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An MINLP Research Initiative
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Mixed-Integer Nonlinear Programming (MINLP)

min  f(z,y)
s.it. c(z,y) <0 f, ¢ sufficiently smooth
Y=<y < yu (e.g., C?)

re€{0,1}",y e R

@ Often in practice: Simplify original problem to obtain

» NLP by relaxing integrality conditions (rounding)
» MILP by approximating nonlinearities (piece-wise linear)
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Mixed-Integer Nonlinear Programming (MINLP)

min  f(z,y)

s.it. c(z,y) <0
Y=<y < yu

r€{0,1}",y e RP

f, ¢ sufficiently smooth
(e.g., C?) and convex

@ Often in practice: Simplify original problem to obtain
» NLP by relaxing integrality conditions (rounding)

@ Goal: Design exact algorithms

» MILP by approximating nonlinearities (piece-wise linear)

@ In this talk: Convex MINLP (f, ¢ convex)

Andreas Wéchter (IBM)
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The Power Of MILP

o MILP has been extensively explored for decades
Based on branch-and-bound [Dakin (1965)]
Very powerful algorithms, techniques, and codes
Can solve very large problems

Used heavily in practice
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Outer Approximation (Duran, Grossmann [1986])

min z (linear objective)
s.it. f(ryy) <z
c(z,y) <0

z€{0,1}",yeRP z e R
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Outer Approximation (Duran, Grossmann [1986])

min z (linear objective)
s.it. f(r,y) <z
c(z,y) <0

z€{0,1}",yeRP z e R

Approximate by MILP (hyperplanes)

min 2 i @ 7 contains linearization points
st it AT (57 0) 4160 < o
Ve(at, yk)T(; - ;k) +e(a®,yf) <0

for all (zF,y*) e T
re{0,1}",yeR’ zeR
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Outer Approximation (Duran, Grossmann [1986])

min z (linear objective)
s.it. f(r,y) <z
c(z,y) <0

ze{0,1}",yeRP, z € R

Approximate by MILP (hyperplanes)

min 2z

ok
st it AT (57 0) 4160 < o

Vc(:vk,yk)T(; B ‘;k> + C(l‘k, yk) <0
for all (zF,y*) e T
re{0,1}",yeR’ zeR

Andreas Wéchter (IBM)

@ 7 contains linearization points
» augmented during algorithm

@ Algorithm: Repeat
© solve current MILP — (2!, 7)
© solve NLP with 2! fixed — y/
Q add (¢!, y)) to T
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Outer Approximation Discussion

@ Original algorithm:

Alternatingly solve NLPs and MILPs

Finite termination

Advantage: Simple to implement; uses all MILP techniques
Disadvantage: Solve every MILP from scratch

v

v vy
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Outer Approximation Discussion

@ Original algorithm:

Alternatingly solve NLPs and MILPs

» Finite termination

» Advantage: Simple to implement; uses all MILP techniques
» Disadvantage: Solve every MILP from scratch

v

o Improvement [Quesada, Grossmann (1992)]:
> Build only one MILP enumeration tree
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Quesada-Grossmann

LB=6
1‘1:1
integer
feasible
UB=7 infeasible LB=8
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Quesada-Grossmann

LB=6
1‘1:1
integer
feasible
UB=7.5 infeasible LB=8
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Outer Approximation Discussion

@ Original algorithm:
» Alternatingly solve NLPs and MILPs
» Finite termination
» Advantage: Simple to implement; uses all MILP techniques
» Disadvantage: Need to solve every MILP from scratch
@ Improvement [Quesada, Grossmann (1992)]:
> Build only one MILP enumeration tree
» Solve NLP for every MILP integer feasible solution
» Add new outer approximation cuts to current MILP
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Outer Approximation Discussion

@ Original algorithm:
» Alternatingly solve NLPs and MILPs
» Finite termination
» Advantage: Simple to implement; uses all MILP techniques
» Disadvantage: Need to solve every MILP from scratch

@ Improvement [Quesada, Grossmann (1992)]:
» Build only one MILP enumeration tree

» Solve NLP for every MILP integer feasible solution
» Add new outer approximation cuts to current MILP
@ “Hybrid” approach [Bonami et al. (2005)]
» Solve NLPs also at non-integer nodes
» For example, solve NLP in every 10th node
+ Includes information about nonlinear geometry more quickly

— Requires solution of more NLPs
» Abhishek, Leyffer, Linderoth (2007) (FilMINT code):

* Don’t solve NLP, just add linearization (Extended cutting plane)
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Preliminary Numerical Experiments

o Software implementation
» Bonmin (Open source software on COIN-OR)

| http://www.coin-or.org/Bonmin |

» Based on other COIN-OR projects (Cbc, Clp, Cgl, Ipopt, ...)
- Essential for fast development: Availability of open source
» NLP solvers: FilterSQP [Fletcher, Leyffer] and Ipopt

Andreas Wéchter (IBM) SIOPT 2008 9 / 30



Preliminary Numerical Experiments

o Software implementation
» Bonmin (Open source software on COIN-OR)

‘ http://www.coin-or.org/Bonmin ‘

» Based on other COIN-OR projects (Cbc, Clp, Cgl, Ipopt, ...)
- Essential for fast development: Availability of open source
» NLP solvers: FilterSQP [Fletcher, Leyffer] and Ipopt

@ Test problems
» Representative selection of 44 convex MINLPs from
- CMU/IBM library
‘ http://egon.cheme.cmu.edu/ibm/page.htm ‘

- MacMinlp [Leyffer]

» Difficult, but mostly solvable within 3 hour time limit

» Problem statistics
* # total vars: 42-1796 (289.8); # discrete vars: 14-432 (93.7)
* # constraints: 42-3190 (395.4)
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Bonmin 0.1.4 with Ipopt (CPU)

Performance

100 w

% of problems

20

1 10 100
not more than x times worse than best
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Developer Version with FilterSQP (CPU)

Performance
100 v ¥
Hybrid =——
Q .......
OA rrrrrens
L
(%] L
£
©
o
o
o
s K
2 g |
20 [
0 o o
1 10 100 1000
not more than x times worse than best
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The Success Story Of MILP

In: Bixby, Fenelon, Gu, Rothberg, Wunderling (2004)
Mized-Integer Programming: A Progress Report

What lead to the dramatic improvement of MILP solvers?
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The Success Story Of MILP

In: Bixby, Fenelon, Gu, Rothberg, Wunderling (2004)
Mized-Integer Programming: A Progress Report

What lead to the dramatic improvement of MILP solvers?

@ Very efficient node solvers
@ Variable/node selection

@ Primal heuristics

@ Presolve

o Cutting planes

What can we learn from this for a B&B-based method for MINLP?
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Branch-and-bound: Variable Selection

LB=6
1‘1:1
integer
feasible
UB="7 infeasible LB=8
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Variable Selection

Some possible options:

o Random

@ Most-fractional (most integer-infeasible)
- used in MINLP-BB [Fletcher, Leyffer]
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Variable Selection

Some possible options:

o Random

o Most-fractional (most integer-infeasible)
- used in MINLP-BB [Fletcher, Leyffer]

Strong branching [Applegate et al. (1995)]

Pseudo costs [Benichou et al. (1971), Forrest et al. (1974)]
- optional in SBB [GAMS]

Reliability branching [Achterberg et al. (2005)]
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Strong Branching

o Q: Which variable z; should be
branched on?

.’17?:0 :E?Zl
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Strong Branching

o Q: Which variable z; should be
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@ Idea: Try some candidates
Liy
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Strong Branching

o Q: Which variable z; should be
branched on?

@ Idea: Try some candidates
Ly y Ligy oo

@ Choose candidate with largest
LBY and LB}

o If candidate’s child infeasible:
fix variable

infeasible LBil2
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Strong Branching

o Q: Which variable z; should be
branched on?

@ Idea: Try some candidates
Ly y Ligy oo

@ Choose candidate with largest
LBY and LB}

o If candidate’s child infeasible:
fix variable

o If LB?/1 > UB: fix variable
LB) > UB LB}
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Strong Branching

o Q: Which variable z; should be
branched on?

@ Idea: Try some candidates
Ly s Tigy v oo

@ Choose candidate with largest
LBY and LB}

o If candidate’s child infeasible:
fix variable

o 1If LB"" > UB: fix variable

0 1
@ Requires to solve many relaxations LB, > UB LB;

Andreas Wéchter (IBM) SIOPT 2008 15 / 30



Strong Branching Improvements

Approximate node solutions

o For MILP: Limit the number of simplex iterations
» Dual simplex algorithm gives valid bounds
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Approximate node solutions

o For MILP: Limit the number of simplex iterations
» Dual simplex algorithm gives valid bounds

@ For MINLP: Solve approximation problem

» LP: Linearize functions at parent solution
» QP: Use QP from last SQP iteration (BQPD [Fletcher])
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Strong Branching Improvements

Approximate node solutions

o For MILP: Limit the number of simplex iterations
» Dual simplex algorithm gives valid bounds

@ For MINLP: Solve approximation problem
» LP: Linearize functions at parent solution

» QP: Use QP from last SQP iteration (BQPD [Fletcher])

@ Can use hot-starts (reuse factorization)
» Only one bound changes
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Strong Branching Improvements

Pseudo costs

o Idea: Collect statistical data about the effect of fixing each z;:

» Average change in LB and LB} per unit change in z
(up and down change separately)

@ Use to estimate LBZO and LBZ-1 of child nodes
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Strong Branching Improvements

Pseudo costs

o Idea: Collect statistical data about the effect of fixing each z;:

» Average change in LB and LB} per unit change in z
(up and down change separately)

@ Use to estimate LBZ-O and LBi1 of child nodes
@ Initialize with strong branching

@ Update each time a node has been solved

Reliability branching

@ Pseudo costs, but do strong-branching on non-trusted variables

@ Limit the number of strong-branching solves
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Variable Selection

Comparative experiments in literature:

o MILP
» Linderoth, Savelsbergh (1999):
- Pseudo costs work very well

» Achterberg, Koch, Martin (2005):
- Reliability branching best
- Most-fractional about as good as Random
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Variable Selection

Comparative experiments in literature:

o MILP

» Linderoth, Savelsbergh (1999):
- Pseudo costs work very well

» Achterberg, Koch, Martin (2005):
- Reliability branching best
- Most-fractional about as good as Random

e MINLP

» Gupta, Ravindran (1985)
- Most-fractional works best
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Branch-And-Bound Comparison (# Nodes)

Performance
100 ” ”

Random
MostFra =======
StrongNLP +resvees
StrongQP
PseudoNLP =
80 " PseudoQP =1=i=:= L

% of problems

-
r. - -
1 10 100 1000
not more than x times worse than best
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Branch-And-Bound Comparison (CPU time)

Performance

100 ” ¥

80 |

% of problems

Random
MostFra =======
StrongNLP +resvees
StrongQP
PseudoNLP =
PseudoQP =:=:=:= L

1 10 100
not more than x times worse than best
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B&B and Hybrid Comparison

Performance
100 ” v
PseudoQP =——
Hybrid =======
80 y
I
L
g 60
<@
Qo
o
s
S
ES 40 ¢ L
20 o
0 o o
1 10 100 1000

not more than x times worse than best
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Experiments Summary

@ Strong-branching, pseudo-costs work for nonlinear B&B

» Hot-started QP approximations improve performance
» LP approximation not efficient
» In these experiments: Reliability branching not helpful
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@ Strong-branching, pseudo-costs work for nonlinear B&B

» Hot-started QP approximations improve performance
» LP approximation not efficient
» In these experiments: Reliability branching not helpful

o B&B competitive to OA-based Hybrid method

» Methods should “learn from each other”
- e.g., use nonlinear strong-branching in Hybrid approach

@ Best choice depends on problem instance

» Need to identify relevant problem characteristics
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Experiments Summary

@ Strong-branching, pseudo-costs work for nonlinear B&B

» Hot-started QP approximations improve performance
» LP approximation not efficient
» In these experiments: Reliability branching not helpful

o B&B competitive to OA-based Hybrid method

» Methods should “learn from each other”
- e.g., use nonlinear strong-branching in Hybrid approach

@ Best choice depends on problem instance

» Need to identify relevant problem characteristics

@ Number of nodes for solved problems:
H Min ‘ Max ‘ GeoMean

Hybrid 8| 436393 6226.5
StrongQP 14 | 2033352 1685.8
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Node Solvers
In MILP:

@ Very efficient implementation of dual simplex
» Tailored to B&B: Changes in bounds; added cuts

@ Hot-starts (reusing factorization) extremely efficient
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@ Hot-starts (reusing factorization) extremely efficient

In MINLP:

@ NLP solvers now much more robust and efficient than in the past
» For trimloss4: Solved >2,000,000 NLPs! (105 [85] var, 64 con)
@ Large-scale problems:
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Node Solvers
In MILP:
@ Very efficient implementation of dual simplex
» Tailored to B&B: Changes in bounds; added cuts

@ Hot-starts (reusing factorization) extremely efficient

In MINLP:
@ NLP solvers now much more robust and efficient than in the past
» For trimloss4: Solved >2,000,000 NLPs! (105 [85] var, 64 con)

@ Large-scale problems:

» Large-scale active-set methods?
» Combine interior-point and active-set methods?

o Hot-starts possible?
@ Storing warm-start information more memory intensive
» In experiments: Use optimal solution of root node

@ Need fast detection of infeasibility
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Cuts

@ Approximate convex hull of integer-feasible points
» Strengthen the relaxation
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» For linear parts, can use MILP machinery directly
- Hybrid method works with linear formulation
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Cuts

@ Approximate convex hull of integer-feasible points
» Strengthen the relaxation

@ MILP: (hot topic over past 30 years)
» Many cut generators available (many easy to compute)

o MINLP:

» For linear parts, can use MILP machinery directly
- Hybrid method works with linear formulation
- B&B: could work with linearizations

» Some research specific for nonlinear case:
- Stubbs, Mehrotra (1999, 2002)
- Atamtiirk, Narayanan (2007)

» Can also use nonlinear cuts

» Ideally: Need access to problem representation (expression tree)

Andreas Wéchter (IBM) SIOPT 2008 24 / 30



Other MILP techniques

Primal heuristics (quickly finding good integer feasible points)

@ Have answer when time limit exceeded

@ Improve upper bounds (e.g, for strong branching)
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Other MILP techniques

Primal heuristics (quickly finding good integer feasible points)

o Have answer when time limit exceeded
@ Improve upper bounds (e.g, for strong branching)

@ MILP: A dozen generic heuristics (root node and in tree)
(hot topic over last 7 years)

o MINLP: Preliminary work, e.g.,
- Nonlinear feasibility pump [Bonami et al. (2006)]
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Other MILP techniques

Node selection
@ In experiments: Use “best-bound” (node with smallest LB)

@ Diving
- Quickly find integer solution
- Allows hot-starts when proceeding to child nodes
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Other MILP techniques

Node selection
@ In experiments: Use “best-bound” (node with smallest LB)

@ Diving
- Quickly find integer solution
- Allows hot-starts when proceeding to child nodes

Presolve (tighten and simplify formulation)
o At root node and in search tree
o MILP: Just look at coefficients of linear functions

o MINLP: General nonlinear functions difficult to predict
- Requires access to problem representation
(e.g., expression tree)
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What is Good Modeling?

Example: Uncapacitated facility location problem

min 300 e+ D0 oy dily
st Yliyy=1 (i=1,...,n)
Weak : > 'y <n-z; (j=1,...,m)
Strong : yy <z (i=1,...,n;57=1,...,m)
ze{0,1}", y eR?

MILP MINLP
n = 30, m = 100 | nodes time | nodes time
weak formulation | 46,294 143.16
strong formulation 0 0.18 }
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What is Good Modeling?

Example: Uncapacitated facility location problem

min 30N e+ D Yoty diyl
st Yliyy=1 (i=1,...,n)
Weak : > 'y <n-z; (j=1,...,m)
Strong : yy <z (i=1,...,n;57=1,...,m)
ze{0,1}", y eR?

MILP MINLP
nodes time | nodes time
46,294 143.16 } 46,384 8117.52

n = 30, m = 100
weak formulation
strong formulation

0 0.18 | 30,112 7888.24
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What is Good Modeling?

Example: Uncapacitated facility location problem

min 30N e+ D Yoty diyl
st Yliyy=1 (i=1,...,n)
Weak : > 'y <n-z; (j=1,...,m)
Strong : yy <z (i=1,...,n;57=1,...,m)
ze{0,1}", y eR?

MILP MINLP
n = 30, m = 100 | nodes time | nodes time
weak formulation | 46,294 143.16 | 46,384 8117.52
strong formulation 0 0.18 | 30,112 7888.24
weak with cuts/presolve 25 2.71
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The Nonconvex Case

@ Global optimization already very difficult
» Spatial branch-and-bound with convex under-estimators
» Incorporation of discrete variables natural
» Several algorithms and codes:
Alpha-BB [Adjiman et al.], BARON [Sahinidis, Tawarmalani],
Couenne [Belotti et al.], LaGO, [Nowak, Vigerske], ...
» Limitation in problem size
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@ Heuristics based on convex MINLP algorithms
» Outer-approximation based (e.g., DICOPT [Grossmann et al.])
- use one side of equality constraints based on multipliers
- allow penalized slack in OA cuts
- delete violated OA cuts

Andreas Wéchter (IBM) SIOPT 2008 28 / 30



The Nonconvex Case

@ Global optimization already very difficult

» Spatial branch-and-bound with convex under-estimators
» Incorporation of discrete variables natural
» Several algorithms and codes:

Alpha-BB [Adjiman et al.], BARON [Sahinidis, Tawarmalani],
Couenne [Belotti et al.], LaGO, [Nowak, Vigerske],
» Limitation in problem size

@ Heuristics based on convex MINLP algorithms

» Outer-approximation based (e.g., DICOPT [Grossmann et al.])
- use one side of equality constraints based on multipliers

- allow penalized slack in OA cuts

- delete violated OA cuts

» Nonlinear branch-and-bound

- resolve NLPs from different starting points

- do not trust lower bounds or infeasibilities

Andreas Wéchter (IBM)
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Conclusions

@ Encouraging progress

» New algorithms and implementations (e.g., Bonmin, FilMINT)
» Quter-approximation based algorithms

- MILP framework with NLP solves
» Nonlinear branch-and-bound

- Pseudo costs, QP-based strong branching
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Conclusions

@ Encouraging progress
» New algorithms and implementations (e.g., Bonmin, FilMINT)
» Outer-approximation based algorithms
- MILP framework with NLP solves
» Nonlinear branch-and-bound
- Pseudo costs, QP-based strong branching

@ Many open questions
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