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Abstract

We consider the problem of Kernel Density Estimation
(KDE) over distributed data. Our work is motivated
by the fact that, in some cases, large data repositories
are, in their native form, distributed over many sites. In
environments where communication is limited, central-
ization of the data can be problematic. We examine a
framework where the sites build local models which are
combined at a central site to produce an approximation
to the KDE over the entire dataset. We carry out ex-
periments comparing two realizations of this framework
(uniform sampling and linear binning). We compare
these two techniques in terms of their accuracy at: di-
rectly approximating the centralized KDE (measured by
2-norm function distance), density-based classification,
and density-based clustering.

1 Introduction

Traditional data mining and analysis techniques assume
that the data set of interest in located entirely on a sin-
gle server. However, this assumption is not always justi-
fied. In some cases, large data repositories are, in their
native form, distributed over many servers, perhaps over
a large geographic distance. To utilize traditional data
analysis technology, the data must be first centralized.
But, this introduces large communication costs. In en-
vironments where this commodity is limited, centraliza-
tion can be problematic. Moreover, in the case where
local data is sensitive — not to be divulged in its raw form
— centralization introduces unacceptable security issues.
The fields of distributed [3] and privacy-preserving [13]
data mining have arisen to address these needs.

In this paper, we address the problem of non-
parametric density estimation over distributed data.
Our work is motivated by a recent paper by Merugu
and Ghosh [7] that addresses the problem of parametric
density estimation over distributed data. The goal of
their approach was to reduce communication complex-
ity, reduce synchronization requirements, and provide
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privacy. In particular, each site builds a local model de-
scribing its data, then sends it to a central coordinator.
The coordinator combines the local models to produce
a model by which the global KDE can be estimated.
Our approach differs from theirs in that we consider
non-parametric density estimation, specifically, Kernel
Density Estimation (KDE). The advantage of doing so
is the added flexibility of not assuming an underlying
distribution family. Similar to Merugu and Ghosh, we
develop a “local model, global combination” approach
to address the same goals: reduce communication, syn-
chronization, and provide privacy. Due to space limita-
tions, we only discuss the reduction of communication
and synchronization leaving privacy for a forthcoming
extended paper.

Paper organization: Section 2 discusses related
work from the Distributed Data Mining (DDM) liter-
ature, in particular, other papers adopting the local
model, global combination approach. Section 3 dis-
cusses a standard KDE formulation from Statistics and
two local model, global combination schemes for dis-
tributed computation: uniform sampling and linear bin-
ning. Section 4 describes an evaluation of the accuracy
of these schemes at direct density function accuracy (2-
norm), density-based classification accuracy, and den-
sity based clustering accuracy (accuracies are measured
with respect to centralized KDE computation). Finally,
Section 5 concludes the paper.

2 Related Work

KDE has been extensively studied in the Statistics
literature [10, 11, 14] and applied in data mining [2]
(on centralized data).

2.1 Local Model, Global Combination Ap-
proaches As discussed earlier, Merugu and Ghosh [7]
address the problem of distributed parametric density
estimation. Later, the same authors address density es-
timation on wertically distributed data [8] — each site
has some of the attributes of the same set of tuples.
This differs from our work which assumes the data is
horizontally distributed — each site has a different set of
tuples over the same set of attributes.

Klusch et al. [6] have written perhaps the most



closely related work. They consider the problem of
density based clustering on distributed data. Sites build
local density grids which are centralized and combined.
Then a standard density based clustering algorithm
is applied using density estimates based on Shannon
sampling from signal processing. Our work is quite
similar to Klusch’s (we use a grid based approach),
however, he provided no experiments to assess the
effectiveness of the approach. Our work addresses this
shortcoming through an experimental comparison of
the accuracy of a grid based approach with a uniform
sampling approach.

Zhang and Cheung [16] address the problem of dis-
tributed estimation of a manifold fitting the data. Sil-
vestri and Orlando [12] address the problem of estimat-
ing the frequent itemsets over a distributed transaction
database. Both of these address a different kind of anal-
ysis (manifold fitting, frequent itemset discovery) than
we do (KDE).

2.2 Other DDM Related Work Recently work
has been carried out on data analysis and mining in a
large scale distributed network (peer-to-peer network),
a sampling follows. Kempe et al. [4] discuss the use
of gossip to address the problem of simple aggregate
computation (e.g. Sum). Wolff and Schuster [15]
address the problem of association rule mining based
on local majority voting. Datta et al. [1] address the
problem of K-means clustering. None of these address
non-parametric density estimation.

3 Kernel Density Estimation

3.1 Centralized KDE The formulation of KDE pre-
sented here is based on standard techniques described in
the literature ([10],[11],[14]). Let X C R™ be a domain
of interest and f: X — R>¢ be an unknown probability
density function. Let D C X, be a set of independent
samples drawn according to f. For any x € X, we esti-
mate f(x) by:
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where |D| is the number of tuples in D, K is the kernel
function,! and x;, s;, h; are the i** components of x, s,
h. The choice of the bandwidth vector h is important
and can be made in several standard ways. We use the
“normal plug-in” method:
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TWe use the standard Gaussian kernel.

were &; is the sample standard deviation computed from
the i** column of D.

3.2 KDE on Distributed Data We assume a dis-
tributed environment comprised of p sites, each contain-
ing a subset D; of D. We define the local KDE function
for site [ as:

th
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and write the global KDE as a sum of local KDEs:

KDE can be performed on distributed data as:

1. The parameters |D| and &; are computed using
converge-cast [9] resulting in the central site get-
ting h and |D|. These are broadcast to all the sites.
This initialization step requires two rounds of com-
plete synchronization.

2. When the central site is presented with a set of new
input vectors {x} C X, another round of complete
synchronization is required to compute {fp(x)}.
The central site broadcasts {x} to all sites, which,
in turn, send their local KDEs {fp,(x)} back. The
central site sums these and divides by |D| to get
the global KDEs, {fp(x)}.

3.3 Improvements The scheme presented above has
a shortcoming: complete synchronization is needed
for every set of vectors {x} on which the KDE is
simultaneously calculated. This can be problematic if
the overarching data analysis task requires KDE to be
computed on a set of points x',...,x? in a sequential
manner. This is necessary if x* is determined based on
the KDE of the previous points, for example, in density-
based clustering. As a result, ¢ + 2 rounds of complete
synchronization are required for the data analysis task.

One solution is for each site [ to construct a model,
M, approximating its local KDE, fp,, then send M; to
the central site. It combines the local models to pro-
duce a global model, M, which is used to approximate
the global KDE, fD. Since the central site only uses
M, then no contact with the other sites is required to
estimate the KDE of x!, x?. Hence, only two com-
plete rounds of synchronization are required. However,
the density estimation produced is an approximation of
the centralized KDE, fp. We examine this issue empir-
ically through experiments involving two realizations of
the framework.



Uniform Sampling: Site [ takes a uniform sample
(without replacement), M, from D;. This is the local
model of site I. The central site combines these local
models into a global model in the obvious way, M =
UP_, M;. Finally fp(x) is approximated as fas(x) (using
the bandwidth vector h found from the whole dataset
D as described earlier).

Linear Binning: Linear Binning is based on the
concept of a hyper-rectangular grid enclosing the do-
main, X. The grid is defined by the lower-most and
upper-most corner points of the hyper-rectangle, I_: U
and p the number equal partitions of each side. To agree
upon L and U, each site can choose a bounding hyper-
rectangle for its data, then send the corner-points to a
central site. The central site chooses a hyper-rectangle
enclosing all corner-points and broadcasts its corner-
points to all sites. All of these messages can be included
in step 1. in Section 3.2. The choice of p depends upon
the amount of space allocated the grids and is described
later (the central site chooses p and broadcasts).

Each grid point g has an associated weight w, =
> wig. The local contributions to this weight, w, g
are given by wi, = > p, s(wi,g), where s(wy) is the
contribution of the local data point s to wy,y. Given
a data point s in D, and a grid point g, we compute
s(wy,g) as follows. First, the grid cell containing s is
found. If g is not a vertex of this cell, then s(w;,4) = 0.
Otherwise, let g* be the vertex of this cell diagonally
opposite to g. Define:

Volume(s, g*)
Volume(g, g*)
where: Volume(x,y) = [Ii—, |zi — vil-

The local model M; is the collection of all local
weights w; 4. The global model, M, is constructed by
summing the local weights: wy, = Y7, w; 4. Given a
new vector x € X, M is used to approximate fD(x) as:
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A third realization of this framework was proposed
by Klusch et al. [6] based on local density grids
and Shannon sampling. However, Klusch did not
conduct any experiments to assess accuracy. We leave
consideration of his realization in our experiments to
future work.

4 Evaluation

The primary goal of this paper is to empirically com-
pare the accuracies of the two realizations of the local
model, global combination framework for approximat-
ing a KDE. To do so, we carry out a series of experi-

ments in a simulated environment on a single machine.
Since our experiments are only intended to measure ac-
curacy with respect to communication cost, a genuine
distributed environment is unnecessary.

We synthetically generate dataset D. This data is
then partitioned into p parts, one for each site.? Next,
a fixed communication allowance ¢ € [0,1] is specified.
This determines the total communication allowed the
distributed algorithm i.e. the amount of space each
local model can occupy. The total communication
required to centralize D is 4mn bytes® where |D| = m
hence, the total communication allowed is 4cmn bytes.
Assuming this budget is allocated equally, each site can
use at most 4mnc/p bytes for its local model. For
uniform sampling, each site will sample mc/p tuples
for its local model. For linear binning, the size of the
local model is determined by the number of grid points.
Assuming each grid dimension partitioned into p equal
parts, we have p = [[%]1/”] -1

Let M* and M? denote the approximation to the
global KDE produced from the uniform sampling and
linear binning global models, respectively. The experi-
ments vary ¢ and measure the accuracy of M* and M?
with respect to the following measures. The process of
generating M and measuring accuracy is repeated for
some number of trials and average results are reported
with error bars indicating the 95% confidence interval.

4.1 L2-Norm Given function h : X — R, the two
norm of h, denoted |[|hl|2 is [y h(x)?dx. This can be
computed as follows. Let I" be a uniform grid of X (all
cells have the same volume V) — we are assuming X is
a hyper-rectangle. Note, I' is not the same as the grid
discussed earlier with linear binning. In fact, I' ought to
be much finer. We approximate ||h||2 by V EQEF (9)%.

We measure the L2-norm error, ||fp — M*|| and
||fp — M?||, as communication increases. We also plot
||fp|| as a baseline. Three experiments are performed,
with each experiment using a data set having higher
dimensionality and larger number of tuples. However,
the ratio of the number of tuples to the number of
dimensions is kept constant. In each experiment, a
synthetic data set, consisting of a mixture of 5 Gaussian
distributions, is used. The number of sites and uniform
sampling trials is 10 and 50.

Our objective, in these experiments, is two-fold.
(1) To examine the behavior uniform sampling and
linear binning with respect to increasing communica-
tion. (2) To determine which of the two is more
communication-efficient. More specifically, to compare

2In our tests, we used five or ten sites as indicated.
3

assuming each tuple component requires 4 bytes
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Figure 1: L2-norm comparison on a 5000 tuple, 1D
dataset.
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Figure 2: L2-norm comparison on a 10000 tuple, 2D
dataset.

the performance of these techniques as the data dimen-
sionality increases. We expect uniform sampling to per-
form better than linear binning for higher dimensional
data. This is because, for a fixed communication al-
lowance, the number of partitions on each dimension of
the grid, p, grows exponentially with dimensionality, n.
Hence, the linear binning grid grows exponentially more
sparse with dimensionality.

We test the above conjecture in three experiments
whose results are shown in Figures 1, 2, and 3. The
x-axes of these figures, “Amount of Communication”,
refer to ¢, the communication allowance. The figures
contain a horizontal line showing the L2-norm of fp
to be used as a baseline against which the L2-norm
errors are compared. The degree to which the errors
are smaller than the horizontal gives an indication as to
their overall quality.

The plots show that the error of linear binning de-
creases smoothly but rather quickly at first, then slows.

L2-Norm of Error
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Figure 3: L2-norm comparison on a 20000 tuple, 4D
dataset.

Uniform sampling, on the other hand, demonstrates an
initial slow decrease followed by a sharp drop to zero
at high communication.* We also see that linear bin-
ning exhibits lower error for one dimensional data, but
higher for four dimensional — confirming our conjecture.
Finally, we see that the overall error obtained by both
methods is low for small communication. For example,
at 20% communication, both methods have L2-norm er-
ror at least 5 orders of magnitude less than ||fp]| for 1
and 2 dimensional data, at least 3 orders for 4 dimen-
sional data.

4.2 Supervised Learning We compare the accu-
racy of M* and M? in terms of their classification accu-
racy when used for non-parametric discrimination. As-
sume the tuples of D are labeled in one of two ways. Let
D(0) denote the collection of tuples labeled one way and
D(1) denote the other (according to a labeling function
Lab : X — {0,1}). Given a new tuple x € X, the goal
is to classify x. To do this, we estimate the posterior
odds as follows

Pr(Lab(x) = 0|D) ~ fD(O) (x) |D(0)
Pr(Lab(x) = 1|D) ~ fp)(x) D]’

Thus, x is classified as 0 if the above expression is
greater than one, otherwise, it is classified as 1.

We use a 2-dimensional synthetic data set with
20000 tuples. The tuples are drawn from a mixture of
4 Gaussian distributions. The means of the Gaussians
are located at the vertices of a square in 2-dimensional
space, say ABCD. Distributions having means at A
and C belong to one class, while those having means

TAs expected, for ¢ = 1, uniform sampling achieves zero error.

In this case, the entire dataset is centralized.
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Figure 4: Classification accuracy comparison on a 20000
tuple, 2D dataset.

at B and D belong to the other class. Classification
accuracy of M* and M? are each measured using 10-
fold, cross validation. The number of sites and uniform
sampling trials is 10 and 20. The results are shown in
Figure 4.5

We find that as the amount of communication in-
creases, the accuracy of the classifiers increase very
rapidly. However, the maximum accuracy of the lin-
ear binning classifier falls below the maximum accuracy
of the uniform sampling classifier (the accuracy of uni-
form sampling at ¢ = 1 is exactly the same as that of the
centralized approach). Most of the points in the dataset
are close to the means of the Gaussians that generated
them. Hence, these points can be classified easily, even
with very little communication. This explains why ac-
curacy is high even at small amounts of communica-
tion. Greater amounts of communication are required
to properly classify points that lie near the “boundaries”
of two (or more) Gaussians. The plot of the L2-norm
of these classifiers in the 2-dimensional case, as shown
in Figure 2 might provide insights into what happens
as communication is increased. We find that as com-
munication increases, the accuracy of uniform sampling
ultimately becomes much greater than the accuracy of
linear binning. When the amount of communication
equals that required for full centralization, the L2-norm
for uniform sampling becomes almost zero, while that
for linear binning does not. This might be correlated
to the difference in maximum classifier accuracies; we
would like to investigate this in more detail in future
work.

5Error bars are not included because they are very small — all

have length less than 0.64% of their associated point.

4.3 Clustering We measure the accuracy of M and
M? by computing the clusterings they produce when
used in a standard density-based clustering algorithm
and the clustering produced when the algorithm is
applied to a centralized dataset. Accuracy is measured
in terms of the difference between distributed and
centralized clusterings. The clustering algorithm we
use is due to Kittler [5]. Assuming a function f is
used to estimate the pdf f, the algorithm consists of
the following steps. (1) Map the data set, D onto
a sequence and associate each point with its density
estimation from f. The mapping is designed with
the goal that points associated with the same mode
of the mapping will also be associated with the same
mode of f. The interested reader is referred to [5] for
further details of this procedure. (2) Separating points
between modes of the mapping are determined (a one
dimensional problem). This process, breaks up the
dataset into clusters.

Using the KDE over dataset D once centralized, let
Ci, ..., C; denote the clustering obtained by applying
Kittler’s algorithm. For site [, let Cf, ..., C}, denote the
clustering obtained when Kittler’s algorithm is applied
to Dj using M or M®. The accuracy of this clustering is
quantified in terms of the difference between C1, ..., C},
and the intersection of the centralized clustering with
D;: Ci =DinNCy, ... C¢ = DyN Cy. The accuracy of
the clustering at site [ is

Zr;éseDl erry(r,s)

Aeell) = =151 0D = 1)

where err;(r,s) is zero if r,s € C!, and r,s € OB for
some 1 < a <t and 1 < B < t. Otherwise, it equals
one. Let avg(u) denote Acc(f) averaged over all sites for
M* and avg(b) denote the same for M. The number
of sites and uniform sampling trials is 5 and 20.

To test the distributed clustering algorithms, we
generated a two dimensional dataset consisting of 10000
tuples sampled from a mixture of two Gaussians. Fig-
ure 5 illustrates the results. The curve labeled “Linear
Binning” is avg(b) and the curve labeled “Uniform Sam-
pling” is avg(u). We see that uniform sampling outper-
forms linear binning for almost all communication sizes.

5 Conclusions

We considered the problem of Kernel Density Estima-
tion (KDE) on data distributed over a collection of
sites. Our work was motivated by the fact that, in
some cases, large data repositories are, in their native

8When the clusterings are perfectly matched, the accuracy
is approximately 0.51 (not zero) — the fraction of tuple pairs
appearing in the same cluster among C1,...,C}.
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Figure 5: Clustering accuracy comparison on a 10000
tuple, 2D dataset.

form, distributed over many sites, perhaps over a large
geographic distance. In environments where commu-
nication is limited, centralization of the data can be
problematic. We examined a “local model, global com-
bination” approach to estimate the global KDE in a
communication-efficient fashion. Moreover, only two
rounds of complete synchronization are required to es-
timate the density of any set of points in the domain.
This low synchronization property is useful in data anal-
ysis techniques which determine the next point at which
the density is to be estimated based on estimations of
previous points (i.e. density-based clustering).

We examined two realizations of this framework,
uniform sampling and linear binning, We conducted ex-
periments measuring the accuracy of each with respect
to: L2-norm, classification based on density estimation,
and clustering based on density estimation. In all cases
we compared the KDE produced by the whole dataset
once centralized and the approximation obtained by lin-
ear binning or uniform sampling. We observed that uni-
form sampling outperformed linear binning for classifi-
cation, clustering, and L2-norm at four dimensions.

In some situations the data held by each site is
sensitive and not to be revealed in the plain to oth-
ers. Before closing the paper, we point out that linear
binning can be adapted using secure multi-party com-
putation techniques to offer privacy. The resulting algo-
rithm has some nice properties (i) it has communication
complexity independent of |D[; (ii) it does not require
complete synchronization in approximating fD(x), for
each x € X. In a forthcoming extended version of this
paper, we will explicate the details of this algorithm.
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