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Mixed Integer Programming and cutting planes

A mixed integer linear program

max cT x
st. Ax = b,

xi ∈ Z+, i ∈ I , xi ∈ R+, i /∈ I .

The simplex tableau representation

max c̄T
N xN

st. ĀNxN ≤ b̄,
xi ∈ R+, xi ∈ Z+, i ∈ I .

and,
N+

i = {j ∈ N | aij ≥ 0},
N−

i = {j ∈ N | aij < 0},
f (g) = (gj − bgjc) for g ∈ Rd .

A notation

Often the variables are (x , y). Then
x ∈ Zn and y ∈ Rd .
For a closed convex set C , let

CI := {(x , y) ∈ C ∩ (Zn × Rd)}.

What is a cutting plane?

For S ⊆ Zn × Rd a linear inequality
aT (x , y) ≤ b is valid, i.e.,

S ⊆ {(x , y) | aT (x , y) ≤ b}

and cuts off the LP optimum
(x∗, y∗), i.e, aT (x∗, y∗) > b.
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The fundamental questions in mixed integer cutting plane theory

The point of departure

For a polyhedron P ⊆ Rn+d , the set S = conv(P ∩
`
Z n × Rd

´
is a polyhedron. Hence,

c∗ = max cT x + gT y = max cT x + gT y

(x , y) ∈ P ∩
“
Z n × Rd

”
(x , y) ∈ S .

(1) Which geometric tools are needed in order to understand S?

(2) Which algebraic tools are needed to generate cutting planes?

(3) Can (1) and (2) be turnt into a finite algorithm that computes c∗?

The pure integer setting

Rounding of hyperplanes:P
i aixi ≤ a0 turns intoP
ibaicxi ≤ ba0c.

Cutting plane proofs [Chv 73].

Finiteness [Gomory 58].

The mixed integer setting

In the mixed 0-1-case, things are
nice.

In general, nothing extends easily.
Why?
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The dilemma for general mixed integer programs

An intriguing small example [Cook, Kannan, Schrijver 90]

max + y

− x1 + y ≤ 0

−x2 + y ≤ 0

+ x1 +x2 + y ≤ 2

x1 ∈ Z+, x2 ∈ Z+,y ≥ 0.

with fractional optimum ( 2
3
, 2

3
, 2

3
).
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In understanding this example . . ., we need

For
˘
(x , y) ∈ S ⊂ Rn+d

¯
, its projection is

projx(S) = {x ∈ Rn | ∃y such that (x , y) ∈ S} .

The projection-operation preserves polyhedrality and convexity.
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The mixed 0− 1-case and disjunctive programming

Ingredients

z ∈ {0, 1} iff z2 =
z .

For polyhedra

P1, P2 ⊆ Rn,

conv(P1 ∪ P2) can
be compactly
described. [Balas
79,85].

The system

S =
˘
x ∈ {0, 1}n × Rd

+ :

Ax ≤ b
¯
.

The Lift-and-Project Algorithm

Step 1: Select j ∈ N.

Step 2: Generate the nonlinear system Qj ,

xj(Ax − b) ≤ 0, (1− xj)(Ax − b) ≤ 0.

.

Step 3: Linearize Qj by yi := xixj for i 6= j and x2
j = xj .

Step 4: Project the linearized system onto x-space.

Theorem [Balas, Ceria, Cornuejols 93]

projx(Qj) = conv {{Ax ≤ b, xj = 0} ∪ {Ax ≤ b, xj = 1}} .

conv(S) =
`
. . . (projx(Q1))2 . . .

´
n
.

Similar approaches: [Lovasz, Schrijver 91] [Sherali, Adams 90]

Robert Weismantel 5 / 15



The mixed 0− 1-case and disjunctive programming

Ingredients

z ∈ {0, 1} iff z2 =
z .

For polyhedra

P1, P2 ⊆ Rn,

conv(P1 ∪ P2) can
be compactly
described. [Balas
79,85].

The system

S =
˘
x ∈ {0, 1}n × Rd

+ :

Ax ≤ b
¯
.

The Lift-and-Project Algorithm

Step 1: Select j ∈ N.

Step 2: Generate the nonlinear system Qj ,

xj(Ax − b) ≤ 0, (1− xj)(Ax − b) ≤ 0.

.

Step 3: Linearize Qj by yi := xixj for i 6= j and x2
j = xj .

Step 4: Project the linearized system onto x-space.

Theorem [Balas, Ceria, Cornuejols 93]

projx(Qj) = conv {{Ax ≤ b, xj = 0} ∪ {Ax ≤ b, xj = 1}} .

conv(S) =
`
. . . (projx(Q1))2 . . .

´
n
.

Similar approaches: [Lovasz, Schrijver 91] [Sherali, Adams 90]

Robert Weismantel 5 / 15



The mixed 0− 1-case and disjunctive programming

Ingredients

z ∈ {0, 1} iff z2 =
z .

For polyhedra

P1, P2 ⊆ Rn,

conv(P1 ∪ P2) can
be compactly
described. [Balas
79,85].

The system

S =
˘
x ∈ {0, 1}n × Rd

+ :

Ax ≤ b
¯
.

The Lift-and-Project Algorithm

Step 1: Select j ∈ N.

Step 2: Generate the nonlinear system Qj ,

xj(Ax − b) ≤ 0, (1− xj)(Ax − b) ≤ 0.

.

Step 3: Linearize Qj by yi := xixj for i 6= j and x2
j = xj .

Step 4: Project the linearized system onto x-space.

Theorem [Balas, Ceria, Cornuejols 93]

projx(Qj) = conv {{Ax ≤ b, xj = 0} ∪ {Ax ≤ b, xj = 1}} .

conv(S) =
`
. . . (projx(Q1))2 . . .

´
n
.

Similar approaches: [Lovasz, Schrijver 91] [Sherali, Adams 90]

Robert Weismantel 5 / 15



The mixed 0− 1-case and disjunctive programming

Ingredients

z ∈ {0, 1} iff z2 =
z .

For polyhedra

P1, P2 ⊆ Rn,

conv(P1 ∪ P2) can
be compactly
described. [Balas
79,85].

The system

S =
˘
x ∈ {0, 1}n × Rd

+ :

Ax ≤ b
¯
.

The Lift-and-Project Algorithm

Step 1: Select j ∈ N.

Step 2: Generate the nonlinear system Qj ,

xj(Ax − b) ≤ 0, (1− xj)(Ax − b) ≤ 0.

.

Step 3: Linearize Qj by yi := xixj for i 6= j and x2
j = xj .

Step 4: Project the linearized system onto x-space.

Theorem [Balas, Ceria, Cornuejols 93]

projx(Qj) = conv {{Ax ≤ b, xj = 0} ∪ {Ax ≤ b, xj = 1}} .

conv(S) =
`
. . . (projx(Q1))2 . . .

´
n
.

Similar approaches: [Lovasz, Schrijver 91] [Sherali, Adams 90]

Robert Weismantel 5 / 15



Mixed integer rounding: a basic one-row-principle [Nemhauser, Wolsey 88]

The basic model

X = {(x , y) ∈ Z× R+|x + y ≥ b}

The only missing inequality is

x +
1

1− f (b)
y ≥ dbe

Mixed integer rounding can be applied to general
models by aggregating variables,

z :=
X
i∈S

gixi .

Lemma. The Gomory-fractional cut is obtained from mixed integer rounding.

X
j∈N∩I

min


f (aij),

f (bi )(1− f (aij))

1− f (bi )

ff
xj +

X
j∈N+

i \I

aijxj −
X

j∈N−i \I

f (bi )aij

1− f (bi )
xj ≥ f (bi ).
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Cuts from two or more rows of a simplex tableau

A basic model for two and more row -relaxations:

f + CI =

(
(x , s) | x = f +

nX
j=1

rjsj , x ∈ Zd , s ∈ Qn
+

)
.

The structure of valid inequalities of f + CI [Andersen, Louveaux, W, Wolsey 06]

A non trivial inequality is of the kindP
j∈N αjsj ≥ 1 where αj ≥ 0.

The coefficients αj are the recipocal of
the distance from f along r j to the
boundary of the projected facet body
projx

`˘
(x , s) ∈ f + C , αT s = 1

¯´
.
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The special case of two rows is geometrically tractable

Theorem [Andersen, Louveaux, W, Wolsey 06]

r

r

r

r

2

3

4

5

f

x 1

x
2

r 1

The projected
facet body
contains no
interior integer
points.Either 3
or 4 rays
(integer points)
determine its
vertices
(boundary).
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Split cuts [Cook, Kannan, Schrijver 1990]

The algebra

Based on a disjunction
πT x ≤ π0 or πT x ≥ π0 + 1

is valid for x ∈ Zn when π, π0 are integer.

The geometry
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The algebra

Based on a disjunction
πT x ≤ π0 or πT x ≥ π0 + 1

is valid for x ∈ Zn when π, π0 are integer.

The geometry
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What is a split? two points of view

Lattice-point-free polyhedron

A polyhedron P is lattice-point-free when
there is no integer point in its interior.

Splits and lpf-polyhedra

A split cut is generated from a special
lattice point free polyhedron,
L = conv(v , w) + span(z1, . . . , zn−1,
with z1, . . . , zn−1 ∈ Qn being linearly
independent.

Results on maximal lpf polyhedra

see survey of [Lovasz 87]

Splits and disjunctions

A split comes from a two-term
disjunction πx ≤ π0, πx ≥ π0 + 1,
where π0 ∈ Z.
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A generalization of splits based on multi-term disjunctions

Definition

Let d1, . . . , dk ∈ Zn and
δ1, . . . , δk ∈ Z. The family D(k, d , δ)
is a k-disjunction if for all x ∈ Zn

there exists i such that d ix ≤ δi .

Let P ⊂ Rn be a polyhedron and
cT x ≤ γ be valid for PI . Then
cT x ≤ γ is a k-disjunctive cut for PI ,
if there exists a k-disjunction
D(k, d , δ) with

x ∈ P : cT x > γ =⇒ d ix > δi , ∀i .

Proposition

Let P ⊆ Rn+d be a polyhedron. Every
valid inequality cT x ≤ γ for PI is a
2n-disjunctive cut for some k.

Split cut

�� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

�� �� �� �� ��

����������

��

Theorem [Jörg 07]

There is a finite cutting plane algorithm
for any bounded mixed integer program
based on k-disjunctions.
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A generalization of splits based on lpf-polyhedra

Observation

P = conv{v 1, . . . , vp}+ cone{w 1, . . . , w s}+ span{w s+1, . . . , wq} ⊆ Rn is lpf if and
only if P ′ = conv{v 1, . . . , vp}+ span{w 1, . . . , wq} ⊆ Rn is lpf.

A lpf polyhedron conv{v 1, . . . , vp}+ span{w 1, . . . , wq} is called split body, the
number n − q the split-dimension.

Examples

A lpf triangle in R2 has split dimension
two.

A lpf triangle lifted to R3,
conv{v , w , x}+ span{r} has split
dimension two.

Robert Weismantel 12 / 15
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Split bodies give rise to cuts for convex mixed integer programs.

An operation

For a split body L ⊆ Rn and a closed convex set C , let

R(L) := cl conv({(x , y) ∈ C : x /∈ rint(L)}).

Then, conv(CI ) ⊆ R(L) ⊆ C .

Lemma [Andersen, Louveaux, W 07]

Let L ⊆ Rn be a split body.

For a closed convex set C ,
R(L) 6= C iff there exists an
extreme point (x , y) of C such that
x is in the interior of L.

If C is a polyhedron, then R(L) is a
polyhedron.

Robert Weismantel 13 / 15



Split bodies give rise to cuts for convex mixed integer programs.

An operation

For a split body L ⊆ Rn and a closed convex set C , let

R(L) := cl conv({(x , y) ∈ C : x /∈ rint(L)}).

Then, conv(CI ) ⊆ R(L) ⊆ C .

Lemma [Andersen, Louveaux, W 07]

Let L ⊆ Rn be a split body.

For a closed convex set C ,
R(L) 6= C iff there exists an
extreme point (x , y) of C such that
x is in the interior of L.

If C is a polyhedron, then R(L) is a
polyhedron.

Robert Weismantel 13 / 15



Split bodies give rise to cuts for convex mixed integer programs.

An operation

For a split body L ⊆ Rn and a closed convex set C , let

R(L) := cl conv({(x , y) ∈ C : x /∈ rint(L)}).

Then, conv(CI ) ⊆ R(L) ⊆ C .

Lemma [Andersen, Louveaux, W 07]

Let L ⊆ Rn be a split body.

For a closed convex set C ,
R(L) 6= C iff there exists an
extreme point (x , y) of C such that
x is in the interior of L.

If C is a polyhedron, then R(L) is a
polyhedron.

Robert Weismantel 13 / 15



Split bodies give rise to cuts for convex mixed integer programs.

An operation

For a split body L ⊆ Rn and a closed convex set C , let

R(L) := cl conv({(x , y) ∈ C : x /∈ rint(L)}).

Then, conv(CI ) ⊆ R(L) ⊆ C .

Lemma [Andersen, Louveaux, W 07]

Let L ⊆ Rn be a split body.

For a closed convex set C ,
R(L) 6= C iff there exists an
extreme point (x , y) of C such that
x is in the interior of L.

If C is a polyhedron, then R(L) is a
polyhedron.

Robert Weismantel 13 / 15



Split bodies give rise to cuts for convex mixed integer programs.

An operation

For a split body L ⊆ Rn and a closed convex set C , let

R(L) := cl conv({(x , y) ∈ C : x /∈ rint(L)}).

Then, conv(CI ) ⊆ R(L) ⊆ C .

Lemma [Andersen, Louveaux, W 07]

Let L ⊆ Rn be a split body.

For a closed convex set C ,
R(L) 6= C iff there exists an
extreme point (x , y) of C such that
x is in the interior of L.

If C is a polyhedron, then R(L) is a
polyhedron.

Robert Weismantel 13 / 15



From split bodies to cutting plane proofs

The closure of split bodies

For a family F of split bodies, let

Cl(F , C) :=
\
L∈F

R(L).

Letting C 0(F , C) = C , define for i ≥ 1,

C i (F , C) = Cl(F , C i−1(F , C)).

Theorem [Cook, Kannan, Schrijver 90]

For a polyhedron P and the set F of split bodies
of split dimension one, Cl(F , P) is a polyhedron.

If Ax ≤ b is full dimensional and lpf,
then y ≤ 0 has split size n w.r.t.
Ax + 1y ≤ b, x ∈ Zn, y ≥ 0.

Definition

For an inequality cT x ≤ γ, valid for conv(CI ), a split body proof is a finite family F of
split bodies such that cT x ≤ γ is valid for C k(F , C) for some k. The split size of the
proof is the largest split dimension of a split body in F .
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For an inequality cT x ≤ γ, valid for conv(CI ), a split body proof is a finite family F of
split bodies such that cT x ≤ γ is valid for C k(F , C) for some k. The split size of the
proof is the largest split dimension of a split body in F .
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Split bodies: a perspective

Theorem [Andersen, Louveaux, W
07]

Let cT x ≤ γ be a nt valid inequality
for conv(CI ).

(i) It has a split body proof of split
size split-dim(c, γ).

(ii) There is no split body proof of
split size smaller than
split-dim(c, γ).

Corollary

Any cutting plane algorithm based on
split bodies of split-dimension less
than split-dim(c, γ) cannot solve the
optimization problem
γ =

˘
max cT x , x ∈ CI

¯
in finitely

many rounds.

Theorem [Andersen, Louveaux, W 07]

Let F be the optimal face of
max cT x | x ∈ P. F contains no mixed
integer points iff there exists a split body of
split size at most max {1, dim F} containing
F in its interior.

How to find split bodies?

Let (x∗, y∗) be an optimal vertex for
max cT x + dT y : Ax + By ≤ b. Let I be the
tight rows at (x∗, y∗) with [A, C ]I of rank
n + d . Then,

L∗ = { z ∈ QI |zTAI ∈ Zn,

zTCI = 0}

is a lattice. Any basis {z1, . . . , zk} of L∗
satisfies bT zi ∈ Z for all i iff x∗ ∈ Zn.
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