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Mixed Integer Programming and cutting planes

A mixed integer linear program

A notation

Often the variables are (x,y). Then
x€Z"and y € RY.
For a closed convex set C, let

maXx CTX
st. Ax = b,
xi€Zi, i€l, xi€Ry, i ¢l

The simplex tableau representation

G = {(x,y) € CN(Z" x RY)}.

What is a cutting plane?

=T

ERS  GYon For S C Z" x R? a linear inequality

st.  Awxy < b, a’ (x,y) < bis valid, i.e.,

Xi€R+, Xi€Z+, IGI

and, S C{(xy)]a"(xy) < b}
N,-+:{j€N|5,'_,'ZO}, )
N-={jeN | a; <0} and cuts off the LP optimum

i L] ) * * . T * *

fe)= (g~ lg)) forgeR%. | (¥ ie by >b )

v
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The fundamental questions in mixed integer cutting plane theory

The point of departure

For a polyhedron P C R™™ the set S = conv(P N (Z" X Rd) is a polyhedron. Hence,

¢ =maxc'x+g'y = maxc'x+g'y

(x,y)EPﬁ(Z"de) (x,y) €S.

(1) Which geometric tools are needed in order to understand S?
(2) Which algebraic tools are needed to generate cutting planes?

(3) Can (1) and (2) be turnt into a finite algorithm that computes ¢*?
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The fundamental questions in mixed integer cutting plane theory

The point of departure
For a polyhedron P C R™™ the set S = conv(P N (Z" X Rd) is a polyhedron. Hence,

¢ =maxc'x+g'y = maxc'x+g'y

(x,y)ePﬁ(Z"de) (x,y) €S.

(1) Which geometric tools are needed in order to understand S?
(2) Which algebraic tools are needed to generate cutting planes?

(3) Can (1) and (2) be turnt into a finite algorithm that computes ¢*?

The pure integer setting

The mixed integer setting

@ Rounding of hyperplanes:

>;aixi < ao turns into ° Irj the mixed 0-1-case, things are
>oilailxi < lao). nice.

o Cutting plane proofs [Chv 73]. ° {R/Ee?nel’ah nothing extends easily.
y7

o Finiteness [Gomory 58].
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The dilemma for general mixed integer programs

An intriguing small example [Cook, Kannan, Schrijver 90]

max +y - - -
— X1 —I—ySO - - - - -
—x+y<0 -°-
+ X1 +xo+y <2

x1€Zy, xx€Z,y>0.

with fractional optimum (%, 2, 2). - - - - =
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The dilemma for general mixed integer programs

An intriguing small example [Cook, Kannan, Schrijver 90]

max +vy - - - - -
—x +y<0 - e = e =
—X2+y§0 ---
+ X1 +xo+y <2

x1€Zy, xx€Z,y>0.

with fractional optimum (%,%,

v
In understanding this example ..., we need

For {(x,y) € S C R"™}, its projection is

wIN

)

proj,(S) = {x € R" | Jy such that (x,y) € S}.

The projection-operation preserves polyhedrality and convexity.
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The mixed 0 — 1-case and disjunctive programming

e zc{0,1} iff 2 =
iz

@ For polyhedra
P, P, CR",

conv(P1 U P;) can
be compactly
described. [Balas
79,85].
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The mixed 0 — 1-case and disjunctive programming

[Ingredients | The Lift-and-Project Algorithm

e zc{0,1} iff 2 =
iz

@ For polyhedra
P, P, CR",

conv(P1 U P>) can
be compactly
described. [Balas
79,85].

4

S={xe{0,1}" xR} :
Axgb}.

Robert Weismantel

@ Step 1: Select j € N.

@ Step 2: Generate the nonlinear system Q;,

xj(Ax — b) <0, (1—x)(Ax —b) <0.

e Step 3: Linearize @; by yi := x;x; for i # j and x7 = x;.

@ Step 4: Project the linearized system onto x-space.
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The mixed 0 — 1-case

and disjunctive programming

Ingredients

o z¢c{0,1} iff 22 =
Z.

@ For polyhedra
P, P, CR",

conv(P1 U P>) can
be compactly
described. [Balas
79,85].

4

S={xe{0,1}" xR} :
Axgb}.

Similar approaches: [Lovasz, Schrijver 91] [Sherali, Adams 90]

The Lift-and-Project Algorithm

° : Select j € N.

° : Generate the nonlinear system Q;,

xj(Ax — b) <0, (1 —x;)(Ax — b) < 0.

° : Linearize Q; by yi := xix; for i # j and x7 = x;.

° : Project the linearized system onto x-space.

v

Theorem [Balas, Ceria, Cornuejols 93]

proj, (@) = conv {{Ax < b,x; =0} U {Ax < b = 1}}.
conv(S) = (... (proj, (@1)),---), -
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Mixed integer rounding: a basic one-row-principle [Nemhauser, Wolsey 88]

The basic model

X ={(x,y) €ZxRy|x+y > b}

The only missing inequality is
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The only missing inequality is

1
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Mixed integer rounding can be applied to general x
models by aggregating variables,

zZ .= Zg,-x,-.
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Mixed integer rounding: a basic one-row-principle [Nemhauser, Wolsey 88]

The basic model

X ={(x,y) €ZxRy|x+y > b} y

The only missing inequality is

1
X+177f(b)y2“ﬂ

Mixed integer rounding can be applied to general x
models by aggregating variables,

zZ .= Zg,-x,-.

i€s

Lemma. The is obtained from mixed integer rounding.

. _\ f(bi)(1—f(ay) f(bi)aj
Z mm{f(au) —l—f(b) } i+ Z 3jjxj — Z 7“1)) xj > f(b;).

JENNI JEN\I JENT\I
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Cuts from two or more rows of a simplex tableau

A basic model for two and more row -relaxations:

f+C,:{(x,s) | x = f+Zszj,xezd,seQ1}.

j=1
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Cuts from two or more rows of a simplex tableau

A basic model for two and more row -relaxations:

f+C,:{(x,s) | x = f+Zszj,xezd,se@1}.

j=1

The structure of valid inequalities of f + C; [Andersen, Louveaux, W, Wolsey 06]

A non trivial inequality is of the kind
>jen @jSj > 1 where o; > 0.

The coefficients o; are the recipocal of
the distance from f along r to the
boundary of the projected facet body
proj, ({(x,s) € f+ C, a's =1}).
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Cuts from two or more rows of a simplex tableau

A basic model for two and more row -relaxations:

f—l—C,:{(x,s) | x = f+Zrisj,x€Zd,seQi}.

Jj=1

The structure of valid inequalities of f + C; [Andersen, Louveaux, W, Wolsey 06]

13 x
A non trivial inequality is of the kind . L. 5
> ien @S > 1 where a; > 0. ;'2 i
f

The coefficients a; are the recipocal of -

. H 1
the distance from f along r’ to the :
boundary of the projected facet body o 0 o
proj, ({(x,s) e f+ C, a"s =1}). F
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The special case of two rows is geometrically tractable

Theorem [Andersen, Louveaux, W, Wolsey 06]

3

' . The projected ' .
0 5 o facet body o 0 o

" contains no

. . . interior integer . . .

f points.Either 3 f

or 4 rays

: (integer points)

determine its

vertices

(boundary).

QA@%
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The special case of two rows is geometrically tractable

Theorem [Andersen, Louveaux, W, Wolsey 06]

3

X1

The projected
facet body
contains no
interior integer
points.Either 3
or 4 rays
(integer points)
determine its
vertices
(boundary).

r2

X1

Classification of the facets by lattice point free polyhedra

ﬁk@%\
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Split cuts [Cook, Kannan, Schrijver 1990]

The algebra

Based on a disjunction
7rTx§7ro or TrTXZTro—f—l

is valid for x € Z" when 7, mo are integer.
v

The geometry

\
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Split cuts [Cook, Kannan, Schrijver 1990]

The algebra

Based on a disjunction
7rTx§7ro or TrTXZTro—f—l

is valid for x € Z" when 7, mo are integer.

L

N,

The geometry
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What is a split? two points of view

Lattice-point-free polyhedron

A polyhedron P is lattice-point-free when
there is no integer point in its interior.
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What is a split? two points of view

Lattice-point-free polyhedron

A polyhedron P is lattice-point-free when
there is no integer point in its interior.

conv{v, w}+span{r,s}

Robert Weismantel

Splits and Ipf-polyhedra

A split cut is generated from a special
lattice point free polyhedron,

L = conv(v, w) + span(z',..., 2"},
with z',...,z"7! € Q" being linearly
independent.

Results on maximal Ipf polyhedra

see survey of [Lovasz 87]
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What is a split? two points of view

Splits and Ipf-polyhedra
Lattice-point-free polyhedron 2 ANl

A split cut is generated from a special

A pol}_/hedrc.m Pis Iat.tice.—pc_)int.—free. when lattice point free polyhedron,

there is no integer point in its interior. L — conv(v, W) + span(zl, o ,Zn—l’
with z',...,z"7! € Q" being linearly
independent.
Results on maximal Ipf polyhedra
see survey of [Lovasz 87]
Splits and disjunctions

conv{v, w}+span{r,s} A split comes from a two-term

disjunction mx < mp, X > mo + 1,

< where 1 € Z.
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A generalization of splits based on multi-term disjunctions

o Let d',...,d* € Z" and
01,...,0k € Z. The family D(k,d,J)
is a k-disjunction if for all x € Z"
there exists i such that d'x < §;.

@ Let P C R" be a polyhedron and
¢"x < v be valid for P;. Then
c"x < v is a k-disjunctive cut for Py,
if there exists a k-disjunction
D(k, d,d) with

xEP:c'x>vy=dx>§,Vi.

4
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A generalization of splits based on multi-term disjunctions

o Let d',...,d* € Z" and
01,...,0k € Z. The family D(k,d,J)
is a k-disjunction if for all x € Z"
there exists i such that d'x < §;.

@ Let P C R" be a polyhedron and
¢"x < v be valid for P;. Then
c"x < v is a k-disjunctive cut for Py,
if there exists a k-disjunction
D(k, d,d) with

xEP:c'x>vy=dx>§,Vi.

Proposition

| \

Let P C R"*? be a polyhedron. Every
valid inequality ¢"x < v for P; is a
2"-disjunctive cut for some k.

4
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A generalization of splits based on multi-term disjunctions

o Let d',...,d* € Z" and
01,...,0k € Z. The family D(k,d,J)
is a k-disjunction if for all x € Z"
there exists i such that d'x < §;.

@ Let P C R" be a polyhedron and
¢"x < v be valid for P;. Then
c"x < v is a k-disjunctive cut for Py,
if there exists a k-disjunction
D(k, d,d) with

xEP:c'x>vy=dx>§,Vi.

Theorem Jorg 7]
Let P C R"*? be a polyhedron. Every There is a finite cutting plane algorithm
valid inequality ¢"x < v for P; is a for any bounded mixed integer program
2"-disjunctive cut for some k. based on k-disjunctions.

4
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A generalization of splits based on Ipf-polyhedra

Observation
o P=conv{v!,...,vP} + cone{w?,..., w*} +span{w*™, ... w7} C R"is Ipf if and
only if P" = conv{v',...,v"} +span{w’,... w7} C R" is Ipf.
o A Ipf polyhedron conv{v’, ..., vP} +span{w’,..., w7} is called split body, the
number n — g the split-dimension.
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A generalization of splits based on Ipf-polyhedra

o P =conv{v',...,vP} +cone{w!, ..., w} + span{w t!, ... w7} C R" is Ipf if and
only if P’ = conv{v',...,vP} +span{w’,..., w9} C R"is Ipf.

@ A Ipf polyhedron conv{v?,... vP} +span{w',... w9} is called split body, the
number n — g the split-dimension.
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Examples

A Ipf triangle in R? has split dimension
two.
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only if P’ = conv{v',...,vP} +span{w’,..., w9} C R"is Ipf.

@ A Ipf polyhedron conv{v?,... vP} +span{w',... w9} is called split body, the
number n — g the split-dimension.

v

Examples

A Ipf triangle in R? has split dimension
two.

A Ipf triangle lifted to R3,
conv{v, w, x} + span{r} has split
dimension two.
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A generalization of splits based on Ipf-polyhedra

e P=conv{vl,...,vP} 4+ cone{w?,... . w'} +span{w*t ... w7} C R"is Ipf if and
only if P’ = conv{v',...,vP} +span{w’,..., w9} C R"is Ipf.

@ A Ipf polyhedron conv{v?,... vP} +span{w',..., w7} is called split body, the
number n — g the split-dimension.

v
Examples

f tri I o . A Ipf triangle lifted to R3,
A Ipf triangle in R® has split dimension conv{v, w, x} + span{r} has split
two. dimension two.
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Split bodies give rise to cuts for convex mixed integer programs.

For a split body L C R" and a closed convex set C, let
R(L) := ¢l conv({(x,y) € C: x ¢ rint(L)}).

Then, conv(C) C R(L) C C.
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Split bodies give rise to cuts for convex mixed integer programs.

For a split body L C R" and a closed convex set C, let

R(L) := ¢l conv({(x,y) € C: x ¢ rint(L)}).
Then, conv(C) C R(L) C C.

Lemma [Andersen, Louveaux, W 07]

Let L C R" be a split body.

o For a closed convex set C,
R(L) # C iff there exists an
extreme point (x,y) of C such that
X is in the interior of L.

e If C is a polyhedron, then R(L) is a
polyhedron.

v
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From split bodies to cutting plane proofs

For a family F of split bodies, let

CI(F, C):= [ R(L).

LeF

Letting C°(F, C) = C, define for i > 1,

C'(F,C) = CIF,CY(F,C)).
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From split bodies to cutting plane proofs

For a family F of split bodies, let

CI(F, C):= [ R(L).

LeF
Letting CO(]:7 C) = C, define for i > 1,
C'(F,C) = CI(F, CY(F, C)).

Theorem [Cook, Kannan, Schrijver 90]

For a polyhedron P and the set F of split bodies
of split dimension one, CI(F, P) is a polyhedron.

Definition

For an inequality ¢”x < #, valid for conv(C), a split body proof is a finite family F of
split bodies such that ¢’ x <~y is valid for CX(F, C) for some k. The split size of the
proof is the largest split dimension of a split body in F.
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From split bodies to cutting plane proofs

AT . < ; . i imensional and Ipf,

For a family F of split bodies, let then y < 0 has split size n w.r.t.
Ax+1ly < b, xeZ", y > 0.
CI(F, C):= [ R(L). - e e - .
LeF - e - - =
Letting C°(F, C) = C, define for i > 1, R
C'(F,C) = CYF,CY(F, C)).

Theorem [Cook, Kannan, Schrijver 90] -

For a polyhedron P and the set F of split bodies e e e e e
of split dimension one, CI(F, P) is a polyhedron.

Definition

For an inequality ¢”x < #, valid for conv(C), a split body proof is a finite family F of
split bodies such that ¢’ x <~y is valid for CX(F, C) for some k. The split size of the
proof is the largest split dimension of a split body in F.
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Split bodies: a perspective

Theorem [Andersen, Louveaux, W
07]

Let ¢"x < ~ be a nt valid inequality
for conv(C;).

(i) It has a split body proof of split
size split-dim(c, 7).

(i) There is no split body proof of
split size smaller than
split-dim(c, 7).
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Theorem [Andersen, Louveaux, W
07]

Let ¢"x < ~ be a nt valid inequality
for conv(C;).
(i) It has a split body proof of split
size split-dim(c, 7).
(i) There is no split body proof of
split size smaller than
split-dim(c, 7).

Corollary

Any cutting plane algorithm based on
split bodies of split-dimension less
than split-dim(c, ) cannot solve the
optimization problem

v = {max c"x, x € C/} in finitely
many rounds.

o
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Split bodies: a perspective

Theorem [Andersen, Louveaux, W Theorem [Andersen, Louveaux, W 07]

07] Let F be the optimal face of
Let ¢"x < v be a nt valid inequality maxc’x | x € P. F contains no mixed
for conv(C)). integer points iff there exists a split body of

split size at most max {1, dim F} containing

i) Ith lit bod f of split L
() as a spit body proot of spi F in its interior.

size split-dim(c, 7).

(il) There is no split body proof of
split size smaller than
split-dim(c, 7).

Corollary

| \
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split bodies of split-dimension less
than split-dim(c, ) cannot solve the
optimization problem
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Split bodies: a perspective

Theorem [Andersen, Louveaux, W
07]

Let ¢"x < ~ be a nt valid inequality
for conv(C;).
(i) It has a split body proof of split
size split-dim(c, 7).
(i) There is no split body proof of

split size smaller than
split-dim(c, 7).

Corollary

| N\

Any cutting plane algorithm based on
split bodies of split-dimension less
than split-dim(c,~y) cannot solve the
optimization problem

v = {max c"x, x € G} in finitely
many rounds.

Theorem [Andersen, Louveaux, W 07]

Let F be the optimal face of

maxc'x | x € P. F contains no mixed
integer points iff there exists a split body of
split size at most max {1, dim F} containing
F in its interior.

How to find split bodies?

Let (x*,y™) be an optimal vertex for
maxc’x+d"y: Ax+ By < b. Let | be the
tight rows at (x*, y™) with [A, C], of rank
n-+d. Then,

L'={zeQ |z2TA eZ",
ZTC/ = 0}

is a lattice. Any basis {zi,...,z} of L*
satisfies b' z; € Z for all i iff x* € Z".

Robert Weismantel
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