

R. Weismantel

Mixed integer cutting plane theory:
a geometric view

Otto-von-Guericke-Universität Magdeburg

A mixed integer linear program

$$\begin{array}{ll}\max & c^T x \\ \text{st.} & Ax = b, \\ & x_i \in \mathbf{Z}_+, \quad i \in I, \quad x_i \in \mathbf{R}_+, \quad i \notin I.\end{array}$$

The simplex tableau representation

$$\begin{array}{ll}\max & \bar{c}_N^T x_N \\ \text{st.} & \bar{A}_N x_N \leq \bar{b}, \\ & x_i \in \mathbf{R}_+, \quad x_i \in \mathbf{Z}_+, \quad i \in I.\end{array}$$

and,

$$\begin{aligned}N_i^+ &= \{j \in N \mid \bar{a}_{ij} \geq 0\}, \\N_i^- &= \{j \in N \mid \bar{a}_{ij} < 0\}, \\f(g) &= (g_j - \lfloor g_j \rfloor) \quad \text{for } g \in \mathbf{R}^d.\end{aligned}$$

Optimization

Often the variables are (x, y) . Then $x \in \mathbf{Z}^n$ and $y \in \mathbf{R}^d$.

For a closed convex set C , let

$$G := \{(x, y) \in C \cap (\mathbf{Z}^n \times \mathbf{R}^d)\}.$$

Cutting plane algorithm

For $S \subseteq \mathbf{Z}^n \times \mathbf{R}^d$ a linear inequality $a^T(x, y) \leq b$ is valid, i.e.,

$$S \subseteq \{(x, y) \mid a^T(x, y) \leq b\}$$

and cuts off the LP optimum (x^*, y^*) , i.e., $a^T(x^*, y^*) > b$.

A mixed integer linear program

$$\begin{array}{ll}\max & c^T x \\ \text{st.} & Ax = b, \\ & x_i \in \mathbf{Z}_+, \quad i \in I, \quad x_i \in \mathbf{R}_+, \quad i \notin I.\end{array}$$

The simplex tableau representation

$$\begin{array}{ll}\max & \bar{c}_N^T x_N \\ \text{st.} & \bar{A}_N x_N \leq \bar{b}, \\ & x_i \in \mathbf{R}_+, \quad x_i \in \mathbf{Z}_+, \quad i \in I.\end{array}$$

and,

$$\begin{aligned}N_i^+ &= \{j \in N \mid \bar{a}_{ij} \geq 0\}, \\N_i^- &= \{j \in N \mid \bar{a}_{ij} < 0\}, \\f(g) &= (g_j - \lfloor g_j \rfloor) \quad \text{for } g \in \mathbf{R}^d.\end{aligned}$$

Implementation

Often the variables are (x, y) . Then $x \in \mathbf{Z}^n$ and $y \in \mathbf{R}^d$.

For a closed convex set C , let

$$G := \{(x, y) \in C \cap (\mathbf{Z}^n \times \mathbf{R}^d)\}.$$

Cutting plane algorithm

For $S \subseteq \mathbf{Z}^n \times \mathbf{R}^d$ a linear inequality $a^T(x, y) \leq b$ is valid, i.e.,

$$S \subseteq \{(x, y) \mid a^T(x, y) \leq b\}$$

and cuts off the LP optimum (x^*, y^*) , i.e., $a^T(x^*, y^*) > b$.

A mixed integer linear program

$$\begin{array}{ll}\max & c^T x \\ \text{st.} & Ax = b, \\ & x_i \in \mathbf{Z}_+, \quad i \in I, \quad x_i \in \mathbf{R}_+, \quad i \notin I.\end{array}$$

The simplex tableau representation

$$\begin{array}{ll}\max & \bar{c}_N^T x_N \\ \text{st.} & \bar{A}_N x_N \leq \bar{b}, \\ & x_i \in \mathbf{R}_+, \quad x_i \in \mathbf{Z}_+, \quad i \in I.\end{array}$$

and,

$$\begin{aligned}N_i^+ &= \{j \in N \mid \bar{a}_{ij} \geq 0\}, \\N_i^- &= \{j \in N \mid \bar{a}_{ij} < 0\}, \\f(g) &= (g_j - \lfloor g_j \rfloor) \quad \text{for } g \in \mathbf{R}^d.\end{aligned}$$

A notation

Often the variables are (x, y) . Then $x \in \mathbf{Z}^n$ and $y \in \mathbf{R}^d$.

For a **closed convex set** C , let

$$C_I := \{(x, y) \in C \cap (\mathbf{Z}^n \times \mathbf{R}^d)\}.$$

What is a cutting plane?

For $S \subseteq \mathbf{Z}^n \times \mathbf{R}^d$ a linear inequality $a^T(x, y) \leq b$ is **valid**, i.e.,

$$S \subseteq \{(x, y) \mid a^T(x, y) \leq b\}$$

and **cuts off** the LP optimum (x^*, y^*) , i.e., $a^T(x^*, y^*) > b$.

A mixed integer linear program

$$\begin{array}{ll}\max & c^T x \\ \text{st.} & Ax = b, \\ & x_i \in \mathbf{Z}_+, \quad i \in I, \quad x_i \in \mathbf{R}_+, \quad i \notin I.\end{array}$$

The simplex tableau representation

$$\begin{array}{ll}\max & \bar{c}_N^T x_N \\ \text{st.} & \bar{A}_N x_N \leq \bar{b}, \\ & x_i \in \mathbf{R}_+, \quad x_i \in \mathbf{Z}_+, \quad i \in I.\end{array}$$

and,

$$\begin{aligned}N_i^+ &= \{j \in N \mid \bar{a}_{ij} \geq 0\}, \\N_i^- &= \{j \in N \mid \bar{a}_{ij} < 0\}, \\f(g) &= (g_j - \lfloor g_j \rfloor) \quad \text{for } g \in \mathbf{R}^d.\end{aligned}$$

A notation

Often the variables are (x, y) . Then $x \in \mathbf{Z}^n$ and $y \in \mathbf{R}^d$.

For a **closed convex set** C , let

$$C_I := \{(x, y) \in C \cap (\mathbf{Z}^n \times \mathbf{R}^d)\}.$$

What is a cutting plane?

For $S \subseteq \mathbf{Z}^n \times \mathbf{R}^d$ a linear inequality $a^T(x, y) \leq b$ is **valid**, i.e.,

$$S \subseteq \{(x, y) \mid a^T(x, y) \leq b\}$$

and **cuts off** the LP optimum (x^*, y^*) , i.e., $a^T(x^*, y^*) > b$.

The point of departure

For a polyhedron $P \subseteq \mathbf{R}^{n+d}$, the set $S = \text{conv}(P \cap (\mathbf{Z}^n \times \mathbf{R}^d))$ is a polyhedron. Hence,

$$\begin{aligned} c^* &= \max c^T x + g^T y &= \max c^T x + g^T y \\ (x, y) \in P \cap (\mathbf{Z}^n \times \mathbf{R}^d) & & (x, y) \in S. \end{aligned}$$

- (1) Which **geometric tools** are needed in order to understand S ?
- (2) Which **algebraic tools** are needed to generate cutting planes?
- (3) Can (1) and (2) be turned into a **finite algorithm** that computes c^* ?

The pure integer setting

- **Rounding of hyperplanes:**
 $\sum_i a_i x_i \leq a_0$ turns into
 $\sum_i \lfloor a_i \rfloor x_i \leq \lfloor a_0 \rfloor$.
- **Cutting plane proofs** [Chv 73].
- **Finiteness** [Gomory 58].

The mixed integer setting

- In the mixed 0-1-case, things are nice.
- In general, nothing extends easily.
Why?

The point of departure

For a polyhedron $P \subseteq \mathbf{R}^{n+d}$, the set $S = \text{conv}(P \cap (\mathbf{Z}^n \times \mathbf{R}^d))$ is a polyhedron. Hence,

$$\begin{aligned} c^* &= \max c^T x + g^T y &= \max c^T x + g^T y \\ (x, y) \in P \cap (\mathbf{Z}^n \times \mathbf{R}^d) & & (x, y) \in S. \end{aligned}$$

- (1) Which **geometric tools** are needed in order to understand S ?
- (2) Which **algebraic tools** are needed to generate cutting planes?
- (3) Can (1) and (2) be turned into a **finite algorithm** that computes c^* ?

The pure integer setting

- **Rounding of hyperplanes:**

$$\sum_i a_i x_i \leq a_0 \text{ turns into} \\ \sum_i \lfloor a_i \rfloor x_i \leq \lfloor a_0 \rfloor.$$

- **Cutting plane proofs** [Chv 73].
- **Finiteness** [Gomory 58].

The mixed integer setting

- In the mixed 0-1-case, things are nice.
- In general, nothing extends easily.

Why?

The point of departure

For a polyhedron $P \subseteq \mathbf{R}^{n+d}$, the set $S = \text{conv}(P \cap (\mathbf{Z}^n \times \mathbf{R}^d))$ is a polyhedron. Hence,

$$\begin{aligned} c^* &= \max c^T x + g^T y &= \max c^T x + g^T y \\ (x, y) \in P \cap (\mathbf{Z}^n \times \mathbf{R}^d) & & (x, y) \in S. \end{aligned}$$

- (1) Which **geometric tools** are needed in order to understand S ?
- (2) Which **algebraic tools** are needed to generate cutting planes?
- (3) Can (1) and (2) be turned into a **finite algorithm** that computes c^* ?

The pure integer setting

- **Rounding of hyperplanes:**
 $\sum_i a_i x_i \leq a_0$ turns into
 $\sum_i \lfloor a_i \rfloor x_i \leq \lfloor a_0 \rfloor$.
- **Cutting plane proofs** [Chv 73].
- **Finiteness** [Gomory 58].

The mixed integer setting

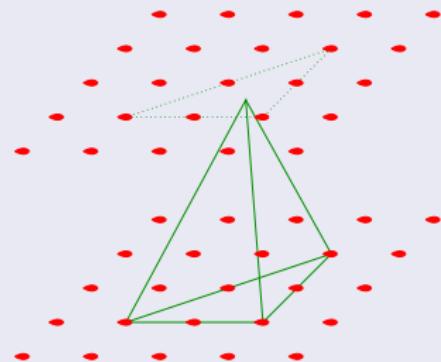
- In the mixed 0-1-case, things are nice.
- In general, nothing extends easily.
Why?

The dilemma for general mixed integer programs

An intriguing small example [Cook, Kannan, Schrijver 90]

$$\begin{array}{ll} \max & +y \\ -x_1 & +y \leq 0 \\ & -x_2 + y \leq 0 \\ +x_1 & +x_2 + y \leq 2 \\ x_1 \in \mathbf{Z}_+, \quad x_2 \in \mathbf{Z}_+, y \geq 0. \end{array}$$

with **fractional optimum** $(\frac{2}{3}, \frac{2}{3}, \frac{2}{3})$.



In understanding this example . . . , we need

For $\{(x, y) \in S \subset \mathbf{R}^{n+d}\}$, its **projection** is

$$\text{proj}_x(S) = \{x \in \mathbf{R}^n \mid \exists y \text{ such that } (x, y) \in S\}.$$

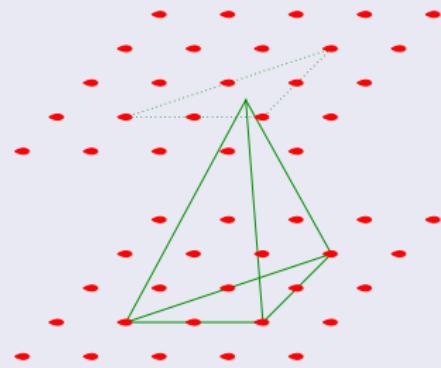
The projection-operation **preserves** polyhedrality and convexity.

The dilemma for general mixed integer programs

An intriguing small example [Cook, Kannan, Schrijver 90]

$$\begin{array}{ll} \max & +y \\ -x_1 & +y \leq 0 \\ & -x_2 + y \leq 0 \\ +x_1 & +x_2 + y \leq 2 \\ x_1 \in \mathbf{Z}_+, \quad x_2 \in \mathbf{Z}_+, y \geq 0. \end{array}$$

with **fractional optimum** $(\frac{2}{3}, \frac{2}{3}, \frac{2}{3})$.



In understanding this example . . . , we need

For $\{(x, y) \in S \subset \mathbf{R}^{n+d}\}$, its **projection** is

$$\text{proj}_x(S) = \{x \in \mathbf{R}^n \mid \exists y \text{ such that } (x, y) \in S\}.$$

The projection-operation **preserves** polyhedrality and convexity.

The mixed 0 – 1-case and disjunctive programming

Ingredients

- $z \in \{0, 1\}$ iff $z^2 = z$.
- For polyhedra

$$P_1, P_2 \subseteq \mathbf{R}^n,$$

$\text{conv}(P_1 \cup P_2)$ can be compactly described. [Balas 79,85].

The system

$$S = \{x \in \{0, 1\}^n \times \mathbf{R}_+^d : Ax \leq b\}.$$

The Lift-and-Project Algorithm

- Step 1: Select $j \in N$.
- Step 2: Generate the nonlinear system Q_j ,

$$x_j(Ax - b) \leq 0, (1 - x_j)(Ax - b) \leq 0.$$

- Step 3: Linearize Q_j by $y_i := x_i x_j$ for $i \neq j$ and $x_j^2 = x_j$.
- Step 4: Project the linearized system onto x -space.

Project linearized system onto x -space

$$\text{proj}_x(Q_j) = \text{conv} \{ \{Ax \leq b, x_j = 0\} \cup \{Ax \leq b, x_j = 1\} \}.$$

$$\text{conv}(S) = (\dots (\text{proj}_x(Q_1))_2 \dots)_n.$$

Similar approaches: [Lovasz, Schrijver 91] [Sherali, Adams 90]

The mixed 0 – 1-case and disjunctive programming

Ingredients

- $z \in \{0, 1\}$ iff $z^2 = z$.
- For polyhedra

$$P_1, P_2 \subseteq \mathbf{R}^n,$$

$\text{conv}(P_1 \cup P_2)$ can be compactly described. [Balas 79,85].

The system

$$S = \{x \in \{0, 1\}^n \times \mathbf{R}_+^d : Ax \leq b\}.$$

The Lift-and-Project Algorithm

- Step 1: Select $j \in N$.
- Step 2: Generate the nonlinear system Q_j ,

$$x_j(Ax - b) \leq 0, (1 - x_j)(Ax - b) \leq 0.$$

- Step 3: Linearize Q_j by $y_i := x_i x_j$ for $i \neq j$ and $x_j^2 = x_j$.
- Step 4: Project the linearized system onto x -space.

Goal: Lift and project to get a compact description of S .

$$\text{proj}_x(Q_j) = \text{conv} \{ \{Ax \leq b, x_j = 0\} \cup \{Ax \leq b, x_j = 1\} \}.$$

$$\text{conv}(S) = (\dots (\text{proj}_x(Q_1))_2 \dots)_n.$$

Similar approaches: [Lovasz, Schrijver 91] [Sherali, Adams 90]

Ingredients

- $z \in \{0, 1\}$ iff $z^2 = z$.
- For polyhedra

$$P_1, P_2 \subseteq \mathbf{R}^n,$$

$\text{conv}(P_1 \cup P_2)$ can be compactly described. [Balas 79,85].

The system

$$S = \{x \in \{0, 1\}^n \times \mathbf{R}_+^d : Ax \leq b\}.$$

The Lift-and-Project Algorithm

- Step 1: Select $j \in N$.
- Step 2: Generate the nonlinear system Q_j ,

$$x_j(Ax - b) \leq 0, (1 - x_j)(Ax - b) \leq 0.$$

- Step 3: Linearize Q_j by $y_i := x_i x_j$ for $i \neq j$ and $x_j^2 = x_j$.
- Step 4: Project the linearized system onto x -space.

Theorem [Balas, Ceria, Cornuejols 93]

$$\begin{aligned} \text{proj}_x(Q_j) &= \text{conv} \{ \{Ax \leq b, x_j = 0\} \cup \{Ax \leq b, x_j = 1\} \}. \\ \text{conv}(S) &= (\dots (\text{proj}_x(Q_1))_2 \dots)_n. \end{aligned}$$

Similar approaches: [Lovasz, Schrijver 91] [Sherali, Adams 90]

The mixed 0 – 1-case and disjunctive programming

Ingredients

- $z \in \{0, 1\}$ iff $z^2 = z$.
- For polyhedra

$$P_1, P_2 \subseteq \mathbf{R}^n,$$

$\text{conv}(P_1 \cup P_2)$ can be compactly described. [Balas 79,85].

The system

$$S = \{x \in \{0, 1\}^n \times \mathbf{R}_+^d : Ax \leq b\}.$$

The Lift-and-Project Algorithm

- Step 1: Select $j \in N$.
- Step 2: Generate the nonlinear system Q_j ,

$$x_j(Ax - b) \leq 0, (1 - x_j)(Ax - b) \leq 0.$$

- Step 3: Linearize Q_j by $y_i := x_i x_j$ for $i \neq j$ and $x_j^2 = x_j$.
- Step 4: Project the linearized system onto x -space.

Theorem [Balas, Ceria, Cornuejols 93]

$$\begin{aligned} \text{proj}_x(Q_j) &= \text{conv} \{ \{Ax \leq b, x_j = 0\} \cup \{Ax \leq b, x_j = 1\} \}. \\ \text{conv}(S) &= (\dots (\text{proj}_x(Q_1))_2 \dots)_n. \end{aligned}$$

Similar approaches: [Lovasz, Schrijver 91] [Sherali, Adams 90]

The basic model

$$X = \{(x, y) \in \mathbf{Z} \times \mathbf{R}_+ \mid x + y \geq b\}$$

The only missing inequality is

$$x + \frac{1}{1 - f(b)}y \geq \lceil b \rceil$$

Mixed integer rounding can be applied to general models by **aggregating variables**,

$$z := \sum_{i \in S} g_i x_i.$$

Lemma: The lower bound z is obtained from mixed integer rounding

$$\sum_{j \in N \setminus U} \min \left\{ f(\bar{a}_{ij}), \frac{f(\bar{b}_i)(1 - f(\bar{a}_{ij}))}{1 - f(\bar{b}_i)} \right\} x_j + \sum_{j \in N_i^+ \setminus U} \bar{a}_{ij} x_j - \sum_{j \in N_i^- \setminus U} \frac{f(\bar{b}_i) \bar{a}_{ij}}{1 - f(\bar{b}_i)} x_j \geq f(\bar{b}_i).$$

The basic model

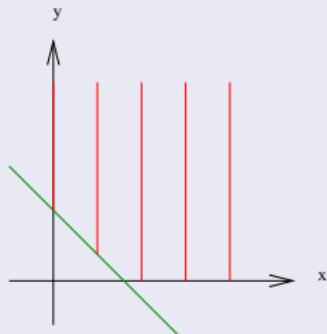
$$X = \{(x, y) \in \mathbf{Z} \times \mathbf{R}_+ \mid x + y \geq b\}$$

The only missing inequality is

$$x + \frac{1}{1 - f(b)}y \geq \lceil b \rceil$$

Mixed integer rounding can be applied to general models by **aggregating variables**,

$$z := \sum_{i \in S} g_i x_i.$$



Lemma. The **Gomory-fractional cut** is obtained from mixed integer rounding.

$$\sum_{j \in N \cap I} \min \left\{ f(\bar{a}_{ij}), \frac{f(\bar{b}_i)(1 - f(\bar{a}_{ij}))}{1 - f(\bar{b}_i)} \right\} x_j + \sum_{j \in N_i^+ \setminus I} \bar{a}_{ij} x_j - \sum_{j \in N_i^- \setminus I} \frac{f(\bar{b}_i) \bar{a}_{ij}}{1 - f(\bar{b}_i)} x_j \geq f(\bar{b}_i).$$

The basic model

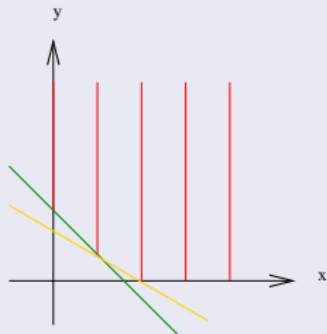
$$X = \{(x, y) \in \mathbf{Z} \times \mathbf{R}_+ \mid x + y \geq b\}$$

The only missing inequality is

$$x + \frac{1}{1 - f(b)}y \geq \lceil b \rceil$$

Mixed integer rounding can be applied to general models by **aggregating variables**,

$$z := \sum_{i \in S} g_i x_i.$$



Lemma. The Gomory-fractional cut is obtained from mixed integer rounding.

$$\sum_{j \in N \cap I} \min \left\{ f(\bar{a}_{ij}), \frac{f(\bar{b}_i)(1 - f(\bar{a}_{ij}))}{1 - f(\bar{b}_i)} \right\} x_j + \sum_{j \in N_i^+ \setminus I} \bar{a}_{ij} x_j - \sum_{j \in N_i^- \setminus I} \frac{f(\bar{b}_i)\bar{a}_{ij}}{1 - f(\bar{b}_i)} x_j \geq f(\bar{b}_i).$$

The basic model

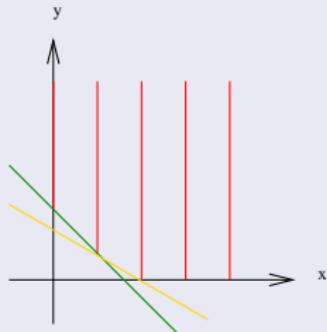
$$X = \{(x, y) \in \mathbf{Z} \times \mathbf{R}_+ \mid x + y \geq b\}$$

The only missing inequality is

$$x + \frac{1}{1 - f(b)}y \geq \lceil b \rceil$$

Mixed integer rounding can be applied to general models by **aggregating variables**,

$$z := \sum_{i \in S} g_i x_i.$$



Lemma. The **Gomory-fractional cut** is obtained from mixed integer rounding.

$$\sum_{j \in N \cap I} \min \left\{ f(\bar{a}_{ij}), \frac{f(\bar{b}_i)(1 - f(\bar{a}_{ij}))}{1 - f(\bar{b}_i)} \right\} x_j + \sum_{j \in N_i^+ \setminus I} \bar{a}_{ij} x_j - \sum_{j \in N_i^- \setminus I} \frac{f(\bar{b}_i)\bar{a}_{ij}}{1 - f(\bar{b}_i)} x_j \geq f(\bar{b}_i).$$

Cuts from two or more rows of a simplex tableau

A basic model for two and more row -relaxations:

$$f + C_{\text{I}} = \left\{ (x, s) \mid x = f + \sum_{j=1}^n \mathbf{r}^j s_j, x \in \mathbf{Z}^d, s \in \mathbb{Q}_+^n \right\}.$$

The structure of valid inequalities of $f + C_{\text{I}}$ [Andersen, Louveaux, W, Wolsey 06]

A **non trivial** inequality is of the kind

$$\sum_{j \in N} \alpha_j s_j \geq 1 \text{ where } \alpha_j \geq 0.$$

The coefficients α_j are the reciprocal of the distance from f along \mathbf{r}^j to the boundary of the **projected facet body** $\text{proj}_x (\{(x, s) \in f + C, \alpha^T s = 1\})$.

Cuts from two or more rows of a simplex tableau

A basic model for two and more row -relaxations:

$$f + C_I = \left\{ (x, s) \mid x = f + \sum_{j=1}^n r^j s_j, x \in \mathbb{Z}^d, s \in \mathbb{Q}_+^n \right\}.$$

The structure of valid inequalities of $f + C_I$ [Andersen, Louveaux, W, Wolsey 06]

A **non trivial** inequality is of the kind

$$\sum_{j \in N} \alpha_j s_j \geq 1 \text{ where } \alpha_j \geq 0.$$

The coefficients α_j are the reciprocal of the distance from f along r^j to the boundary of the **projected facet body** $\text{proj}_x (\{(x, s) \in f + C, \alpha^T s = 1\})$.

A basic model for two and more row -relaxations:

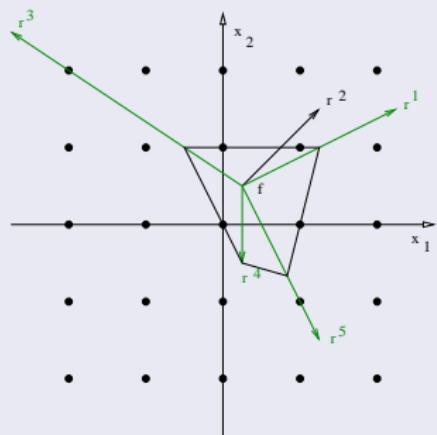
$$f + C_{\textcolor{red}{I}} = \left\{ (x, s) \mid x = f + \sum_{i=1}^n \mathbf{r}^j s_j, x \in \mathbf{Z}^d, s \in \mathbb{Q}_+^n \right\}.$$

The structure of valid inequalities of $f + C$ [Andersen, Louveaux, W, Wolsey 06]

A **non trivial** inequality is of the kind

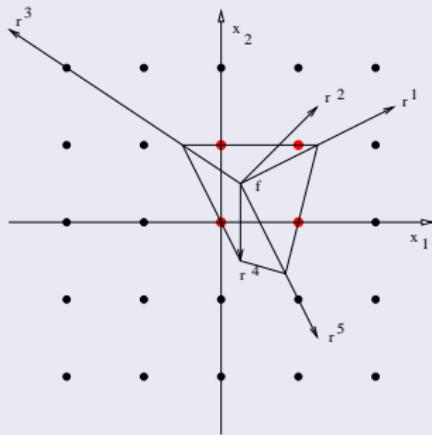
$$\sum_{j \in N} \alpha_j s_j \geq 1 \text{ where } \alpha_j \geq 0.$$

The coefficients α_j are the reciprocal of the distance from f along r^j to the boundary of the **projected facet body** $\text{proj}_x(\{(x, s) \in f + C, \alpha^T s = 1\})$.

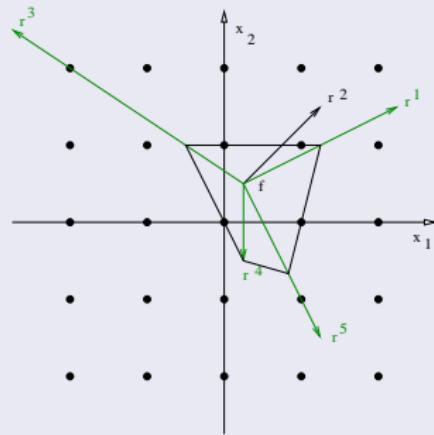


The special case of two rows is geometrically tractable

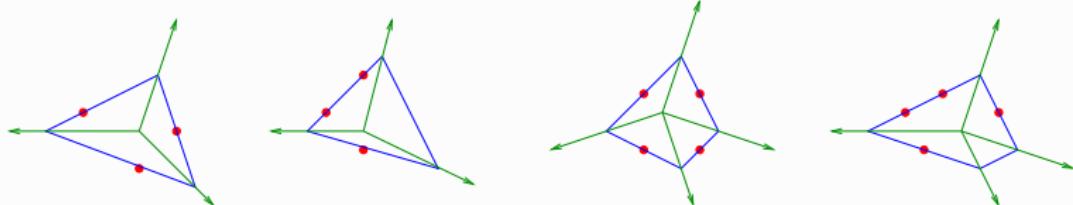
Theorem [Andersen, Louveaux, W, Wolsey 06]



The projected facet body contains no interior integer points. Either 3 or 4 rays (integer points) determine its vertices (boundary).

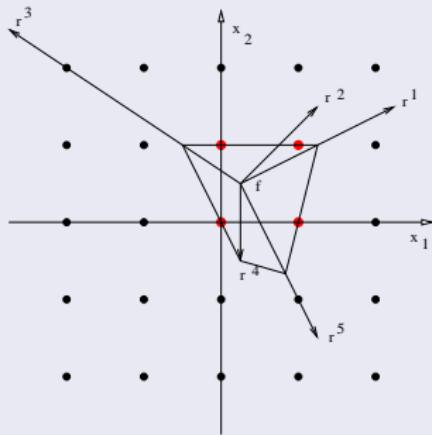


Classification of the facets by lattice point free polyhedra

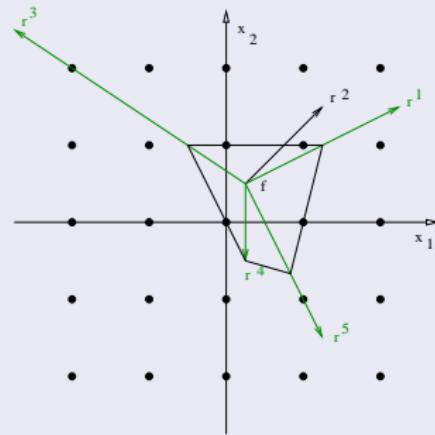


The special case of two rows is geometrically tractable

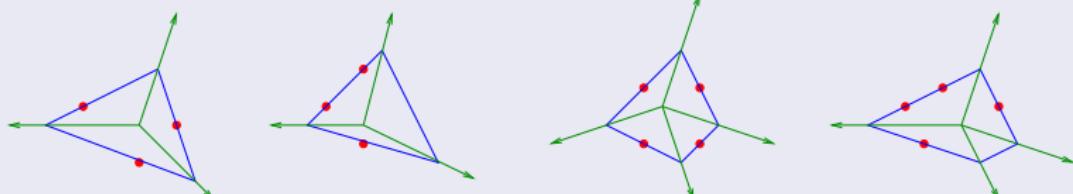
Theorem [Andersen, Louveaux, W, Wolsey 06]



The projected facet body contains no interior integer points. Either 3 or 4 rays (integer points) determine its vertices (boundary).



Classification of the facets by lattice point free polyhedra



The algebra

Based on a disjunction

$$\pi^T x \leq \pi_0 \quad \text{or} \quad \pi^T x \geq \pi_0 + 1$$

is valid for $x \in \mathbf{Z}^n$ when π, π_0 are integer.

The geometry

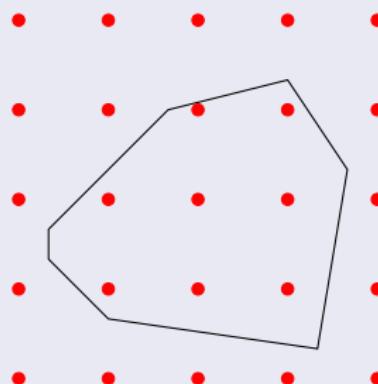
The algebra

Based on a disjunction

$$\pi^T x \leq \pi_0 \quad \text{or} \quad \pi^T x \geq \pi_0 + 1$$

is valid for $x \in \mathbf{Z}^n$ when π, π_0 are integer.

The geometry



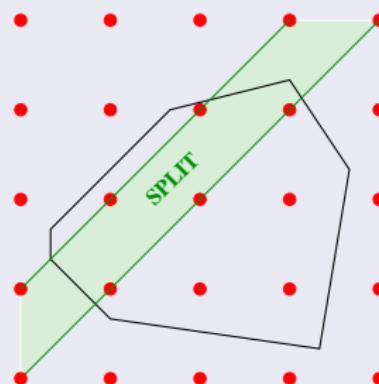
The algebra

Based on a disjunction

$$\pi^T x \leq \pi_0 \quad \text{or} \quad \pi^T x \geq \pi_0 + 1$$

is valid for $x \in \mathbf{Z}^n$ when π, π_0 are integer.

The geometry



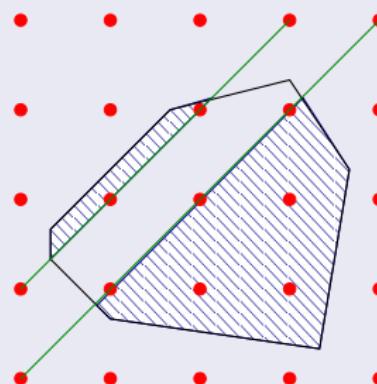
The algebra

Based on a disjunction

$$\pi^T x \leq \pi_0 \quad \text{or} \quad \pi^T x \geq \pi_0 + 1$$

is valid for $x \in \mathbf{Z}^n$ when π, π_0 are integer.

The geometry



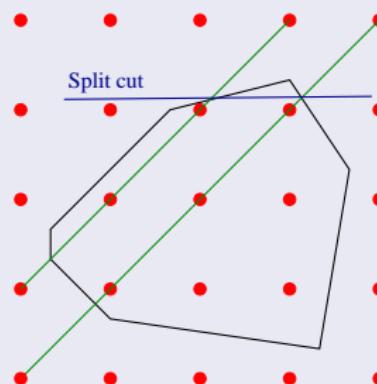
The algebra

Based on a disjunction

$$\pi^T x \leq \pi_0 \quad \text{or} \quad \pi^T x \geq \pi_0 + 1$$

is valid for $x \in \mathbf{Z}^n$ when π, π_0 are integer.

The geometry



Lattice-point-free polyhedron

A polyhedron P is **lattice-point-free** when there is no integer point **in its interior**.

Splits and lpf-polyhedra

A split cut is generated from a **special lattice point free polyhedron**,
 $L = \text{conv}(v, w) + \text{span}(z^1, \dots, z^{n-1})$,
with $z^1, \dots, z^{n-1} \in \mathbb{Q}^n$ being linearly independent.

Results on maximal lpf polyhedra

see survey of [Lovasz 87]

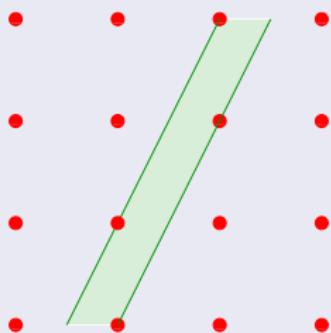
Splits and disjunctions

A split comes from a **two-term disjunction** $\pi x \leq \pi_0$, $\pi x \geq \pi_0 + 1$, where $\pi_0 \in \mathbb{Z}$.

What is a split? two points of view

Lattice-point-free polyhedron

A polyhedron P is **lattice-point-free** when there is no integer point **in its interior**.



A basic split set in \mathbf{R}^2

Splits and lpf-polyhedra

A split cut is generated from a **special lattice point free polyhedron**, $L = \text{conv}(v, w) + \text{span}(z^1, \dots, z^{n-1})$, with $z^1, \dots, z^{n-1} \in \mathbb{Q}^n$ being linearly independent.

Results on maximal lpf polyhedra

see survey of [Lovasz 87]

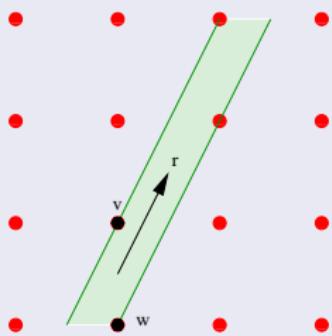
Splits and disjunctions

A split comes from a **two-term disjunction** $\pi x \leq \pi_0, \pi x \geq \pi_0 + 1$, where $\pi_0 \in \mathbb{Z}$.

What is a split? two points of view

Lattice-point-free polyhedron

A polyhedron P is **lattice-point-free** when there is no integer point **in its interior**.



$$\text{conv}\{v, w\} + \text{span}\{r\}$$

Splits and lpf-polyhedra

A split cut is generated from a **special lattice point free polyhedron**, $L = \text{conv}(v, w) + \text{span}(z^1, \dots, z^{n-1})$, with $z^1, \dots, z^{n-1} \in \mathbb{Q}^n$ being linearly independent.

Results on maximal lpf polyhedra

see survey of [Lovasz 87]

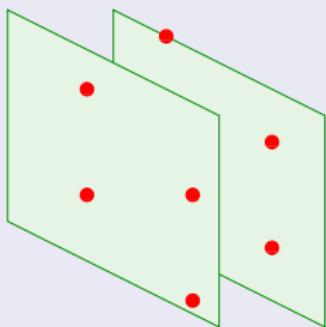
Splits and disjunctions

A split comes from a **two-term disjunction** $\pi x \leq \pi_0, \pi x \geq \pi_0 + 1$, where $\pi_0 \in \mathbb{Z}$.

What is a split? two points of view

Lattice-point-free polyhedron

A polyhedron P is **lattice-point-free** when there is no integer point **in its interior**.



A basic split set in \mathbb{R}^3

Splits and lpf-polyhedra

A split cut is generated from a **special lattice point free polyhedron**, $L = \text{conv}(v, w) + \text{span}(z^1, \dots, z^{n-1})$, with $z^1, \dots, z^{n-1} \in \mathbb{Q}^n$ being linearly independent.

Results on maximal lpf polyhedra

see survey of [Lovasz 87]

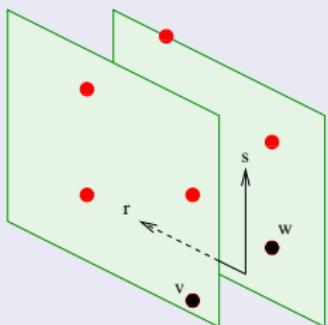
Splits and disjunctions

A split comes from a **two-term disjunction** $\pi x \leq \pi_0, \pi x \geq \pi_0 + 1$, where $\pi_0 \in \mathbb{Z}$.

What is a split? two points of view

Lattice-point-free polyhedron

A polyhedron P is **lattice-point-free** when there is no integer point **in its interior**.



$$\text{conv}\{v, w\} + \text{span}\{r, s\}$$

Splits and lpf-polyhedra

A split cut is generated from a **special lattice point free polyhedron**, $L = \text{conv}(v, w) + \text{span}(z^1, \dots, z^{n-1})$, with $z^1, \dots, z^{n-1} \in \mathbb{Q}^n$ being linearly independent.

Results on maximal lpf polyhedra

see survey of [Lovasz 87]

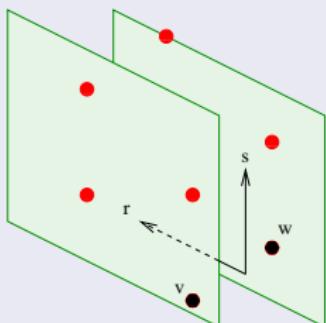
Splits and disjunctions

A split comes from a **two-term disjunction** $\pi x \leq \pi_0, \pi x \geq \pi_0 + 1$, where $\pi_0 \in \mathbb{Z}$.

What is a split? two points of view

Lattice-point-free polyhedron

A polyhedron P is **lattice-point-free** when there is no integer point **in its interior**.



$$\text{conv}\{v, w\} + \text{span}\{r, s\}$$

Splits and lpf-polyhedra

A split cut is generated from a **special lattice point free polyhedron**, $L = \text{conv}(v, w) + \text{span}(z^1, \dots, z^{n-1})$, with $z^1, \dots, z^{n-1} \in \mathbb{Q}^n$ being linearly independent.

Results on maximal lpf polyhedra

see survey of [Lovasz 87]

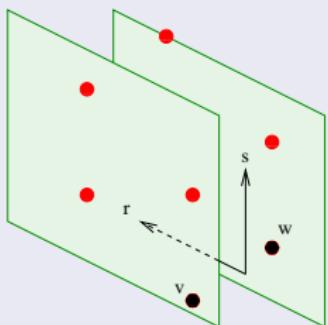
Splits and disjunctions

A split comes from a **two-term disjunction** $\pi x \leq \pi_0$, $\pi x \geq \pi_0 + 1$, where $\pi_0 \in \mathbb{Z}$.

What is a split? two points of view

Lattice-point-free polyhedron

A polyhedron P is **lattice-point-free** when there is no integer point **in its interior**.



$$\text{conv}\{v, w\} + \text{span}\{r, s\}$$

Splits and lpf-polyhedra

A split cut is generated from a **special lattice point free polyhedron**, $L = \text{conv}(v, w) + \text{span}(z^1, \dots, z^{n-1})$, with $z^1, \dots, z^{n-1} \in \mathbb{Q}^n$ being linearly independent.

Results on maximal lpf polyhedra

see survey of [Lovasz 87]

Splits and disjunctions

A split comes from a **two-term disjunction** $\pi x \leq \pi_0, \pi x \geq \pi_0 + 1$, where $\pi_0 \in \mathbb{Z}$.

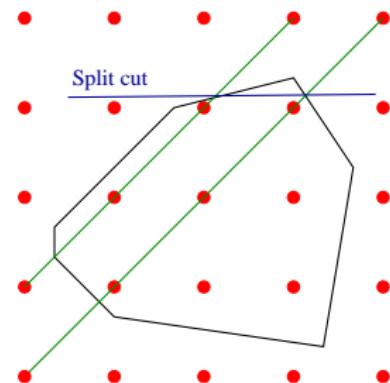
Definition

- Let $d^1, \dots, d^k \in \mathbb{Z}^n$ and $\delta_1, \dots, \delta_k \in \mathbb{Z}$. The family $D(k, d, \delta)$ is a ***k*-disjunction** if for all $x \in \mathbb{Z}^n$ there exists i such that $d^i x \leq \delta_i$.
- Let $P \subset \mathbb{R}^n$ be a polyhedron and $c^T x \leq \gamma$ be valid for P_I . Then $c^T x \leq \gamma$ is a ***k*-disjunctive cut** for P_I , if there exists a *k*-disjunction $D(k, d, \delta)$ with

$$x \in P : c^T x > \gamma \implies d^i x > \delta_i, \forall i.$$

Proposition

Let $P \subseteq \mathbb{R}^{n+d}$ be a polyhedron. Every valid inequality $c^T x \leq \gamma$ for P_I is a 2^n -disjunctive cut for some k .



Theorem [Jörg 07]

There is a finite cutting plane algorithm for any bounded mixed integer program based on *k*-disjunctions.

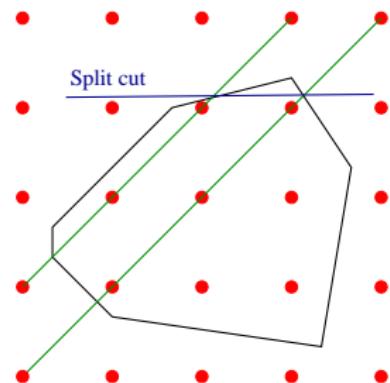
Definition

- Let $d^1, \dots, d^k \in \mathbb{Z}^n$ and $\delta_1, \dots, \delta_k \in \mathbb{Z}$. The family $D(k, d, \delta)$ is a ***k*-disjunction** if for all $x \in \mathbb{Z}^n$ there exists i such that $d^i x \leq \delta_i$.
- Let $P \subset \mathbb{R}^n$ be a polyhedron and $c^T x \leq \gamma$ be valid for P_I . Then $c^T x \leq \gamma$ is a ***k*-disjunctive cut** for P_I , if there exists a *k*-disjunction $D(k, d, \delta)$ with

$$x \in P : c^T x > \gamma \implies d^i x > \delta_i, \forall i.$$

Proposition

Let $P \subseteq \mathbb{R}^{n+d}$ be a polyhedron. Every valid inequality $c^T x \leq \gamma$ for P_I is a 2^n -disjunctive cut for some k .



Theorem [Jörg 07]

There is a finite cutting plane algorithm for any bounded mixed integer program based on *k*-disjunctions.

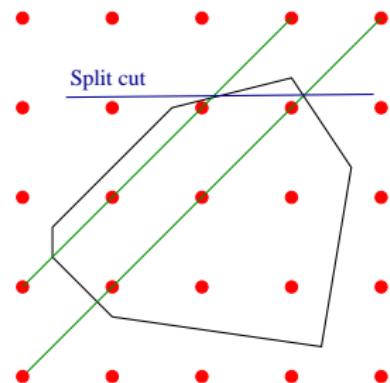
Definition

- Let $d^1, \dots, d^k \in \mathbb{Z}^n$ and $\delta_1, \dots, \delta_k \in \mathbb{Z}$. The family $D(k, d, \delta)$ is a ***k*-disjunction** if for all $x \in \mathbb{Z}^n$ there exists i such that $d^i x \leq \delta_i$.
- Let $P \subset \mathbb{R}^n$ be a polyhedron and $c^T x \leq \gamma$ be valid for P_I . Then $c^T x \leq \gamma$ is a ***k*-disjunctive cut** for P_I , if there exists a *k*-disjunction $D(k, d, \delta)$ with

$$x \in P : c^T x > \gamma \implies d^i x > \delta_i, \forall i.$$

Proposition

Let $P \subseteq \mathbb{R}^{n+d}$ be a polyhedron. Every valid inequality $c^T x \leq \gamma$ for P_I is a 2^n -disjunctive cut for some k .



Theorem [Jörg 07]

There is a finite cutting plane algorithm for any bounded mixed integer program based on *k*-disjunctions.

Observation

- $P = \text{conv}\{v^1, \dots, v^p\} + \text{cone}\{w^1, \dots, w^s\} + \text{span}\{w^{s+1}, \dots, w^q\} \subseteq \mathbf{R}^n$ is lpf if and only if $P' = \text{conv}\{v^1, \dots, v^p\} + \text{span}\{w^1, \dots, w^q\} \subseteq \mathbf{R}^n$ is lpf.
- A **lpf** polyhedron $\text{conv}\{v^1, \dots, v^p\} + \text{span}\{w^1, \dots, w^q\}$ is called **split body**, the number $n - q$ the **split-dimension**.

Example

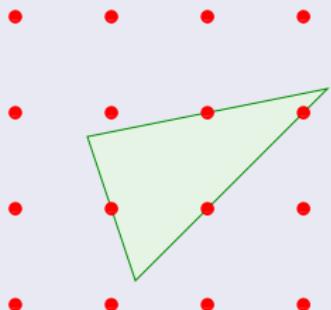
A lpf triangle in \mathbf{R}^2 has split dimension two.

Observation

- $P = \text{conv}\{v^1, \dots, v^p\} + \text{cone}\{w^1, \dots, w^s\} + \text{span}\{w^{s+1}, \dots, w^q\} \subseteq \mathbf{R}^n$ is lpf if and only if $P' = \text{conv}\{v^1, \dots, v^p\} + \text{span}\{w^1, \dots, w^q\} \subseteq \mathbf{R}^n$ is lpf.
- A **lpf** polyhedron $\text{conv}\{v^1, \dots, v^p\} + \text{span}\{w^1, \dots, w^q\}$ is called **split body**, the number $n - q$ the **split-dimension**.

Examples

A lpf triangle in \mathbf{R}^2 has **split dimension** two.



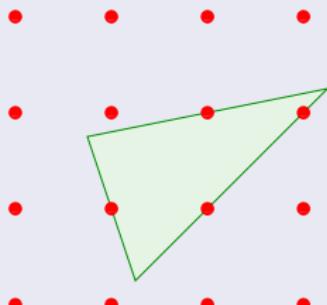
A lpf triangle lifted to \mathbf{R}^3 , $\text{conv}\{v, w, x\} + \text{span}\{r\}$ has **split dimension** two.

Observation

- $P = \text{conv}\{v^1, \dots, v^p\} + \text{cone}\{w^1, \dots, w^s\} + \text{span}\{w^{s+1}, \dots, w^q\} \subseteq \mathbf{R}^n$ is lpf if and only if $P' = \text{conv}\{v^1, \dots, v^p\} + \text{span}\{w^1, \dots, w^q\} \subseteq \mathbf{R}^n$ is lpf.
- A **lpf** polyhedron $\text{conv}\{v^1, \dots, v^p\} + \text{span}\{w^1, \dots, w^q\}$ is called **split body**, the number $n - q$ the **split-dimension**.

Examples

A lpf triangle in \mathbf{R}^2 has **split dimension** two.



A lpf triangle lifted to \mathbf{R}^3 , $\text{conv}\{v, w, x\} + \text{span}\{r\}$ has **split dimension** two.

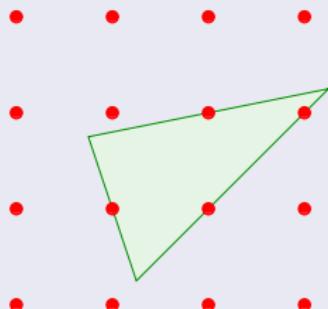
A generalization of splits based on lpf-polyhedra

Observation

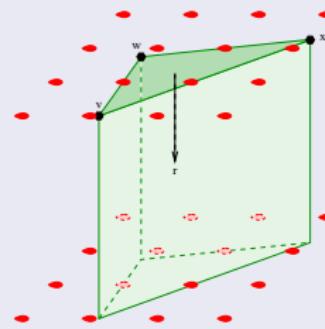
- $P = \text{conv}\{v^1, \dots, v^p\} + \text{cone}\{w^1, \dots, w^s\} + \text{span}\{w^{s+1}, \dots, w^q\} \subseteq \mathbf{R}^n$ is lpf if and only if $P' = \text{conv}\{v^1, \dots, v^p\} + \text{span}\{w^1, \dots, w^q\} \subseteq \mathbf{R}^n$ is lpf.
- A **lpf** polyhedron $\text{conv}\{v^1, \dots, v^p\} + \text{span}\{w^1, \dots, w^q\}$ is called **split body**, the number $n - q$ the **split-dimension**.

Examples

A lpf triangle in \mathbf{R}^2 has **split dimension** two.



A lpf triangle lifted to \mathbf{R}^3 , $\text{conv}\{v, w, x\} + \text{span}\{r\}$ has **split dimension** two.



Split bodies give rise to cuts for convex mixed integer programs.

An operation

For a split body $L \subseteq \mathbf{R}^n$ and a closed convex set C , let

$$R(L) := \text{cl conv}(\{(x, y) \in C : x \notin \text{rint}(L)\}).$$

Then, $\text{conv}(C_I) \subseteq R(L) \subseteq C$.

Lemma [Andersen, Louveaux, W 07]

Let $L \subseteq \mathbf{R}^n$ be a split body.

- For a closed convex set C , $R(L) \neq C$ iff there exists an extreme point (x, y) of C such that x is in the interior of L .
- If C is a polyhedron, then $R(L)$ is a polyhedron.

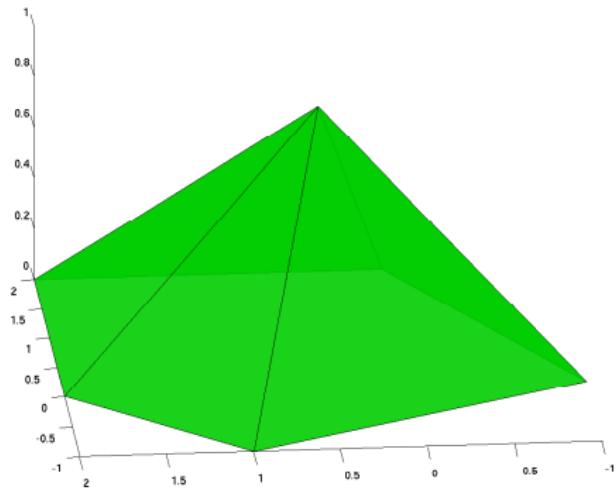
Split bodies give rise to cuts for convex mixed integer programs.

An operation

For a split body $L \subseteq \mathbf{R}^n$ and a closed convex set C , let

$$R(L) := \text{cl conv}(\{(x, y) \in C : x \notin \text{rint}(L)\}).$$

Then, $\text{conv}(C_I) \subseteq R(L) \subseteq C$.



Lemma [Andersen, Louveaux, W 07]

Let $L \subseteq \mathbf{R}^n$ be a split body.

- For a closed convex set C , $R(L) \neq C$ iff there exists an extreme point (x, y) of C such that x is in the interior of L .
- If C is a polyhedron, then $R(L)$ is a polyhedron.

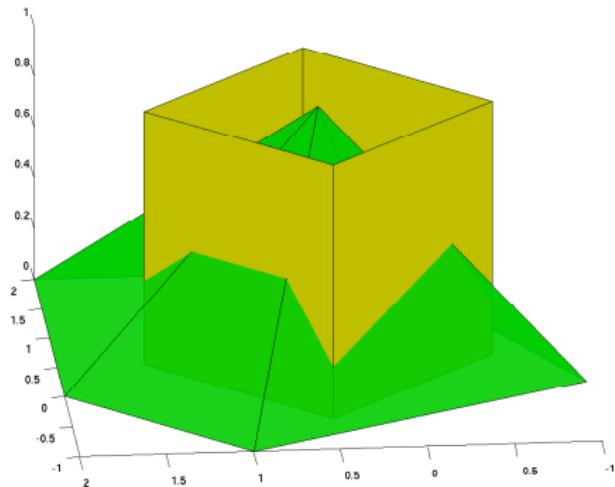
Split bodies give rise to cuts for convex mixed integer programs.

An operation

For a split body $L \subseteq \mathbf{R}^n$ and a closed convex set C , let

$$R(L) := \text{cl conv}(\{(x, y) \in C : x \notin \text{rint}(L)\}).$$

Then, $\text{conv}(C_I) \subseteq R(L) \subseteq C$.



Lemma [Andersen, Louveaux, W 07]

Let $L \subseteq \mathbf{R}^n$ be a split body.

- For a closed convex set C , $R(L) \neq C$ iff there exists an extreme point (x, y) of C such that x is in the interior of L .
- If C is a polyhedron, then $R(L)$ is a polyhedron.

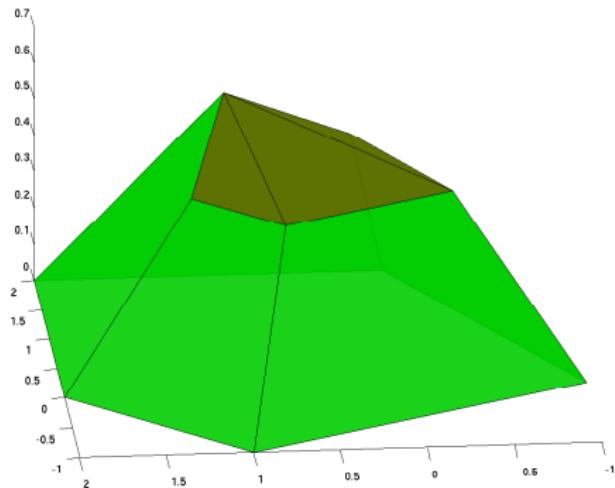
Split bodies give rise to cuts for convex mixed integer programs.

An operation

For a split body $L \subseteq \mathbf{R}^n$ and a closed convex set C , let

$$R(L) := \text{cl conv}(\{(x, y) \in C : x \notin \text{rint}(L)\}).$$

Then, $\text{conv}(C_I) \subseteq R(L) \subseteq C$.



Lemma [Andersen, Louveaux, W 07]

Let $L \subseteq \mathbf{R}^n$ be a split body.

- For a closed convex set C , $R(L) \neq C$ iff there exists an extreme point (x, y) of C such that x is in the interior of L .
- If C is a polyhedron, then $R(L)$ is a polyhedron.

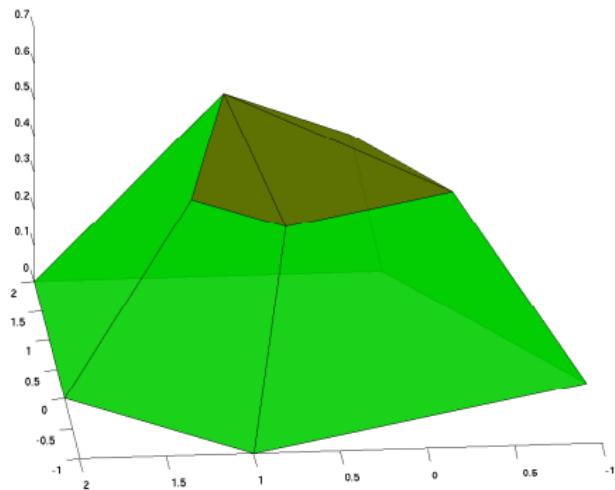
Split bodies give rise to cuts for convex mixed integer programs.

An operation

For a split body $L \subseteq \mathbf{R}^n$ and a closed convex set C , let

$$R(L) := \text{cl conv}(\{(x, y) \in C : x \notin \text{rint}(L)\}).$$

Then, $\text{conv}(C_I) \subseteq R(L) \subseteq C$.



Lemma [Andersen, Louveaux, W 07]

Let $L \subseteq \mathbf{R}^n$ be a split body.

- For a closed convex set C , $R(L) \neq C$ iff there exists an extreme point (x, y) of C such that x is in the interior of L .
- If C is a polyhedron, then $R(L)$ is a polyhedron.

The closure of split bodies

For a **family** \mathcal{F} of split bodies, let

$$\text{Cl}(\mathcal{F}, C) := \bigcap_{L \in \mathcal{F}} R(L).$$

Letting $C^0(\mathcal{F}, C) = C$, define for $i \geq 1$,

$$C^i(\mathcal{F}, C) = \text{Cl}(\mathcal{F}, C^{i-1}(\mathcal{F}, C)).$$

If $Ax \leq b$ is full dimensional and lpf,
then $y \leq 0$ has **split size** n w.r.t.
 $Ax + \mathbf{1}y \leq b$, $x \in \mathbb{Z}^n$, $y \geq 0$.

Theorem [Cook, Kannan, Schrijver 90]

For a **polyhedron** P and the set \mathcal{F} of split bodies
of split dimension **one**, $\text{Cl}(\mathcal{F}, P)$ is a **polyhedron**.

Definition

For an inequality $c^T x \leq \gamma$, valid for $\text{conv}(C_I)$, a **split body proof** is a finite family \mathcal{F} of split bodies such that $c^T x \leq \gamma$ is valid for $C^k(\mathcal{F}, C)$ for some k . The **split size** of the proof is the largest split dimension of a split body in \mathcal{F} .

The closure of split bodies

For a **family** \mathcal{F} of split bodies, let

$$\text{Cl}(\mathcal{F}, C) := \bigcap_{L \in \mathcal{F}} R(L).$$

Letting $C^0(\mathcal{F}, C) = C$, define for $i \geq 1$,

$$C^i(\mathcal{F}, C) = \text{Cl}(\mathcal{F}, C^{i-1}(\mathcal{F}, C)).$$

If $Ax \leq b$ is full dimensional and lpf,
then $y \leq 0$ has **split size** n w.r.t.
 $Ax + \mathbf{1}y \leq b$, $x \in \mathbb{Z}^n$, $y \geq 0$.

Theorem [Cook, Kannan, Schrijver 90]

For a **polyhedron** P and the set \mathcal{F} of split bodies
of split dimension **one**, $\text{Cl}(\mathcal{F}, P)$ is a **polyhedron**.

Definition

For an inequality $c^T x \leq \gamma$, valid for $\text{conv}(C_I)$, a **split body proof** is a finite family \mathcal{F} of split bodies such that $c^T x \leq \gamma$ is valid for $C^k(\mathcal{F}, C)$ for some k . The **split size** of the proof is the largest split dimension of a split body in \mathcal{F} .

From split bodies to cutting plane proofs

The closure of split bodies

For a **family** \mathcal{F} of split bodies, let

$$\text{Cl}(\mathcal{F}, C) := \bigcap_{L \in \mathcal{F}} R(L).$$

Letting $C^0(\mathcal{F}, C) = C$, define for $i \geq 1$,

$$C^i(\mathcal{F}, C) = \text{Cl}(\mathcal{F}, C^{i-1}(\mathcal{F}, C)).$$

If $Ax \leq b$ is full dimensional and lpf,
then $y \leq 0$ has **split size** n w.r.t.
 $Ax + \mathbf{1}y \leq b$, $x \in \mathbb{Z}^n$, $y \geq 0$.

Theorem [Cook, Kannan, Schrijver 90]

For a **polyhedron** P and the set \mathcal{F} of split bodies
of split dimension **one**, $\text{Cl}(\mathcal{F}, P)$ is a **polyhedron**.

Definition

For an inequality $c^T x \leq \gamma$, valid for $\text{conv}(C_I)$, a **split body proof** is a finite family \mathcal{F} of split bodies such that $c^T x \leq \gamma$ is valid for $C^k(\mathcal{F}, C)$ for some k . The **split size** of the proof is the largest split dimension of a split body in \mathcal{F} .

From split bodies to cutting plane proofs

The closure of split bodies

For a **family** \mathcal{F} of split bodies, let

$$\text{Cl}(\mathcal{F}, C) := \bigcap_{L \in \mathcal{F}} R(L).$$

Letting $C^0(\mathcal{F}, C) = C$, define for $i \geq 1$,

$$C^i(\mathcal{F}, C) = \text{Cl}(\mathcal{F}, C^{i-1}(\mathcal{F}, C)).$$

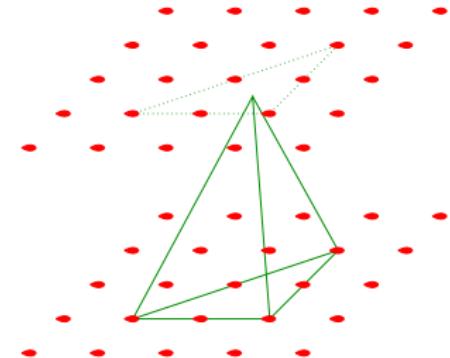
Theorem [Cook, Kannan, Schrijver 90]

For a **polyhedron** P and the set \mathcal{F} of split bodies of split dimension **one**, $\text{Cl}(\mathcal{F}, P)$ is a **polyhedron**.

Definition

For an inequality $c^T x \leq \gamma$, valid for $\text{conv}(C_I)$, a **split body proof** is a finite family \mathcal{F} of split bodies such that $c^T x \leq \gamma$ is valid for $C^k(\mathcal{F}, C)$ for some k . The **split size** of the proof is the largest split dimension of a split body in \mathcal{F} .

If $Ax \leq b$ is full dimensional and lpf, then $y \leq 0$ has **split size** n w.r.t.
 $Ax + \mathbf{1}y \leq b, x \in \mathbb{Z}^n, y \geq 0$.



Theorem [Andersen, Louveaux, W 07]

Let $c^T x \leq \gamma$ be a nt valid inequality for $\text{conv}(C_I)$.

- (i) It has a split body proof of split size $\text{split-dim}(c, \gamma)$.
- (ii) There is no split body proof of split size smaller than $\text{split-dim}(c, \gamma)$.

Corollary

Any cutting plane algorithm based on split bodies of split-dimension less than $\text{split-dim}(c, \gamma)$ cannot solve the optimization problem

$\gamma = \{\max c^T x, x \in C_I\}$ in finitely many rounds.

Theorem [Andersen, Louveaux, W 07]

Let F be the optimal face of

$\max c^T x \mid x \in P$. F contains no mixed integer points iff there exists a split body of split size at most $\max\{1, \dim F\}$ containing F in its interior.

How to find split bodies?

Let (x^*, y^*) be an optimal vertex for $\max c^T x + d^T y : Ax + By \leq b$. Let I be the tight rows at (x^*, y^*) with $[A, C]_I$ of rank $n + d$. Then,

$$\begin{aligned}\mathcal{L}^* = \{z \in \mathbb{Q}^I \mid &z^T A_I \in \mathbb{Z}^n, \\ &z^T C_I = 0\}\end{aligned}$$

is a lattice. Any basis $\{z_1, \dots, z_k\}$ of \mathcal{L}^* satisfies $b^T z_i \in \mathbb{Z}$ for all i iff $x^* \in \mathbb{Z}^n$.

Theorem [Andersen, Louveaux, W 07]

Let $c^T x \leq \gamma$ be a nt valid inequality for $\text{conv}(C_I)$.

- (i) It has a split body proof of split size $\text{split-dim}(c, \gamma)$.
- (ii) There is no split body proof of split size smaller than $\text{split-dim}(c, \gamma)$.

Corollary

Any cutting plane algorithm based on split bodies of split-dimension less than $\text{split-dim}(c, \gamma)$ cannot solve the optimization problem

$\gamma = \{\max c^T x, x \in C_I\}$ in finitely many rounds.

Theorem [Andersen, Louveaux, W 07]

Let F be the optimal face of

$\max c^T x \mid x \in P$. F contains no mixed integer points iff there exists a split body of split size at most $\max\{1, \dim F\}$ containing F in its interior.

How to find split bodies?

Let (x^*, y^*) be an optimal vertex for $\max c^T x + d^T y : Ax + By \leq b$. Let I be the tight rows at (x^*, y^*) with $[A, C]_I$ of rank $n + d$. Then,

$$\begin{aligned}\mathcal{L}^* = \{z \in \mathbb{Q}^I \mid &z^T A_I \in \mathbb{Z}^n, \\ &z^T C_I = 0\}\end{aligned}$$

is a lattice. Any basis $\{z_1, \dots, z_k\}$ of \mathcal{L}^* satisfies $b^T z_i \in \mathbb{Z}$ for all i iff $x^* \in \mathbb{Z}^n$.

Theorem [Andersen, Louveaux, W 07]

Let $c^T x \leq \gamma$ be a nt valid inequality for $\text{conv}(C_I)$.

- (i) It has a split body proof of split size $\text{split-dim}(c, \gamma)$.
- (ii) There is no split body proof of split size smaller than $\text{split-dim}(c, \gamma)$.

Corollary

Any cutting plane algorithm based on split bodies of split-dimension less than $\text{split-dim}(c, \gamma)$ cannot solve the optimization problem

$\gamma = \{\max c^T x, x \in C_I\}$ in finitely many rounds.

Theorem [Andersen, Louveaux, W 07]

Let F be the optimal face of $\max c^T x \mid x \in P$. F contains no mixed integer points iff there exists a split body of split size at most $\max \{1, \dim F\}$ containing F in its interior.

How to find split bodies?

Let (x^*, y^*) be an optimal vertex for $\max c^T x + d^T y : Ax + By \leq b$. Let I be the tight rows at (x^*, y^*) with $[A, C]_I$ of rank $n + d$. Then,

$$\begin{aligned}\mathcal{L}^* = \{z \in \mathbb{Q}^I \mid &z^T A_I \in \mathbb{Z}^n, \\ &z^T C_I = 0\}\end{aligned}$$

is a lattice. Any basis $\{z_1, \dots, z_k\}$ of \mathcal{L}^* satisfies $b^T z_i \in \mathbb{Z}$ for all i iff $x^* \in \mathbb{Z}^n$.

Theorem [Andersen, Louveaux, W 07]

Let $c^T x \leq \gamma$ be a nt valid inequality for $\text{conv}(C_I)$.

- (i) It has a split body proof of split size $\text{split-dim}(c, \gamma)$.
- (ii) There is no split body proof of split size smaller than $\text{split-dim}(c, \gamma)$.

Corollary

Any cutting plane algorithm based on split bodies of split-dimension less than $\text{split-dim}(c, \gamma)$ cannot solve the optimization problem

$\gamma = \{\max c^T x, x \in C_I\}$ in finitely many rounds.

Theorem [Andersen, Louveaux, W 07]

Let F be the optimal face of $\max c^T x \mid x \in P$. F contains no mixed integer points iff there exists a split body of split size at most $\max \{1, \dim F\}$ containing F in its interior.

How to find split bodies?

Let (x^*, y^*) be an optimal vertex for $\max c^T x + d^T y : Ax + By \leq b$. Let I be the tight rows at (x^*, y^*) with $[A, C]_I$ of rank $n + d$. Then,

$$\begin{aligned}\mathcal{L}^* = \{z \in \mathbb{Q}^I \mid &z^T A_I \in \mathbb{Z}^n, \\ &z^T C_I = 0\}\end{aligned}$$

is a lattice. Any basis $\{z_1, \dots, z_k\}$ of \mathcal{L}^* satisfies $b^T z_i \in \mathbb{Z}$ for all i iff $x^* \in \mathbb{Z}^n$.