1. How to determinen0 (wheren0 is the number of trans-
actions that is significant enough to reflect the support
of itemsets)?

2. Given n0 and the number of scansl0, theocratically,
the proposed approach needsl0 ∗ n0 transactions to
compute frequent itemsets. How can we linkl0 ∗ n0

transactions to the data in the interval[ts, te]?

3. Since our approach provides the approximate mining
result, can the resultR′ be a good approximation of
the accurate result setR (whereR is the set of frequent
itemsets in the segment ofS in [ts, te])?

First, to determine the number of transactions that can
reflect the true support of itemsets, we use a statistical re-
sult Chernoff bound [3]. This statistical tool has been suc-
cessfully applied in the previous studies [4, 7, 9] of stream
data management. Based on then observations of the inde-
pendently generated data, the Chernoff bound can provide
certain probabilistic guaranty on the estimation of statistic
features of the entire data. As stated in [9], Chernoff bound
can be applied into the problem of finding frequent itemsets
in data streams as follows.

Givenn transactions observed and the support threshold
s0, the Chernoff bound ensures that for any itemsetX, with
confidence1− δ, the true support ofX (Supp(X)) is in the

range of
[
˜Supp(X)− ε, ˜Supp(X) + ε

]
, where ˜Supp(X)

is the computed support ofX in thesen transactions and

ε =
√

2s0 ln(2
δ)

n .
Given the error boundε, probabilistic boundδ, and

the minimum supports0, we can use the above formula
to compute the numbern0. For example, ifs0 = 0.01,
ε = 0.002 and δ = 0.1, with Chernoff bound, we have
n = 14, 979. This means that for an itemsetX, after 14,979
transactions are observed, its true support is in the range

of
[
˜Supp(X)− 0.002, ˜Supp(X) + 0.002

]
with high prob-

ability 0.9. Note that ˜Supp(X) gives the support ofX in
these 14,979 transactions.

Now we discuss how the number of transactions required
by our approach links to the number of transactions in the
interval [ts, te]. Suppose that the data arriving rate is fixed,
denoted asc0. The numberN of transactions in[ts, te] is
(te − ts) ∗ c0. In addition, assume that we know the num-
ber of scans (l0) required to find all frequent itemsets. To
match the number of transactions required in SApriori to

N , it is ideal that each fragment has
[

N
l0

]
transactions.

Also remember that to achieve the(ε, δ) approximation, the

number of transaction required is
2s0 ln(2

δ)
ε2 , which is de-

termined by Chernoff bound. Thus, we can adjustn0 as

Max{
[

N
l0

]
,

2s0 ln(2
δ)

ε2 }.
In practice, the number of data scansl0 is unknown to

the user before the mining, however, according to the Apri-
ori algorithm, we know thatl0 ∈ {l, l + 1} wherel is the
maximum size of frequent itemsets. In a time-varying data
streams, we often need to recompute frequent itemsets if
any significant change is detected. In this case, we could
estimatel0 based on old frequent itemsets. Then,n0 can
be decided based on the estimated sizel′0. If the actual size
n0 ∗ l0 is not well-matched the total number of transactions
N in the interval[ts, te] (due to the bad estimation ofl0),
we have the following two situations:

• n0 ∗ l0 > N : It means that the number of transactions
required for computation is more than the number of

transactions in the interval. In this case, we can use
the new arriving data to complete the computation. Or
we can buffer the lastn transactions, on which further
scans are made.

• n0 ∗ l0 < N : the computation is completed before
some data in the interval are used. One way to solve
this problem is: after the frequent itemsets are found,
we use the rest data to do the support checking, based
on which the mining result could be adjusted. The
other way is to ignore the data if the amount of unused
data is not large.

In our approach, we don’t make strict constraint on the
matching between actual data required by SApriori and the
data in window[ts, te]. This is because the data range of the
mining is also an unknown factor, which is determined by
domain experts. In practice, often multiple window sizes
are attempted. So, our approach would be working if the
estimation makes the data range sensible to the application
domain. In this case, the actual interval for computing is
relaxed to[ts, t′e], where|te − t′e| should be much less than
(te − ts).

Finally, we discuss whether the mining result is close to
the accurate result in[ts, t′e]. Based on Algorithm SApriori,
we have the following two observations.

1. If data are uniformly distributed in the interval[ts, t′e],
eachn0 transactions carry the same statistical informa-
tion. Then, our proposed approach can find the result
that is a close approximation of the accurate result.

2. If data contain distribution changes on the frequent
itemsets, our approach may make the considerable dif-
ference between the mining result and the true result.
Suppose that after the setF1 of 1-frequent itemsets
is found in the firstn0 transactions, there is a sud-
den change on the distribution of the subsequent data.
Then, some frequent itemsets will be missing if any
item they contained is not included inF1.

Observation 1 gives the situation in which our approach
can work perfectly. From Observation 2, we know that the
performance of our approach depends on the data. The rea-
son is that the computations on different fragment (n0 trans-
actions) are tightly coupled because the candidate frequent
itemsets are generated by the previously computed frequent
itemsets. Theoretically, if there is any fragment providing
incorrect result, the computation on the subsequent frag-
ments may become meaningless.

To sum up, the advantages of our proposed algorithm
are 1) data are only scan once and 2) because each scan is
made on different data fragment, the computation cost is
distributed and only the simple support counting is required
for the fixed-lengthed candidate frequent items during each

scan. The disadvantage is that the performance of the algo-
rithm can be affected by the data distribution.

4 Preliminary Experiment Results

In this section, we show the preliminary experiment re-
sults to test the effectiveness of our proposed approach and
discuss how to improve the accuracy of the mining result.

Consider the algorithm SApriori, for any arriving trans-
action, only a set of fixed-lengthed candidate frequent item-
sets are tested, which makes the data processing very sim-
ple. Also, during the scan of thek-th data fragment, only the
shorter-lengthed frequent itemsets (i.e.,F1∪F2 · · ·∪Fk−1)
and k-lengthed candidate frequent itemsets (i.e.,Ck) are
kept in the main memory. From this analysis, we can see
that the SAprior algorithm is efficient to the stream pro-
cessing due to its time complexity and physical complex-
ity. So, the focus of the experiment part is to discuss the
effectiveness of our approach, i.e., whether the output of
S Apriori is a good approximation of the accurate result.

We show some preliminary experiment results on both
artificial dataset and real dataset. Because our experiment
goal is to demonstrate the effectiveness of our approach,
all datasets are treated as static. The artificial dataset
T10I4D100K is created by IBM synthetic data generator
[1]. Two real datasets are derived from the fault-related data
from an Australian telecommunication company. In the real
datasets, each “transaction” is a set of events that occurred
within 24 hours before a fault on the telecommunication
network. Especially, datasetTelecom 1 consists of such
transactions that are collected from a single network node
in one month. To deliberately make the distribution change,
we createTelecom 2 by combining two half-month data
collected from two different nodes, i.e., the first half trans-
actions are collected in fifteen days from the node A and
the rest data are from the other node B in the same fifteen
days. The characteristics of the above-mentioned datasets
are given in Table 1.

Table 1. Datasets
Dataset # of items # of transactions
T10I4D100K 1000 100K
Telecom1 189 52K
Telecom2 190 54K

In our experiment, we always sets0 = 0.01, ε = 0.002,
and δ = 0.1. The number of transactions determined by
Chernoff boundNc is 14.98K. According to the IBM data
generator, we can estimate that the number of scans re-
quired for finding frequent itemsets in datasetT10I4D100K
is about 4. So, we set the fragment sizen0 as 25K (i.e.,
Max{ 100K

4 , 14.98K}) for the datasetT10I4D100K.For
the telecommunication datasets, we use the number 14.98K

(Nc) since we have no idea how many scans required in the
mining process.

As discussed before, the total numberN1 of transactions
required for the algorithm SApriori may not well match
the numberN of transactions in the dataset. IfN1 > N, we
make the rest scans on the lastNc transactions in the dataset,
whereNc is the number determined by the Chernoff bound.
And the accurate mining resultR is the set of frequent item-
sets computed fromN transactions. Otherwise ifN > N1,
we ignore the restN − N1 transactions. In this case,R is
the set of frequent itemsets found inN1 transactions.

Table 2. Experiment results
Dataset Fragment Sizen0 Recall Precision
T10I4D100K 25K 0.99 0.99

Telecom1 14.98K 0.86 0.92
Telecom2 14.98K 0.61 0.80

Let the output of the algorithm SApriori be R′. We
compareR′ and the accurate resultR by using recall and

precision, which are defined as
|R∩R′|
|R| and

|R∩R′|
|R′| respec-

tively. The comparison results are shown in Table 2. Be-
cause in the datasetT10I4D100K, data are generated with
the same distribution, our approach works very effectively.
In the real datasetTelecom 1, there is no guarantee on the
consistence of the data distribution. So the recall and preci-
sion are relatively low compared with the artificial dataset.
In the third datasetTelecom 2, because the data distribu-
tion is deliberately changed in the dataset,R′ cannot be an
appropriate approximation ofR. These preliminary results
also verify the two observations that we made in Section 3.

One reason why the performance of our approach de-
pends on the data distribution is that the computations on
different fragments are dependant. Since this dependency
lies in the candidate frequent itemset generation, we may
test more candidate itemsets during each scan to relax this
dependency. Based on this consideration, in the mining
process, we could lower the support threshold froms0 to
s1. Then a larger amount of frequent itemsets are discov-
ered and consequently more candidate frequent itemsets are
generated and tested. After the mining process complete,
we can recover the thresholds0, i.e., select the itemsets that
are frequent in terms ofs0 as the mining result. Note that
according to the above mining process, the frequent(k+1)-
itemset (in terms ofs0) found in (k + 1)-th fragment can
be generated by the semi-frequent itemset (i.e., the itemset
whose support is in the range[s1,s0)) in thek-th fragment.
Thus, the Apriori property may be violated in the mining
result. So, in the final step, we need to use the following
two rules to adjust frequent itemsets to ensure the Apriori
property.

1. Adjustment starts from the largest-sized frequent item-

sets to 1-frequent itemset.

2. If a frequent itemsetX is of size k and any
(k − 1)-sized subsetY of X satisfies the condition
Supp(X) > Supp(Y), the support ofY is updated
asSupp(X)1.

We will test the effectiveness of the above-mentioned ap-
proach in the future work.

5 Conclusion

In this paper, we have investigated the problem of finding
frequent itemsets in high-speed data streams. To meet the
real time requirement, previous research targets on avoiding
disk access to reduce the response time. Due to the fact that
the response time is related to disk access time and the data
process time, we made our attempt from a different angle,
i.e., to lower the computation cost of data processing. Based
on this consideration, we have proposed a new approach
which can avoid disk access and meanwhile simplify the
computation of data processing. The basic idea is that data
stream is partitioned into fragments (with certain size), from
each of which part of mining result is generated. Finally, we
report and analyze the preliminary experiment results of our
proposed algorithm.

One weakness of the proposed approach is that the level
of approximation between computed result and accurate re-
sult can be affected by the data distribution. In the future
work, we will investigate how to guarantee the good approx-
imation of mining result when the data distribution changes.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. InProc. 20th VLDB, pages 487–499, 1994.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. InPODS ’02,
pages 1–16, 2002.

[3] H. Chernoff. A measure of asymptotic efficiency for tests of
a hypothesis based on the sum of observations.Annals of
Mathematical Statistics, 23(4):493–507, 1952.

[4] P. Domingos and G. Hulten. Mining high-speed data streams.
In KDD, pages 71–80, 2000.

[5] C. Giannella, J. Han, J. Pei, X. Yan, and P. Yu. Mining fre-
quent patterns in data streams at multiple time granularities.
In H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha, editors,
Next Generation Data Mining. AAAI Press/MIT Press, 2003.

[6] L. Golab and M. T. Ozsu. Issues in data stream management.
SIGMOD Rec., 32(2):5–14, 2003.

1In the SApriori approach proposed in Section 3, we also use the same
two rules to adjust the support of frequent itemsets to guarantee that for
any two frequent itemsetX andY with X ⊃ Y, Supp(X) ≤ Supp(Y)
always holds.

[7] G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. InKDD, pages 97–106, 2001.

[8] G. S. Manku and R. Motwani. Approximate frequency counts
over data streams. InVLDB, pages 346–357, 2002.

[9] J. X. Yu, Z. Chong, H. Lu, and A. Zhou. False positive or false
negative: Mining frequent itemsets from high speed transac-
tional data streams. InVLDB, pages 204–215, 2004.

