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Mixed-Integer Nonlinear Programming (MINLP)

min f (x , y)

s.t . c(x , y) ≤ 0

yL ≤ y ≤ yU

x ∈ {0, 1}n
, y ∈ R

p

f , c sufficiently smooth
(e.g., C 2)

Often in practice: Simplify original problem to obtain
◮ NLP by relaxing integrality conditions (rounding)
◮ MILP by approximating nonlinearities (piece-wise linear)
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Mixed-Integer Nonlinear Programming (MINLP)

min f (x , y)

s.t . c(x , y) ≤ 0

yL ≤ y ≤ yU

x ∈ {0, 1}n
, y ∈ R

p

f , c sufficiently smooth
(e.g., C 2) and convex

Often in practice: Simplify original problem to obtain
◮ NLP by relaxing integrality conditions (rounding)
◮ MILP by approximating nonlinearities (piece-wise linear)

Goal: Design exact algorithms

In this talk: Convex MINLP (f , c convex)
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The Power Of MILP

MILP has been extensively explored for decades
◮ Based on branch-and-bound [Dakin (1965)]
◮ Very powerful algorithms, techniques, and codes
◮ Can solve very large problems
◮ Used heavily in practice
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Outer Approximation (Duran, Grossmann [1986])

min z (linear objective)

s.t . f (x , y) ≤ z

c(x , y) ≤ 0

x ∈ {0, 1}n
, y ∈ R

p
, z ∈ R
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Outer Approximation (Duran, Grossmann [1986])

min z (linear objective)

s.t . f (x , y) ≤ z

c(x , y) ≤ 0

x ∈ {0, 1}n
, y ∈ R

p
, z ∈ R

Approximate by MILP (hyperplanes)

min z

s.t . ∇f (x k
, yk )T

(

x − x k

y − yk

)

+ f (x k
, yk ) ≤ z

∇c(x k
, yk )T

(

x − x k

y − yk

)

+ c(x k
, yk ) ≤ 0

for all (x k
, yk ) ∈ T

x ∈ {0, 1}n
, y ∈ R

p
, z ∈ R

T contains linearization points
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Outer Approximation (Duran, Grossmann [1986])

min z (linear objective)

s.t . f (x , y) ≤ z

c(x , y) ≤ 0

x ∈ {0, 1}n
, y ∈ R

p
, z ∈ R

Approximate by MILP (hyperplanes)

min z

s.t . ∇f (x k
, yk )T

(

x − x k

y − yk

)

+ f (x k
, yk ) ≤ z

∇c(x k
, yk )T

(

x − x k

y − yk

)

+ c(x k
, yk ) ≤ 0

for all (x k
, yk ) ∈ T

x ∈ {0, 1}n
, y ∈ R

p
, z ∈ R

T contains linearization points

◮ augmented during algorithm

Algorithm: Repeat
1 solve current MILP → (x l , ỹ l)
2 solve NLP with x l fixed → y l

3 add (x l , y l) to T
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Outer Approximation Discussion

Original algorithm:
◮ Alternatingly solve NLPs and MILPs
◮ Finite termination
◮ Advantage: Simple to implement; uses all MILP techniques
◮ Disadvantage: Solve every MILP from scratch
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Outer Approximation Discussion

Original algorithm:
◮ Alternatingly solve NLPs and MILPs
◮ Finite termination
◮ Advantage: Simple to implement; uses all MILP techniques
◮ Disadvantage: Solve every MILP from scratch

Improvement [Quesada, Grossmann (1992)]:
◮ Build only one MILP enumeration tree

Andreas Wächter (IBM) MINLP SIOPT 2008 6 / 30



Quesada-Grossmann

LP LB=4

LP LB=5

LP

UB=7

LP LB=6

LP LP

LB=8

x3=0 x3=1

x2=0 x2=1

x1=0 x1=1

integer
feasible

infeasible
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Quesada-Grossmann

LP LB=4

LP LB=5

NLP

UB=7.5

LP LB=6

LP LP

LB=8

x3=0 x3=1

x2=0 x2=1

x1=0 x1=1

integer
feasible

infeasible
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Outer Approximation Discussion

Original algorithm:
◮ Alternatingly solve NLPs and MILPs
◮ Finite termination
◮ Advantage: Simple to implement; uses all MILP techniques
◮ Disadvantage: Need to solve every MILP from scratch

Improvement [Quesada, Grossmann (1992)]:
◮ Build only one MILP enumeration tree
◮ Solve NLP for every MILP integer feasible solution
◮ Add new outer approximation cuts to current MILP

“Hybrid” approach [Bonami et al. (2005)]
◮ Solve NLPs also at non-integer nodes
◮ For example, solve NLP in every 10th node

+ Includes information about nonlinear geometry more quickly
− Requires solution of more NLPs

◮ Abhishek, Leyffer, Linderoth (2007) (FilMINT code):
⋆ Don’t solve NLP, just add linearization (Extended cutting plane)
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Preliminary Numerical Experiments

Software implementation
◮ Bonmin (Open source software on COIN-OR)

http://www.coin-or.org/Bonmin

◮ Based on other COIN-OR projects (Cbc, Clp, Cgl, Ipopt, . . . )
- Essential for fast development: Availability of open source

◮ NLP solvers: FilterSQP [Fletcher, Leyffer] and Ipopt
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Preliminary Numerical Experiments

Software implementation
◮ Bonmin (Open source software on COIN-OR)

http://www.coin-or.org/Bonmin

◮ Based on other COIN-OR projects (Cbc, Clp, Cgl, Ipopt, . . . )
- Essential for fast development: Availability of open source

◮ NLP solvers: FilterSQP [Fletcher, Leyffer] and Ipopt

Test problems
◮ Representative selection of 44 convex MINLPs from

- CMU/IBM library

http://egon.cheme.cmu.edu/ibm/page.htm

- MacMinlp [Leyffer]
◮ Difficult, but mostly solvable within 3 hour time limit
◮ Problem statistics

⋆ # total vars: 42–1796 (289.8); # discrete vars: 14–432 (93.7)
⋆ # constraints: 42–3190 (395.4)
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Bonmin 0.1.4 with Ipopt (CPU)
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Developer Version with FilterSQP (CPU)
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The Success Story Of MILP

In: Bixby, Fenelon, Gu, Rothberg, Wunderling (2004)
Mixed-Integer Programming: A Progress Report

What lead to the dramatic improvement of MILP solvers?
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The Success Story Of MILP

In: Bixby, Fenelon, Gu, Rothberg, Wunderling (2004)
Mixed-Integer Programming: A Progress Report

What lead to the dramatic improvement of MILP solvers?

Very efficient node solvers

Variable/node selection

Primal heuristics

Presolve

Cutting planes

What can we learn from this for a B&B-based method for MINLP?
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Branch-and-bound: Variable Selection

LB=4

LB=5

UB=7

LB=6

LB=8

x3=0 x3=1

x2=0 x2=1

x1=0 x1=1

integer
feasible

infeasible
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Variable Selection

Some possible options:

Random

Most-fractional (most integer-infeasible)
- used in MINLP-BB [Fletcher, Leyffer]
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Variable Selection

Some possible options:

Random

Most-fractional (most integer-infeasible)
- used in MINLP-BB [Fletcher, Leyffer]

Strong branching [Applegate et al. (1995)]

Pseudo costs [Benichou et al. (1971), Forrest et al. (1974)]
- optional in SBB [GAMS]

Reliability branching [Achterberg et al. (2005)]
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Strong Branching

Q: Which variable xi should be
branched on?

x? =0 x? =1
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Strong Branching

Q: Which variable xi should be
branched on?

Idea: Try some candidates
xi1 ,

xi1 =0 xi1 =1

LB0
i1

LB1
i1
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Strong Branching

Q: Which variable xi should be
branched on?

Idea: Try some candidates
xi1 , xi2 , . . .

xi2 =0 xi2 =1

LB0
i2

LB1
i2
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Q: Which variable xi should be
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LB0

i and LB1
i
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LB0
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LB1
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Strong Branching

Q: Which variable xi should be
branched on?

Idea: Try some candidates
xi1 , xi2 , . . .

Choose candidate with largest
LB0

i and LB1
i

If candidate’s child infeasible:
fix variable

xi2 =0 xi2 =1

LB1
i2

infeasible
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Strong Branching

Q: Which variable xi should be
branched on?

Idea: Try some candidates
xi1 , xi2 , . . .

Choose candidate with largest
LB0

i and LB1
i

If candidate’s child infeasible:
fix variable

If LB
0/1

i > UB : fix variable

xi2 =0 xi2 =1

LB1
i2

LB0
i2

> UB
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Strong Branching

Q: Which variable xi should be
branched on?

Idea: Try some candidates
xi1 , xi2 , . . .

Choose candidate with largest
LB0

i and LB1
i

If candidate’s child infeasible:
fix variable

If LB
0/1

i > UB : fix variable

Requires to solve many relaxations

xi2 =0 xi2 =1

LB1
i2

LB0
i2

> UB
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Strong Branching Improvements

Approximate node solutions

For MILP: Limit the number of simplex iterations
◮ Dual simplex algorithm gives valid bounds

Andreas Wächter (IBM) MINLP SIOPT 2008 16 / 30



Strong Branching Improvements

Approximate node solutions

For MILP: Limit the number of simplex iterations
◮ Dual simplex algorithm gives valid bounds

For MINLP: Solve approximation problem
◮ LP: Linearize functions at parent solution
◮ QP: Use QP from last SQP iteration (BQPD [Fletcher])
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Strong Branching Improvements

Approximate node solutions

For MILP: Limit the number of simplex iterations
◮ Dual simplex algorithm gives valid bounds

For MINLP: Solve approximation problem
◮ LP: Linearize functions at parent solution
◮ QP: Use QP from last SQP iteration (BQPD [Fletcher])

Can use hot-starts (reuse factorization)
◮ Only one bound changes
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Strong Branching Improvements

Pseudo costs

Idea: Collect statistical data about the effect of fixing each xi :
◮ Average change in LB0

i
and LB1

i
per unit change in xi

(up and down change separately)

Use to estimate LB0
i and LB1

i of child nodes

Andreas Wächter (IBM) MINLP SIOPT 2008 17 / 30



Strong Branching Improvements

Pseudo costs

Idea: Collect statistical data about the effect of fixing each xi :
◮ Average change in LB0

i
and LB1

i
per unit change in xi

(up and down change separately)
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Strong Branching Improvements

Pseudo costs

Idea: Collect statistical data about the effect of fixing each xi :
◮ Average change in LB0

i
and LB1

i
per unit change in xi

(up and down change separately)

Use to estimate LB0
i and LB1

i of child nodes

Initialize with strong branching

Update each time a node has been solved

Reliability branching

Pseudo costs, but do strong-branching on non-trusted variables

Limit the number of strong-branching solves
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Variable Selection

Comparative experiments in literature:

MILP

◮ Linderoth, Savelsbergh (1999):
- Pseudo costs work very well

◮ Achterberg, Koch, Martin (2005):
- Reliability branching best
- Most-fractional about as good as Random
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Variable Selection

Comparative experiments in literature:

MILP

◮ Linderoth, Savelsbergh (1999):
- Pseudo costs work very well

◮ Achterberg, Koch, Martin (2005):
- Reliability branching best
- Most-fractional about as good as Random

MINLP

◮ Gupta, Ravindran (1985)
- Most-fractional works best
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Branch-And-Bound Comparison (# Nodes)
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Branch-And-Bound Comparison (CPU time)
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B&B and Hybrid Comparison
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Experiments Summary

Strong-branching, pseudo-costs work for nonlinear B&B
◮ Hot-started QP approximations improve performance
◮ LP approximation not efficient
◮ In these experiments: Reliability branching not helpful
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Strong-branching, pseudo-costs work for nonlinear B&B
◮ Hot-started QP approximations improve performance
◮ LP approximation not efficient
◮ In these experiments: Reliability branching not helpful

B&B competitive to OA-based Hybrid method
◮ Methods should “learn from each other”

- e.g., use nonlinear strong-branching in Hybrid approach

Best choice depends on problem instance

◮ Need to identify relevant problem characteristics
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Experiments Summary

Strong-branching, pseudo-costs work for nonlinear B&B
◮ Hot-started QP approximations improve performance
◮ LP approximation not efficient
◮ In these experiments: Reliability branching not helpful

B&B competitive to OA-based Hybrid method
◮ Methods should “learn from each other”

- e.g., use nonlinear strong-branching in Hybrid approach

Best choice depends on problem instance

◮ Need to identify relevant problem characteristics

Number of nodes for solved problems:

Min Max GeoMean

Hybrid 8 436393 6226.5
StrongQP 14 2033352 1685.8

Andreas Wächter (IBM) MINLP SIOPT 2008 22 / 30



Node Solvers
In MILP:

Very efficient implementation of dual simplex
◮ Tailored to B&B: Changes in bounds; added cuts

Hot-starts (reusing factorization) extremely efficient
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Node Solvers
In MILP:

Very efficient implementation of dual simplex
◮ Tailored to B&B: Changes in bounds; added cuts

Hot-starts (reusing factorization) extremely efficient

In MINLP:

NLP solvers now much more robust and efficient than in the past
◮ For trimloss4: Solved >2,000,000 NLPs! (105 [85] var, 64 con)

Large-scale problems:
◮ Large-scale active-set methods?
◮ Combine interior-point and active-set methods?

Hot-starts possible?

Storing warm-start information more memory intensive
◮ In experiments: Use optimal solution of root node

Need fast detection of infeasibility
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Cuts

Approximate convex hull of integer-feasible points
◮ Strengthen the relaxation
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Cuts

Approximate convex hull of integer-feasible points
◮ Strengthen the relaxation

MILP: (hot topic over past 30 years)
◮ Many cut generators available (many easy to compute)

MINLP:
◮ For linear parts, can use MILP machinery directly

- Hybrid method works with linear formulation
- B&B: could work with linearizations

◮ Some research specific for nonlinear case:
- Stubbs, Mehrotra (1999, 2002)
- Atamtürk, Narayanan (2007)
- . . .

◮ Can also use nonlinear cuts

◮ Ideally: Need access to problem representation (expression tree)
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Other MILP techniques

Primal heuristics (quickly finding good integer feasible points)

Have answer when time limit exceeded

Improve upper bounds (e.g, for strong branching)
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Other MILP techniques

Primal heuristics (quickly finding good integer feasible points)

Have answer when time limit exceeded

Improve upper bounds (e.g, for strong branching)

MILP: A dozen generic heuristics (root node and in tree)
(hot topic over last 7 years)

MINLP: Preliminary work, e.g.,
- Nonlinear feasibility pump [Bonami et al. (2006)]
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Other MILP techniques

Node selection

In experiments: Use “best-bound” (node with smallest LB)

Diving
- Quickly find integer solution
- Allows hot-starts when proceeding to child nodes
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Other MILP techniques

Node selection

In experiments: Use “best-bound” (node with smallest LB)

Diving
- Quickly find integer solution
- Allows hot-starts when proceeding to child nodes

Presolve (tighten and simplify formulation)

At root node and in search tree

MILP: Just look at coefficients of linear functions

MINLP: General nonlinear functions difficult to predict
- Requires access to problem representation

(e.g., expression tree)
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What is Good Modeling?

Example: Uncapacitated facility location problem

min
∑n

i=1 cixi +
∑n

i=1

∑m
j=1 dĳyĳ

s.t .
∑m

j=1 yĳ = 1 (i = 1, . . . , n)

Weak :
∑n

i=1 yĳ ≤ n · xi (j = 1, . . . , m)

Strong : yĳ ≤ xi (i = 1, . . . , n; j = 1, . . . , m)

x ∈ {0, 1}n
, y ∈ R

m
+

MILP MINLP

n = 30, m = 100 nodes time nodes time

weak formulation 46,294 143.16
strong formulation 0 0.18

Andreas Wächter (IBM) MINLP SIOPT 2008 27 / 30



What is Good Modeling?

Example: Uncapacitated facility location problem

min
∑n

i=1 cixi +
∑n

i=1

∑m
j=1 dĳy2

ĳ

s.t .
∑m

j=1 yĳ = 1 (i = 1, . . . , n)

Weak :
∑n

i=1 yĳ ≤ n · xi (j = 1, . . . , m)

Strong : yĳ ≤ xi (i = 1, . . . , n; j = 1, . . . , m)

x ∈ {0, 1}n
, y ∈ R

m
+

MILP MINLP

n = 30, m = 100 nodes time nodes time

weak formulation 46,294 143.16 46,384 8117.52
strong formulation 0 0.18 30,112 7888.24
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What is Good Modeling?

Example: Uncapacitated facility location problem

min
∑n

i=1 cixi +
∑n

i=1

∑m
j=1 dĳy2

ĳ

s.t .
∑m

j=1 yĳ = 1 (i = 1, . . . , n)

Weak :
∑n

i=1 yĳ ≤ n · xi (j = 1, . . . , m)

Strong : yĳ ≤ xi (i = 1, . . . , n; j = 1, . . . , m)

x ∈ {0, 1}n
, y ∈ R

m
+

MILP MINLP

n = 30, m = 100 nodes time nodes time

weak formulation 46,294 143.16 46,384 8117.52
strong formulation 0 0.18 30,112 7888.24

weak with cuts/presolve 25 2.71
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The Nonconvex Case

Global optimization already very difficult
◮ Spatial branch-and-bound with convex under-estimators
◮ Incorporation of discrete variables natural
◮ Several algorithms and codes:

Alpha-BB [Adjiman et al.], BARON [Sahinidis, Tawarmalani],
Couenne [Belotti et al.], LaGO, [Nowak, Vigerske], . . .

◮ Limitation in problem size
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Heuristics based on convex MINLP algorithms
◮ Outer-approximation based (e.g., DICOPT [Grossmann et al.])

- use one side of equality constraints based on multipliers
- allow penalized slack in OA cuts
- delete violated OA cuts
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Global optimization already very difficult
◮ Spatial branch-and-bound with convex under-estimators
◮ Incorporation of discrete variables natural
◮ Several algorithms and codes:

Alpha-BB [Adjiman et al.], BARON [Sahinidis, Tawarmalani],
Couenne [Belotti et al.], LaGO, [Nowak, Vigerske], . . .

◮ Limitation in problem size

Heuristics based on convex MINLP algorithms
◮ Outer-approximation based (e.g., DICOPT [Grossmann et al.])

- use one side of equality constraints based on multipliers
- allow penalized slack in OA cuts
- delete violated OA cuts

◮ Nonlinear branch-and-bound
- resolve NLPs from different starting points
- do not trust lower bounds or infeasibilities
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Conclusions

Encouraging progress
◮ New algorithms and implementations (e.g., Bonmin, FilMINT)
◮ Outer-approximation based algorithms

- MILP framework with NLP solves
◮ Nonlinear branch-and-bound

- Pseudo costs, QP-based strong branching
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Many open questions
◮ Can we repeat the success of MILP?

- Further explore MILP techniques in the nonlinear case
- Robust large-scale NLP solvers with hot starts?
- Devise specific nonlinear techniques (e.g., cuts)
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◮ New algorithms and implementations (e.g., Bonmin, FilMINT)
◮ Outer-approximation based algorithms

- MILP framework with NLP solves
◮ Nonlinear branch-and-bound

- Pseudo costs, QP-based strong branching

Many open questions
◮ Can we repeat the success of MILP?

- Further explore MILP techniques in the nonlinear case
- Robust large-scale NLP solvers with hot starts?
- Devise specific nonlinear techniques (e.g., cuts)

◮ Nonconvex problems
◮ Implementation

- Collaboration essential (through open source?)
- “Accessible” nonlinear problem representation
- Parallel implementation

Need representative real-world test problems
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Thank you!
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