Finding Frequent Itemsets in High-Speed Data Streams

Xingzhi Sun Maria E. Orlowska Xue Li
School of Information Technology and Electrical Engineering
The University of Queensland, Australia
{sun, maria, xue}i@itee.uqg.edu.au

Abstract analysis, it is important to know what are the frequent item-
sets happening before the faults on the network during the
Finding frequent itemsets from data streams is one of im- recent period of time. In a time-varying data stream, the fre-
portant tasks of stream data mining. In a time-varying data quency of itemsets may change with time. This will invalid
stream, when the significant change on the frequent itemsetsome old frequent itemsets and also introduce new ones.
is detected, it is ideal to compute the new frequent itemsetsWhen changes are detected (e.g., a large fraction of old
as quickly as possible. Traditional stream data mining al- frequent itemsets are found no longer valid during the test
gorithms mainly focus on finding the frequent itemsets in against new arriving data), the frequent itemsets need to be
one scan, which saves the disk access time. However, thee-computed to reflect the features of new data and the result
computation cost of processing data is also an important should be available as quickly as possible.
factor in the stream management. In this paper, we propose |n this paper, we discuss how to find frequent itemset
a new approach that can avoid disk access and meanwhilefrom a high speed data stream. The research problem is
simplify the computation of data processing. The basic ideaspecified in Figure 1. Le$ be a data stream in which each
is: during the mining of the frequent itemsets, we make ev-transaction record comes with a timestamp at a rapid rate.
ery data pass on the significant amount of new coming dataThe intervalt,, t.] gives the range of data for computing
rather than scan the old data multiple times. Preliminary frequent itemsets, whete andt. are two timestamps. We
experiment results are reported to demonstrate the perfor- gssume that data i, t.] cannot fit in the main memory.
mance of our approach. Traditionally, these data are stored into the hard disk. Af-
ter timestamp., certain algorithm can be applied to com-
pute frequent itemsets and the result Batan be obtained
1 Introduction at the timestamg,. In this paper, to meet the real time
requirement, we try to propose an approactgtadually

Nowadays, a growing number of applications generate compute the frequent itemsets when data arrive such that
, . p i
data streams [2, 6], such as telecom call records, web cIick-the approximateresult set’ can be obtained af. where

streams, data collected in sensor networks and etc. Genert-i' —le K tp —te.

ally, the data streams have the following characteristics: 1)

data are coming continuously and at a very rapid rate, 2) the R: the set of frequent

size of data is unbounded, and 3) data (including the pat- itemsets in /7, £.]

terns hidden in the data) are time-varying. Because the tra-

ditional database management system is designed for finite S ! | — ! >

and persistent datasets, the tasks of managing data streams I I t, I t

provide researchers with many new challenges and oppor-

tunities. In general, the stream data mining research tar- Figure 1. A fragment of sequence

gets on extractingpproximateknowledge/patterns by only

scanning the data streaznceso that the mining results can To shorten the response ting — ¢., previous studies

be obtained as quickly as possible. [8, 5, 9] focus on avoiding disk access. That is, data are
Finding frequent itemsets is one of the most important not stored into the hard disk and are only buffered in the

data mining tasks. In some applications, one may be onlymain memory. After being processed, historic data in the

interested in the frequent itemsets in the recent period ofmain memory are replaced by new arriving data and only

time. For example, in the telecommunication network fault the summary of historic data is maintained. Finally, the ap-

proximate knowledge is derived from the summary. The is a subset of. X is calledk-itemset if| X| = k, where
research driven by the above basic idea targets on findingk is thesize(or length of the itemset. Atransaction? is
an appropriate summary such that 1) the size of summary isa pair (tid, X'), wheretid is a unique identifier of a trans-
far less than that of original data, 2) approximate knowledge action andX is an itemset. A transactioftid, X) is said
can be derived from the summary, and 3) the summary canto containan itemsef” iff X D Y. A datasetD is a set of
be maintained incrementally. transactions.

Generally, the response time is related to the disk access Given a dataseb, thesupport of an itemsekX, denoted
time and the data processing time. In some cases, only conasSupp(X), is the fraction of transactions ifi that contain
trolling the disk access time cannot be sufficient to processX. An itemsetX is frequentif Supp (X) is no less than a
the data stream. For example, if data come with a very highgiven thresholds,. An important property of the frequent
speed and the data processing speed is relatively slow duéemsets, called thapriori property, is that every nonempty
to the complexity of the algorithm, when the data buffered subset of a frequent itemset must also be frequent.
in the main memory are computed, there are already large The problem of finding frequent itemsets can be spec-
amounts of new data accumulated. In this case, the new arified as: given a dataséd and a support thresholg), to
riving data cannot be buffered into the main memory due find any itemset whose support itk is no less thamg. In
to the size limit. Then, the data have to be stored into hardthis paper, the datasét corresponds to the segment of data
disk, or the sampling technique needs to be applied. Appar-streamS in interval [¢, t].
ently, both will have negative impact on the stream process- The algorithmApriori is introduced in [1] to find the fre-
ing. guent itemsets based on the Apriori property. Basically,

In this paper, we investigate the problem of finding fre- (k + 1)-candidate frequent itemsets are generatediby
guent itemsets in data streams from a different angle. Thatfrequent itemsets to reduce the searching space. The algo-
is, besides avoiding disk access, we also try to reduce theithm consists of the following steps.
data processing time. It is well-known that finding accurate
frequent itemsets needs multiple scans on the data. Our ba- 1. Candidate generation: Generating candidate frequent
sic idea is: in a data stream, whenoughamount of data itemsets, each of which hasitems ¢ is initialized as
are observed, we compute the part of mining result from one 1 when the algorithm starts).
scan on these data, then we make the subsequent scans on
the new coming data until the complete set of frequentitem- 2. Support counting: Scanning the dataset to find the sup-
sets is discovered. Especially, we use Chernoff bound [3]to port of each candidate itemset and prune those whose
find how many transactions are significant enough to show supportis less than the threshold.
the statistical features of the data stream. Then, using this
number, we can partition the streaming data into fragments

and thek-th fragment corresponds to a data scan required . . .
for finding thek-lengthed frequent itemsets. Thus we only Itis .clear that .the Aprl|0r| algorithm ngeds at T““’S”‘ !
scans if the maximum size of frequent itemset.i®n the

need to scan the whole data stream once and the computa- text of data st " id disk revi tud
tion cost is dramatically reduced because in each fragmentCon ext of data streams, 1o avold dISk access, previous st

we only compute a set of fixed-lengthed frequent itemsets. es focus on finding the approxi_mation of frequent itemsets
The rest of this paper is organized as follows. Section W'tlh a:oijr?d oftipace comple>t<|ty. lqorith IRk

2 gives the background of finding frequent itemsets in data n [I']’ edaLu ors progose Wo aigori 5m5’ calteck-

streams. Our approach is proposed and discussed in Sectioﬁamp ingandLossy-countingto support(e,) approxima-

3. The preliminary experiment results are shown in Section 1O" for the frequgnttgmsproblem with a bound of space
4. Finally, we conclude this paper in Section 5. complexity. Thatis, given an error boundnd a probabilis-

tic boundd, both algorithms guarantee that with confidence
1—4, 1) all items (not itemsets) whose true support exceeds
2 Background so are output, 2) no item whose true support is less than
so — € is output, and 3) computed support is less than the
In this section, we give the background of our true support by at most Specially, with(e, §) approxima-
study. First, we review the problem of mining frequent tion, the space complexity of Stick-Sampling and Lossy-
itemsets and then discuss some related work of finding fre-counting areO (2 log (s;'67!)) and O (% log (eN)) re-
guent itemsets on the context of data streams. spectively, whereV is the total number of transactions. In
The frequent itemset mining is introduced in [1] by [8], the authors also propose a Buffer-Trie-SetGen approach
Agrawal and Srikant. To facilitate our discussion, we give to extend finding frequent items to finding frequent item-
the formal definitions as follows. sets. In this approach, when a transaction (a set of items)
Let I = {i1,...,in} be a set oftems. An itemsetX arrives, all of its non-empty subsets are enumerated and

3. k=k+1,90tostep 1.

treated as “items”. However, this leads to the difficulty of terval [ts,t.]. To minimize the response timé — ¢., our

determine the upper bound of the number of entries.

approach should satisfy the following requirements during

The work [9] also applies the Buffer-Trie-SetGen ap- the mining process: 1) no disk access is needed and 2) the
proach to compute the frequent itemsets. However, the pro-data in the buffer can be processed very quickly.

posed algorithm is false-negative oriented, i.e., some fre-

The new proposed approach, calledAgriori, follows

quent itemsets may not be included in the mining result. the basic structure of the Apriori algorithm. As stated in
This algorithm is effective to reduce the memory consump- Section 2, the Apriori algorithm can find frequent item-
tion because a large number of infrequent itemsets (false-sets by scanning the dataset at most 1 times, where
positive ones) are excluded from the mining result. Experi- is the maximum size of frequent itemsets. The pseudo code
ments shows that the quality of mining results can be guar-of S_Apriori is shown in Figure 2. Lehy be theenough

antied by controlling the predefined parameters.

number of transactions that can reflect the true support of

In [5], data stream is partitioned into data fragments, itemsets (we will discuss how to determing later). At
each of which can fit in the main memory. Given a sup- the beginning stage, we find 1-frequent itemsetsfrom
port error) < € < sg, to guarantee the computed support in the firstn, transactions. Candidate 2-frequent itemsets are

the range of Supp(X) — €, Supp(X)] , the itemsets whose
support is no less than(calledsemi-frequent itemsétare

then generated based 6lh and their supports are computed
by scanning the next, transactions. Such process contin-

found in each data fragments. All semi-frequent itemsets ues until there are no candidate frequent itemsets generated.
are incrementally maintained in a compact data structure,Apparently, if the number of actual scangjsthe data used
which is a pattern tree with tilt time window frame embed- in computing frequent itemset ig « ny. Note that although

ded on its nodes. At time., given a window siz€l’, the
approximate frequent itemsetsfin — T, t.] can be derived
from the pattern tree.

different lengthed frequent itemsets are found from differ-
ent data fragments, due to the candidate generation process,
the Apriori property still holds for the mining result. Thatis,

We can see that previous studies mainly focus on avoid-our mining result ensures that any subset of frequent item-
ing disk access but disregard the cost of data processingsets is frequent.

Considering the work [5], suppose that time interddl is
required to find the semi-frequent itemsets in a data frag-
ment. If the streaming data arrive at a very rapid rate
during the period of computing the data fragment in the
buffer, rx * At amount of new arriving data are accumu-
lated. These data may not be buffered due to the limited
size of memory. From the above discussion, we believe that
for data stream management, besides the attempt of avoid-
ing disk access, data processing time should also be consid-
ered.

Our consideration for simplifying the computing process
is: instead of scanning the entire data multiple times, we
make each data pass on a fraction of data stream and al-
ways perform the next scan on the new arriving data. This
idea is inspired by the previous work [4], which studies the
decision tree induction in a high-speed data stream. In [4],

Algorithm
Input: A data streant and the support threshold.
Output: Approximate frequent itemsefs in a segment of
Method:
Determineng;
Scann transactions and finé; = {frequent 1-itemsét
for(k = 2; Fr—1 # ¢;k + +) do
C), =Candidatek-itemsets generated frof,_1;
Scan the next transactions and
computeSupp(X) forany X € Cy
Fr = {X € Ck|(Supp(X)) = so};
Approximate frequent itemsefs = | J, Fi;

Figure 2. S _Apriori algorithm

After introducing our basic idea, we further discuss our

when enough data (determined by the Hoeffding bound) areapproach by answering the following three questions.

observed, the root attribute of the decision tree is selected.
Then subsequent data are passed through the induced por-
tion to further choose a split attribute until the decision tree

is built completely. In this paper, we apply the similar idea
on the context of frequent itemset mining.

3 Our Proposed Approach

In this section, we propose a new approach to solve the
problem defined in Section 1. Remember that as shown in
Figure 1, our goal is to quickly find approximate frequent
itemsets from the data segment of data streaim the in-

1. How to determineyg (whereny is the number of trans-
actions that is significant enough to reflect the support
of itemsets)?

. Givenny and the number of scarig, theocratically,
the proposed approach nedds« ng transactions to
compute frequent itemsets. How can we liigks n
transactions to the data in the inter{ial ¢.]?

3. Since our approach provides the approximate mining
result, can the resulR’ be a good approximation of
the accurate result s& (whereR is the set of frequent

itemsets in the segment 6fin [t,, t.])?

First, to determine the number of transactions that can
reflect the true support of itemsets, we use a statistical re-
sult Chernoff bound [3]. This statistical tool has been suc-
cessfully applied in the previous studies [4, 7, 9] of stream
data management. Based on thebservations of the inde-
pendently generated data, the Chernoff bound can provide
certain probabilistic guaranty on the estimation of statistic
features of the entire data. As stated in [9], Chernoff bound
can be applied into the problem of finding frequent itemsets
in data streams as follows.

Givenn transactions observed and the support threshold
s0, the Chernoff bound ensures that for any itemsetvith
confidenced — ¢, the true support oK (Supp(X)) is in the

—_—~

range of [Supp(X) — ¢, Supp(X) + e] , where Supp(X)
is the computed support of in thesen transactions and

250 In(2)

€ = .
Given 7tlhe error bound, probabilistic bounds, and
the minimum supporty, we can use the above formula

to compute the numbet,. For example, ifso = 0.01,

e = 0.002 andé = 0.1, with Chernoff bound, we have
n = 14,979. This means that for an itemsgt, after 14,979
transactions are observed, its true support is in the range(

of [Su/];j\)_&() —0.002, Supp(X) + 0.002] with high prob-

ability 0.9. Note thatSupp(X) gives the support ok in
these 14,979 transactions.

Now we discuss how the number of transactions required
by our approach links to the number of transactions in the
interval [t,, t.]. Suppose that the data arriving rate is fixed,
denoted agy. The numberN of transactions int,, t.] is

(te —ts) * co. In addition, assume that we know the num- 2.

ber of scansi() required to find all frequent itemsets. To
match the number of transactions required iA&@iori to

N, it is ideal that each fragment ha{%’] transactions.
Also remember that to achieve the §) approximation, the

number of transaction required izsf%(‘%) which is de-

termined by Chernoff bound. Thus, we can adjugtas
2

Maa{[£], =050y,

In practice, the number of data scdpss unknown to
the user before the mining, however, according to the Apri-
ori algorithm, we know that, € {I,! + 1} wherel is the
maximum size of frequent itemsets. In a time-varying data
streams, we often need to recompute frequent itemsets i
any significant change is detected. In this case, we could
estimatel, based on old frequent itemsets. Thef,can
be decided based on the estimated §jzéf the actual size
no * lg is not well-matched the total number of transactions
N in the interval[ts, t.] (due to the bad estimation &f),

1.

transactions in the interval. In this case, we can use
the new arriving data to complete the computation. Or
we can buffer the last transactions, on which further
scans are made.

ng * lg < N : the computation is completed before
some data in the interval are used. One way to solve
this problem is: after the frequent itemsets are found,
we use the rest data to do the support checking, based
on which the mining result could be adjusted. The
other way is to ignore the data if the amount of unused
data is not large.

In our approach, we don’t make strict constraint on the
matching between actual data required b@iori and the
data in window(ts, t.]. This is because the data range of the
mining is also an unknown factor, which is determined by
domain experts. In practice, often multiple window sizes
are attempted. So, our approach would be working if the
estimation makes the data range sensible to the application
domain. In this case, the actual interval for computing is
relaxed to[t,, ¢’], wherelt. — t.| should be much less than
te —

Finally, we discuss whether the mining result is close to
the accurate result i, t.]. Based on Algorithm SApriori,

).

e

we have the following two observations.

If data are uniformly distributed in the intervgl, t.],
eachng transactions carry the same statistical informa-
tion. Then, our proposed approach can find the result
that is a close approximation of the accurate result.

If data contain distribution changes on the frequent
itemsets, our approach may make the considerable dif-
ference between the mining result and the true result.
Suppose that after the sé} of 1-frequent itemsets

is found in the firstny transactions, there is a sud-
den change on the distribution of the subsequent data.
Then, some frequent itemsets will be missing if any
item they contained is not included i .

Observation 1 gives the situation in which our approach
can work perfectly. From Observation 2, we know that the
performance of our approach depends on the data. The rea-
son is that the computations on different fragmenttans-
factions) are tightly coupled because the candidate frequent
itemsets are generated by the previously computed frequent
itemsets. Theoretically, if there is any fragment providing
incorrect result, the computation on the subsequent frag-
ments may become meaningless.

To sum up, the advantages of our proposed algorithm

are 1) data are only scan once and 2) because each scan is

made on different data fragment, the computation cost is

e ng*lg > N : It means that the number of transactions distributed and only the simple support counting is required
required for computation is more than the number of for the fixed-lengthed candidate frequent items during each

we have the following two situations:

scan. The disadvantage is that the performance of the algo{/V.) since we have no idea how many scans required in the

rithm can be affected by the data distribution. mining process.
As discussed before, the total numBér of transactions
4 Preliminary Experiment Results required for the algorithm B\priori may not well match

the numberV of transactions in the dataset.Nf > N, we
In this section, we show the preliminary experiment re- make the rest scans on the |asttransactions in the dataset,
sults to test the effectiveness of our proposed approach anéﬁ’hsrf\Nc is the ”“m_b_ef dete&rl?_lner? by theffChernoﬁ‘ _bound.
discuss how to improve the accuracy of the mining result. nd the accurgtfe mining resu Is the Sﬁto _reqj;{ent item-
Consider the algorithm S\priori, for any arriving trans- S€tS computed fron¥ transactions. Otherwise ¥ > NV,

action, only a set of fixed-lengthed candidate frequent item- W& ignore the resi — IV, transactions. In this casé, is

sets are tested, which makes the data processing very simt1€ Set Of frequent itemsets found¥y transactions.

ple. Also, during the scan of theth data fragment, only the

shorter-lengthed frequent itemsets (i8.JU F5 - - - U Fy.—1) Table 2. Experiment results

and k-lengthed candidate frequent itemsets (i@) are Dataset Fragment Sizes; | Recall | Precision
kept in the main memory. From this analysis, we can see | T1014D100K 25K 0.99 0.99
that the SAprior algorithm is efficient to the stream pro- Telecoml 14.98K 0.86 0.92
cessing due to its time complexity and physical complex- | Telecom2 14.98K 0.61 0.80

ity. So, the focus of the experiment part is to discuss the
effectiveness of our approach, i.e., whether the output of Let the output of the algorithm Bpriori be R’. We
S_Apriori is a good approximation of the accurate result. compareR’ and the accurate resuk by using recall and

imi i RNR’ RNR’
We show some preliminary experiment results on both Eremsmn, which are defined | a d| | respec-
|

e : Na —%r—
artificial dataset and real dataset. Because our experimen . || LR
vely. The comparison results are shown in Table 2. Be-

goal is to demonstrate the effectiveness of our approach,Cause in the datas@074 D100k, data are generated with

all datasets a_re treated as static. Th_e artificial Olatasetthe same distribution, our approach works very effectively.
TI0IAD100K is created by IBM synthetic data generator In the real datasefelecom_1, there is no guarantee on the

[1]. Two real datasets are derived from the fault-related data : L .
. o consistence of the data distribution. So the recall and preci-
from an Australian telecommunication company. Inthe real _. . . gy
“ S ion are relatively low compared with the artificial dataset.
datasets, each “transaction” is a set of events that occurre

L e n the third datasef’elecom_2, because the data distribu-
within 24 hours before a fault on the telecommunication . . .)
. . tion is deliberately changed in the dataset,cannot be an
network. Especially, datas@telecom_1 consists of such

transactions that are collected from a single network nodeappropnate approximation dt. These preliminary results

in one month. To deliberately make the distribution change, also verify the two observations that we made in Section 3.

we createT'elecom_2 by combining two half-month data One reason why '_[he_ pe_rforr_nance of our approz_:lch de-
collected from two different nodes, i.e., the first half trans- pends on the data distribution is that the computations on

actions are collected in fifteen days from the node A and different fragments are dependant. Since this dependency

the rest data are from the other node B in the same fifteenIIes in the candidate frequent itemset generation, we may

- : test more candidate itemsets during each scan to relax this
days. The characteristics of the above-mentioned dataset .] . . .

. . ependency. Based on this consideration, in the mining
are given in Table 1.

process, we could lower the support threshold frgnto
s1. Then a larger amount of frequent itemsets are discov-

Table 1. Datasets ered and consequently more candidate frequent itemsets are
Dataset #of items | # of transactions generated and tested. After the mining process complete,
T1014D100K | 1000 100K we can recover the thresholg, i.e., select the itemsets that
Telecoml 189 52K are frequent in terms ofy as the mining result. Note that
Telecom2 190 54K according to the above mining process, the frequient1)-

) itemset (in terms of) found in (k + 1)-th fragment can
In our experiment, we always s&f = 0.01, e = 0.002, be generated by the semi-frequent itemset (i.e., the itemset
andé = 0.1. The number of transactions determined by \yhose support is in the range_so)) in the k-th fragment.
Chernoff boundV., is 14.98K. According to the IBM data Thys, the Apriori property may be violated in the mining
generator, we can estimate that the number of scans reregyit. So, in the final step, we need to use the following

quired for finding frequent itemsets in data$@bI4D100K o ryles to adjust frequent itemsets to ensure the Apriori
is about 4. So, we set the fragment sizgas 25K (i.e., property.

Maz{*%K 14.98K}) for the datasefl1014D100K.For

the telecommunication datasets, we use the number 14.98K 1. Adjustment starts from the largest-sized frequent item-

sets to 1-frequent itemset.

2. If a frequent itemsetX is of size k¥ and any
(k — 1)-sized subset” of X satisfies the condition
Supp(X) > Supp(Y), the support ofY” is updated
asSupp(X)L.

We will test the effectiveness of the above-mentioned ap-
proach in the future work.

5 Conclusion

In this paper, we have investigated the problem of finding
frequent itemsets in high-speed data streams. To meet the
real time requirement, previous research targets on avoiding
disk access to reduce the response time. Due to the fact that
the response time is related to disk access time and the data
process time, we made our attempt from a different angle,
i.e., to lower the computation cost of data processing. Based
on this consideration, we have proposed a new approach
which can avoid disk access and meanwhile simplify the

[7] G. Hulten, L. Spencer, and P. Domingos. Mining time-
changing data streams. KDD, pages 97-106, 2001.

[8] G.S.Mankuand R. Motwani. Approximate frequency counts
over data streams. MLDB, pages 346—357, 2002.

[9] J.X.Yu, Z.Chong, H. Lu, and A. Zhou. False positive or false
negative: Mining frequent itemsets from high speed transac-
tional data streams. MLDB, pages 204-215, 2004.

computation of data processing. The basic idea is that data

stream is partitioned into fragments (with certain size), from
each of which part of mining result is generated. Finally, we
report and analyze the preliminary experiment results of our
proposed algorithm.

One weakness of the proposed approach is that the level

of approximation between computed result and accurate re-
sult can be affected by the data distribution. In the future
work, we will investigate how to guarantee the good approx-
imation of mining result when the data distribution changes.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. InProc. 20th VLDB pages 487—-499, 1994.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems.PGDS '02
pages 1-16, 2002.

[3] H. Chernoff. A measure of asymptotic efficiency for tests of
a hypothesis based on the sum of observatioAsnals of
Mathematical Statistic3(4):493-507, 1952.

[4] P. Domingos and G. Hulten. Mining high-speed data streams.
In KDD, pages 71-80, 2000.

[5] C. Giannella, J. Han, J. Pei, X. Yan, and P. Yu. Mining fre-
quent patterns in data streams at multiple time granularities.
In H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha, editors,
Next Generation Data MiningAAAI Press/MIT Press, 2003.

[6] L. Golab and M. T. Ozsu. Issues in data stream management.
SIGMOD Reg.32(2):5-14, 2003.

1in the SApriori approach proposed in Section 3, we also use the same
two rules to adjust the support of frequent itemsets to guarantee that for
any two frequent itemseX andY with X D Y, Supp(X) < Supp(Y)
always holds.

