

Some Recent Advances in Mixed-Integer Nonlinear Programming

Andreas Wächter

IBM T.J. Watson Research Center
Yorktown Heights, New York
andreasw@us.ibm.com

SIAM Conference on Optimization 2008
Boston, MA

May 12, 2008

An MINLP Research Initiative

- CMU-IBM research collaboration, started in 2004
- The Team:

CMU

- ▶ Pietro Belotti
- ▶ Lorenz T. Biegler
- ▶ Gérard Cornuéjols
- ▶ Ignacio E. Grossmann
- ▶ Carl D. Laird (Texas A&M)
- ▶ François Margot
- ▶ Nick Sawaya
- ▶ Nick Sahinidis

IBM

- ▶ **Pierre Bonami** (CNRS Marseilles)
- ▶ Andrew R. Conn
- ▶ Claudia D'Ambrosio (U Bologna)
- ▶ John J. Forrest
- ▶ Joao Goncalves
- ▶ Oktay Günlük
- ▶ Laszlo Ladanyi
- ▶ Jon Lee
- ▶ Andrea Lodi (U Bologna)
- ▶ Andreas Wächter

Mixed-Integer Nonlinear Programming (MINLP)

$$\begin{aligned} \min \quad & f(\textcolor{red}{x}, \textcolor{blue}{y}) \\ \text{s.t.} \quad & c(\textcolor{red}{x}, \textcolor{blue}{y}) \leq 0 \\ & y_L \leq \textcolor{blue}{y} \leq y_U \\ & \textcolor{red}{x} \in \{0, 1\}^{\textcolor{red}{n}}, \textcolor{blue}{y} \in \mathbb{R}^p \end{aligned}$$

f, c sufficiently smooth
(e.g., C^2)

- Often in practice: Simplify original problem to obtain
 - NLP by relaxing integrality conditions (rounding)
 - MILP by approximating nonlinearities (piece-wise linear)

Mixed-Integer Nonlinear Programming (MINLP)

$$\begin{aligned} \min \quad & f(\mathbf{x}, \mathbf{y}) \\ \text{s.t.} \quad & c(\mathbf{x}, \mathbf{y}) \leq 0 \\ & y_L \leq \mathbf{y} \leq y_U \\ & \mathbf{x} \in \{0, 1\}^n, \mathbf{y} \in \mathbb{R}^p \end{aligned}$$

f, c sufficiently smooth
(e.g., C^2) and convex

- Often in practice: Simplify original problem to obtain
 - ▶ NLP by relaxing integrality conditions (rounding)
 - ▶ MILP by approximating nonlinearities (piece-wise linear)
- Goal: Design exact algorithms
- In this talk: Convex MINLP (f, c convex)

The Power Of MILP

- MILP has been extensively explored for decades
 - ▶ Based on branch-and-bound [Dakin (1965)]
 - ▶ Very powerful algorithms, techniques, and codes
 - ▶ Can solve very large problems
 - ▶ Used heavily in practice

The Power Of MILP

- MILP has been extensively explored for decades
 - ▶ Based on branch-and-bound [Dakin (1965)]
 - ▶ Very powerful algorithms, techniques, and codes
 - ▶ Can solve very large problems
 - ▶ Used heavily in practice
- How can this be used for MINLP?
- Use MILP solvers directly:
 - ▶ Piece-wise linear approximation (SOS constraints)
 - ▶ Outer approximation

The Power Of MILP

- MILP has been extensively explored for decades
 - ▶ Based on branch-and-bound [Dakin (1965)]
 - ▶ Very powerful algorithms, techniques, and codes
 - ▶ Can solve very large problems
 - ▶ Used heavily in practice
- How can this be used for MINLP?
- Use MILP solvers directly:
 - ▶ Piece-wise linear approximation (SOS constraints)
 - ▶ Outer approximation
- In a “nonlinear” branch-and-bound algorithm:
 - ▶ Try to learn from MILP tricks

The Power Of MILP

- MILP has been extensively explored for decades
 - ▶ Based on branch-and-bound [Dakin (1965)]
 - ▶ Very powerful algorithms, techniques, and codes
 - ▶ Can solve very large problems
 - ▶ Used heavily in practice
- How can this be used for MINLP?
- Use MILP solvers directly:
 - ▶ Piece-wise linear approximation (SOS constraints)
 - ▶ Outer approximation
- In a “nonlinear” branch-and-bound algorithm:
 - ▶ Try to learn from MILP tricks

Outer Approximation (Duran, Grossmann [1986])

$$\begin{aligned} \min \quad & z && \text{(linear objective)} \\ \text{s.t.} \quad & f(\textcolor{red}{x}, \textcolor{blue}{y}) \leq z \\ & c(\textcolor{red}{x}, \textcolor{blue}{y}) \leq 0 \\ & \textcolor{red}{x} \in \{0, 1\}^{\textcolor{red}{n}}, \textcolor{blue}{y} \in \mathbb{R}^p, z \in \mathbb{R} \end{aligned}$$

Outer Approximation (Duran, Grossmann [1986])

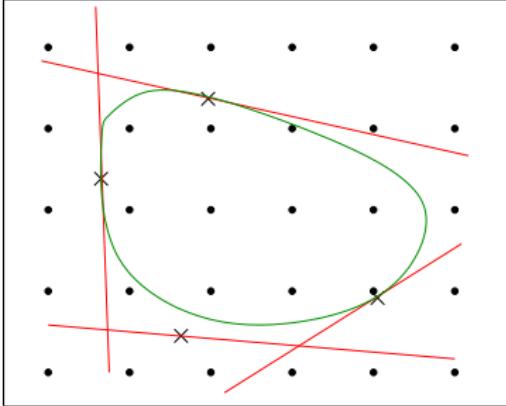
$$\min z \quad (\text{linear objective})$$

$$s.t. \quad f(\mathbf{x}, \mathbf{y}) \leq z$$

$$c(\mathbf{x}, \mathbf{y}) \leq 0$$

$$\mathbf{x} \in \{0, 1\}^n, \mathbf{y} \in \mathbb{R}^p, z \in \mathbb{R}$$

Approximate by MILP (hyperplanes)



$$\min z$$

$$s.t. \quad \nabla f(\mathbf{x}^k, \mathbf{y}^k)^T \left(\begin{matrix} \mathbf{x} - \mathbf{x}^k \\ \mathbf{y} - \mathbf{y}^k \end{matrix} \right) + f(\mathbf{x}^k, \mathbf{y}^k) \leq z$$

$$\nabla c(\mathbf{x}^k, \mathbf{y}^k)^T \left(\begin{matrix} \mathbf{x} - \mathbf{x}^k \\ \mathbf{y} - \mathbf{y}^k \end{matrix} \right) + c(\mathbf{x}^k, \mathbf{y}^k) \leq 0$$

for all $(\mathbf{x}^k, \mathbf{y}^k) \in \mathcal{T}$

$$\mathbf{x} \in \{0, 1\}^n, \mathbf{y} \in \mathbb{R}^p, z \in \mathbb{R}$$

- \mathcal{T} contains linearization points

Outer Approximation (Duran, Grossmann [1986])

$$\min z \quad (\text{linear objective})$$

$$s.t. \quad f(\mathbf{x}, \mathbf{y}) \leq z$$

$$c(\mathbf{x}, \mathbf{y}) \leq 0$$

$$\mathbf{x} \in \{0, 1\}^n, \mathbf{y} \in \mathbb{R}^p, z \in \mathbb{R}$$

Approximate by MILP (hyperplanes)

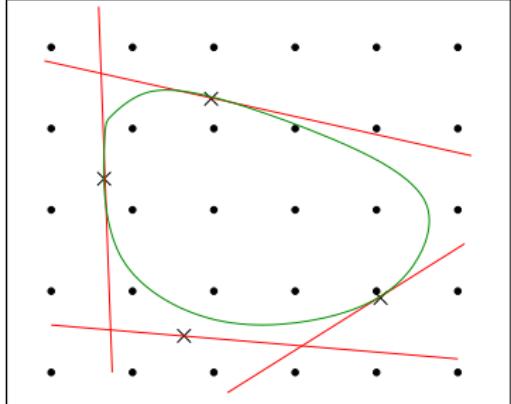
$$\min z$$

$$s.t. \quad \nabla f(\mathbf{x}^k, \mathbf{y}^k)^T \left(\begin{matrix} \mathbf{x} - \mathbf{x}^k \\ \mathbf{y} - \mathbf{y}^k \end{matrix} \right) + f(\mathbf{x}^k, \mathbf{y}^k) \leq z$$

$$\nabla c(\mathbf{x}^k, \mathbf{y}^k)^T \left(\begin{matrix} \mathbf{x} - \mathbf{x}^k \\ \mathbf{y} - \mathbf{y}^k \end{matrix} \right) + c(\mathbf{x}^k, \mathbf{y}^k) \leq 0$$

for all $(\mathbf{x}^k, \mathbf{y}^k) \in \mathcal{T}$

$$\mathbf{x} \in \{0, 1\}^n, \mathbf{y} \in \mathbb{R}^p, z \in \mathbb{R}$$



- \mathcal{T} contains linearization points
 - ▶ augmented during algorithm
- Algorithm: Repeat
 - 1 solve current MILP $\rightarrow (\mathbf{x}^l, \mathbf{y}^l)$
 - 2 solve NLP with \mathbf{x}^l fixed $\rightarrow \mathbf{y}^l$
 - 3 add $(\mathbf{x}^l, \mathbf{y}^l)$ to \mathcal{T}

Outer Approximation Discussion

- Original algorithm:

- ▶ Alternatingly solve NLPs and MILPs
- ▶ Finite termination
- ▶ Advantage: Simple to implement; uses all MILP techniques
- ▶ Disadvantage: Solve every MILP from scratch

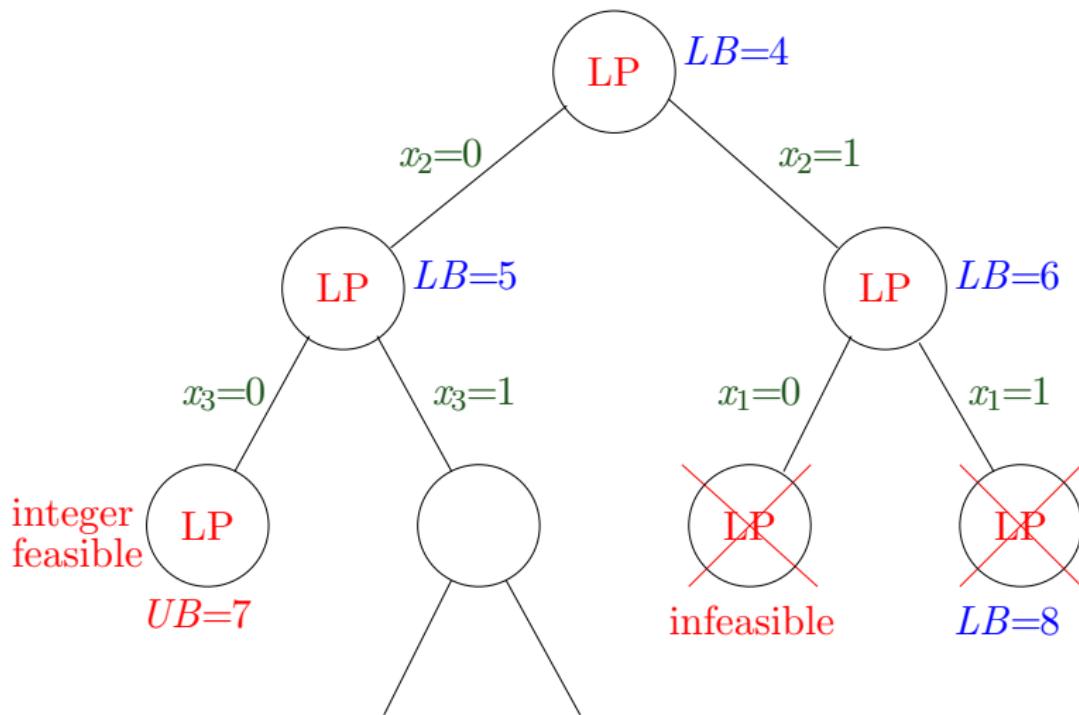
Outer Approximation Discussion

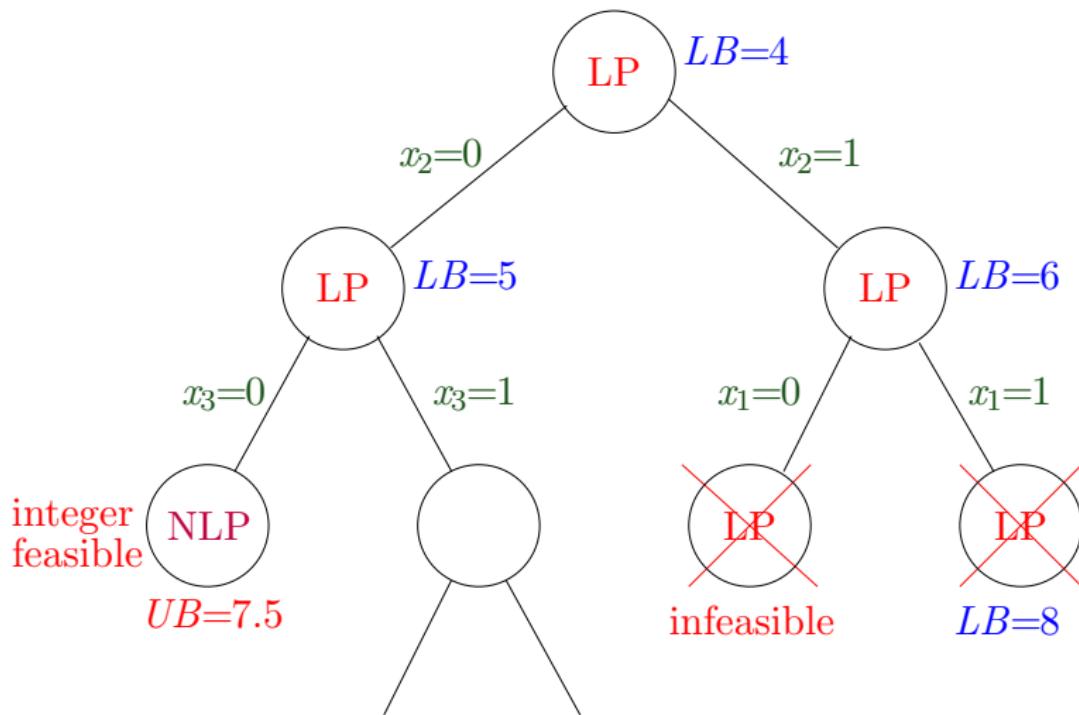
- Original algorithm:

- ▶ Alternatingly solve NLPs and MILPs
- ▶ Finite termination
- ▶ Advantage: Simple to implement; uses all MILP techniques
- ▶ Disadvantage: Solve every MILP from scratch

- Improvement [Quesada, Grossmann (1992)]:

- ▶ Build only one MILP enumeration tree





Outer Approximation Discussion

- Original algorithm:

- ▶ Alternatingly solve NLPs and MILPs
- ▶ Finite termination
- ▶ Advantage: Simple to implement; uses all MILP techniques
- ▶ Disadvantage: Need to solve every MILP from scratch

- Improvement [Quesada, Grossmann (1992)]:

- ▶ Build only one MILP enumeration tree
- ▶ Solve NLP for every MILP integer feasible solution
- ▶ Add new outer approximation cuts to current MILP

Outer Approximation Discussion

- Original algorithm:
 - ▶ Alternatingly solve NLPs and MILPs
 - ▶ Finite termination
 - ▶ Advantage: Simple to implement; uses all MILP techniques
 - ▶ Disadvantage: Need to solve every MILP from scratch
- Improvement [Quesada, Grossmann (1992)]:
 - ▶ Build only one MILP enumeration tree
 - ▶ Solve NLP for every MILP integer feasible solution
 - ▶ Add new outer approximation cuts to current MILP
- “Hybrid” approach [Bonami et al. (2005)]
 - ▶ Solve NLPs also at non-integer nodes
 - ▶ For example, solve NLP in every 10th node
 - + Includes information about nonlinear geometry more quickly
 - Requires solution of more NLPs
 - ▶ Abhishek, Leyffer, Linderoth (2007) ([FilMINT](#) code):
 - ★ Don’t solve NLP, just add linearization (Extended cutting plane)

Preliminary Numerical Experiments

- Software implementation

- ▶ **Bonmin** (Open source software on COIN-OR)

<http://www.coin-or.org/Bonmin>

- ▶ Based on other COIN-OR projects (**Cbc**, **Clp**, **Cgl**, **Ipopt**, ...)
 - Essential for fast development: Availability of open source
 - ▶ NLP solvers: **FilterSQP** [Fletcher, Leyffer] and **Ipopt**

Preliminary Numerical Experiments

- Software implementation

- ▶ **Bonmin** (Open source software on COIN-OR)

<http://www.coin-or.org/Bonmin>

- ▶ Based on other COIN-OR projects (**Cbc**, **Clp**, **Cgl**, **Ipopt**, ...)
 - Essential for fast development: Availability of open source
 - ▶ NLP solvers: **FilterSQP** [Fletcher, Leyffer] and **Ipopt**

- Test problems

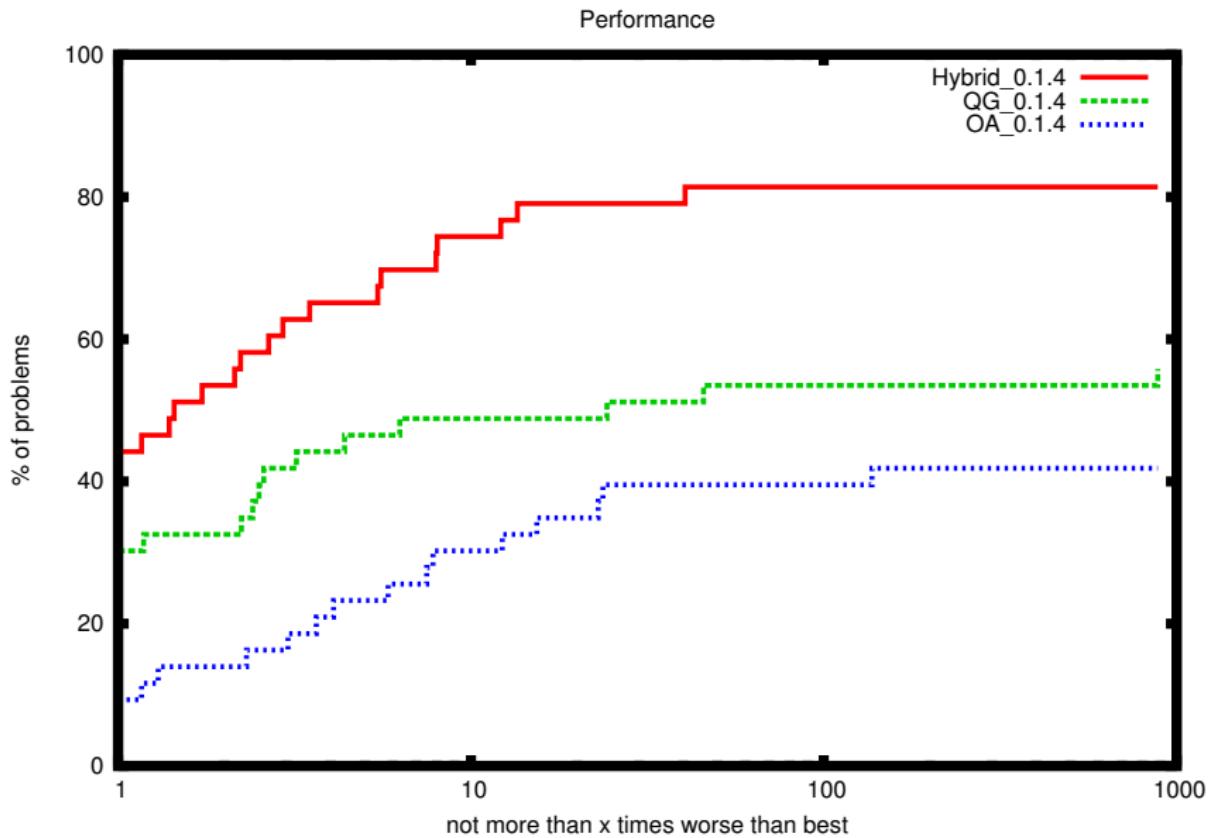
- ▶ Representative selection of 44 convex MINLPs from
 - CMU/IBM library

<http://egon.cheme.cmu.edu/ibm/page.htm>

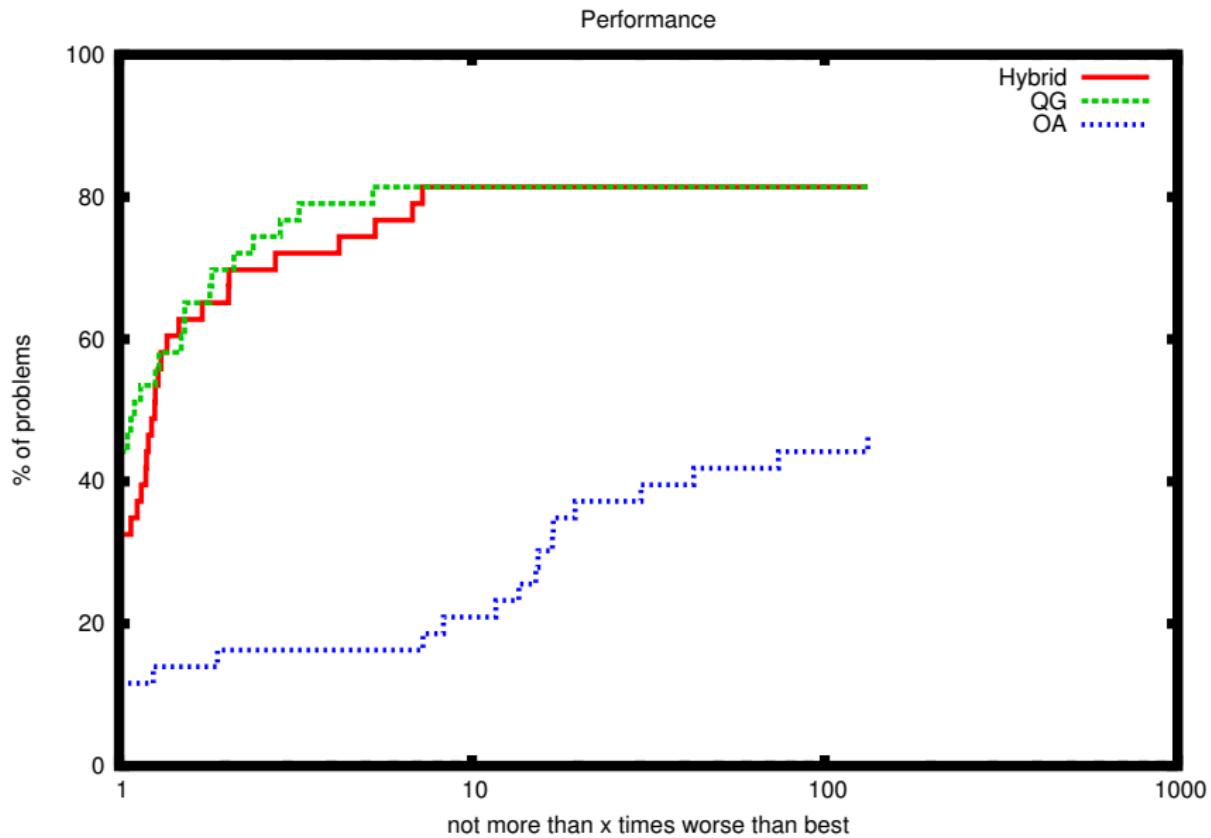
- **MacMinlp** [Leyffer]

- ▶ Difficult, but mostly solvable within 3 hour time limit
 - ▶ Problem statistics
 - ★ # total vars: 42–1796 (289.8); # discrete vars: 14–432 (93.7)
 - ★ # constraints: 42–3190 (395.4)

Bonmin 0.1.4 with Ipopt (CPU)



Developer Version with FilterSQP (CPU)



The Success Story Of MILP

In: Bixby, Fenelon, Gu, Rothberg, Wunderling (2004)

Mixed-Integer Programming: A Progress Report

What lead to the dramatic improvement of MILP solvers?

The Success Story Of MILP

In: Bixby, Fenelon, Gu, Rothberg, Wunderling (2004)
Mixed-Integer Programming: A Progress Report

What lead to the dramatic improvement of MILP solvers?

- Very efficient node solvers

The Success Story Of MILP

In: Bixby, Fenelon, Gu, Rothberg, Wunderling (2004)
Mixed-Integer Programming: A Progress Report

What lead to the dramatic improvement of MILP solvers?

- Very efficient node solvers
- Variable/node selection
- Primal heuristics
- Presolve
- Cutting planes

The Success Story Of MILP

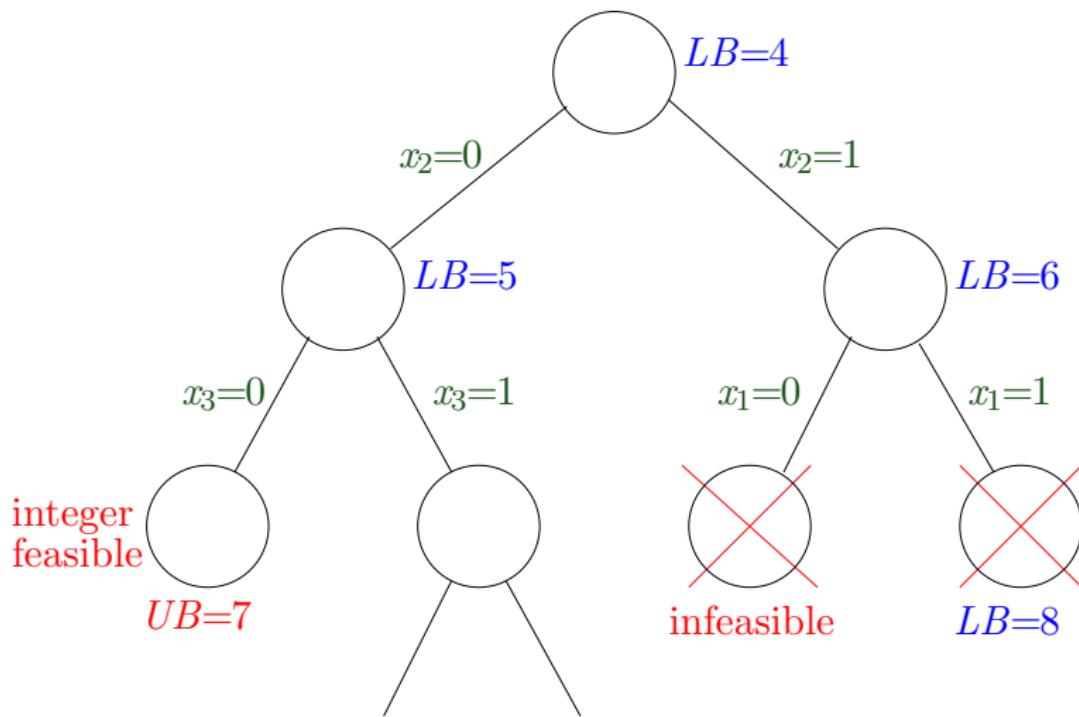
In: Bixby, Fenelon, Gu, Rothberg, Wunderling (2004)
Mixed-Integer Programming: A Progress Report

What lead to the dramatic improvement of MILP solvers?

- Very efficient node solvers
- Variable/node selection
- Primal heuristics
- Presolve
- Cutting planes

What can we learn from this for a B&B-based method for MINLP?

Branch-and-bound: Variable Selection



Variable Selection

Some possible options:

- **Random**
- **Most-fractional** (most integer-infeasible)
 - used in **MINLP-BB** [Fletcher, Leyffer]

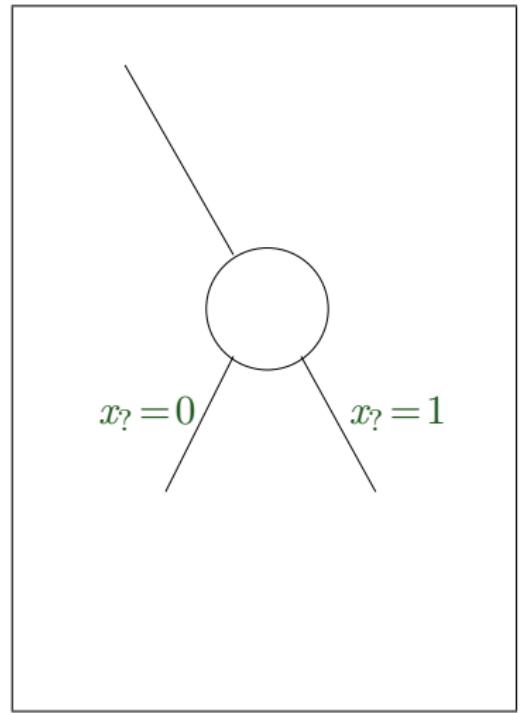
Variable Selection

Some possible options:

- **Random**
- **Most-fractional** (most integer-infeasible)
 - used in **MINLP-BB** [Fletcher, Leyffer]
- **Strong branching** [Applegate et al. (1995)]
- **Pseudo costs** [Benichou et al. (1971), Forrest et al. (1974)]
 - optional in **SBB** [GAMS]
- **Reliability branching** [Achterberg et al. (2005)]

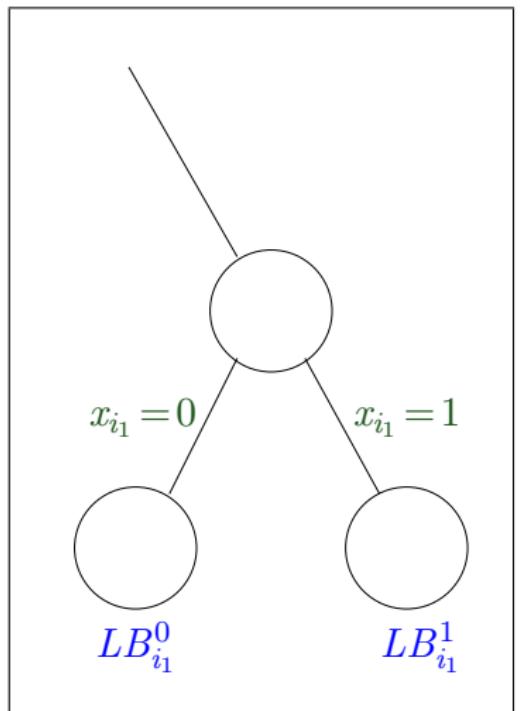
Strong Branching

- Q: Which variable x_i should be branched on?



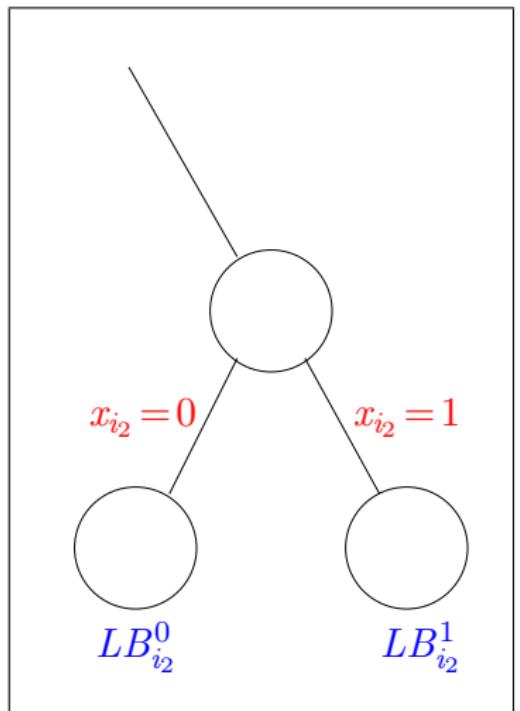
Strong Branching

- Q: Which variable x_i should be branched on?
- Idea: Try some candidates
 x_{i_1} ,



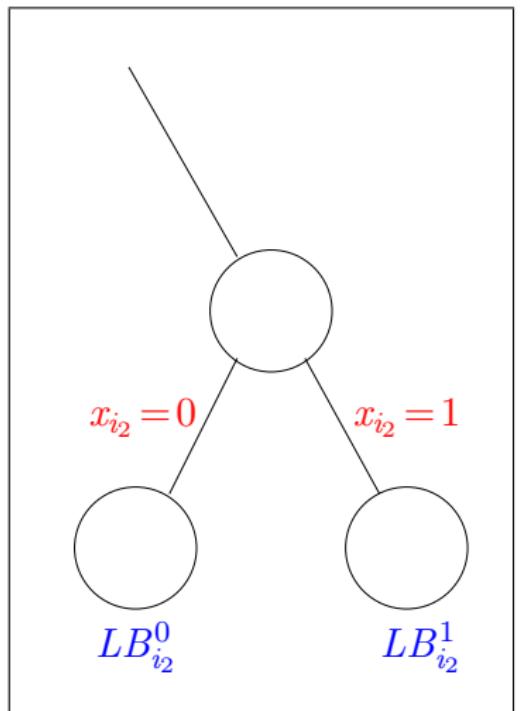
Strong Branching

- Q: Which variable x_i should be branched on?
- Idea: Try some candidates
 x_{i_1}, x_{i_2}, \dots



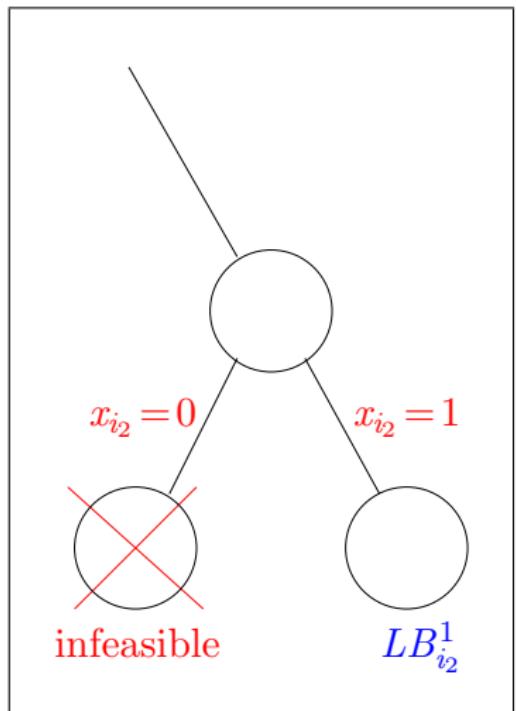
Strong Branching

- Q: Which variable x_i should be branched on?
- Idea: Try some candidates x_{i_1}, x_{i_2}, \dots
- Choose candidate with largest LB_i^0 and LB_i^1



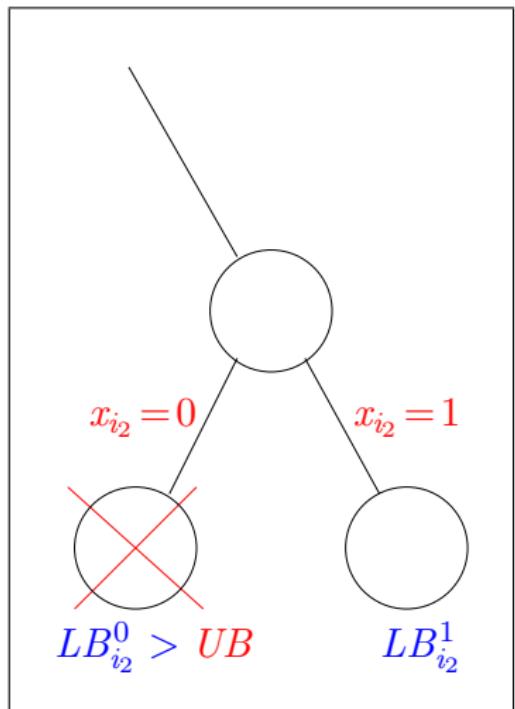
Strong Branching

- Q: Which variable x_i should be branched on?
- Idea: Try some candidates x_{i_1}, x_{i_2}, \dots
- Choose candidate with largest LB_i^0 and LB_i^1
- If candidate's child infeasible: fix variable



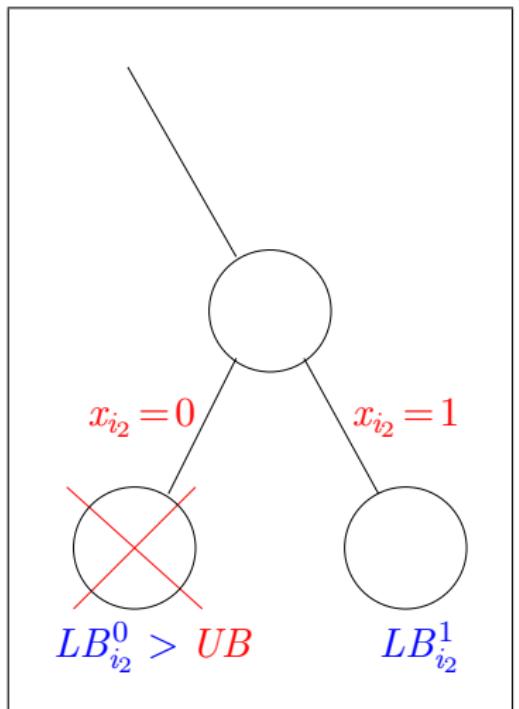
Strong Branching

- Q: Which variable x_i should be branched on?
- Idea: Try some candidates x_{i_1}, x_{i_2}, \dots
- Choose candidate with largest LB_i^0 and LB_i^1
- If candidate's child infeasible: fix variable
- If $LB_i^{0/1} > UB$: fix variable



Strong Branching

- Q: Which variable x_i should be branched on?
- Idea: Try some candidates x_{i_1}, x_{i_2}, \dots
- Choose candidate with largest LB_i^0 and LB_i^1
- If candidate's child infeasible: fix variable
- If $LB_i^{0/1} > UB$: fix variable
- Requires to solve many relaxations



Strong Branching Improvements

Approximate node solutions

- For MILP: Limit the number of simplex iterations
 - ▶ Dual simplex algorithm gives valid bounds

Strong Branching Improvements

Approximate node solutions

- For MILP: Limit the number of simplex iterations
 - ▶ Dual simplex algorithm gives valid bounds
- For MINLP: Solve approximation problem
 - ▶ LP: Linearize functions at parent solution
 - ▶ QP: Use QP from last SQP iteration (**BQPD** [Fletcher])

Strong Branching Improvements

Approximate node solutions

- For MILP: Limit the number of simplex iterations
 - ▶ Dual simplex algorithm gives valid bounds
- For MINLP: Solve approximation problem
 - ▶ LP: Linearize functions at parent solution
 - ▶ QP: Use QP from last SQP iteration (**BQPD** [Fletcher])
- Can use **hot-starts** (reuse factorization)
 - ▶ Only one bound changes

Strong Branching Improvements

Pseudo costs

- Idea: Collect statistical data about the effect of fixing each x_i :
 - ▶ Average change in LB_i^0 and LB_i^1 per unit change in x_i
(up and down change separately)
- Use to estimate LB_i^0 and LB_i^1 of child nodes

Strong Branching Improvements

Pseudo costs

- Idea: Collect statistical data about the effect of fixing each x_i :
 - ▶ Average change in LB_i^0 and LB_i^1 per unit change in x_i
(up and down change separately)
- Use to estimate LB_i^0 and LB_i^1 of child nodes
- Initialize with strong branching
- Update each time a node has been solved

Strong Branching Improvements

Pseudo costs

- Idea: Collect statistical data about the effect of fixing each x_i :
 - ▶ Average change in LB_i^0 and LB_i^1 per unit change in x_i
(up and down change separately)
- Use to estimate LB_i^0 and LB_i^1 of child nodes
- Initialize with strong branching
- Update each time a node has been solved

Reliability branching

- Pseudo costs, but do strong-branching on non-trusted variables
- Limit the number of strong-branching solves

Variable Selection

Comparative experiments in literature:

- MILP
 - ▶ Linderoth, Savelsbergh (1999):
 - **Pseudo costs** work very well
 - ▶ Achterberg, Koch, Martin (2005):
 - **Reliability branching** best
 - **Most-fractional** about as good as **Random**

Variable Selection

Comparative experiments in literature:

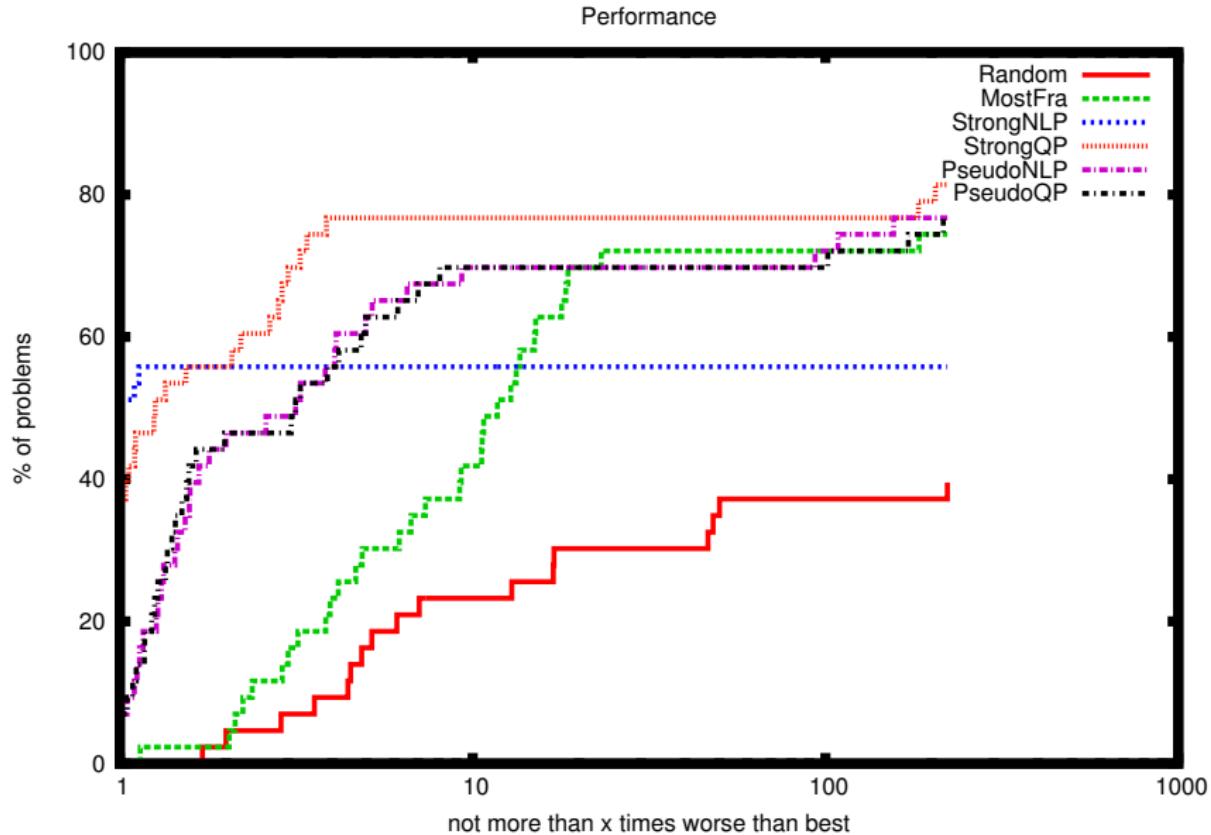
- MILP

- ▶ Linderoth, Savelsbergh (1999):
 - **Pseudo costs** work very well
- ▶ Achterberg, Koch, Martin (2005):
 - **Reliability branching** best
 - **Most-fractional** about as good as **Random**

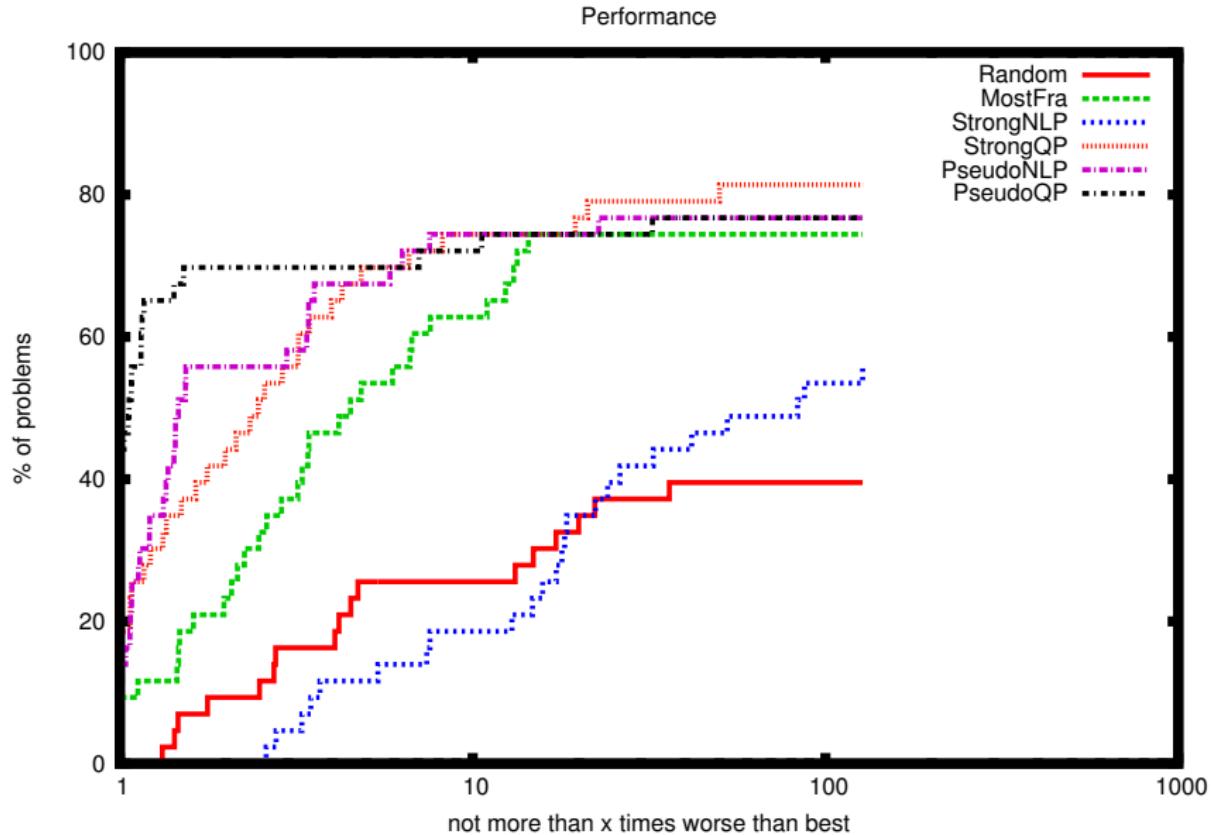
- MINLP

- ▶ Gupta, Ravindran (1985)
 - **Most-fractional** works best

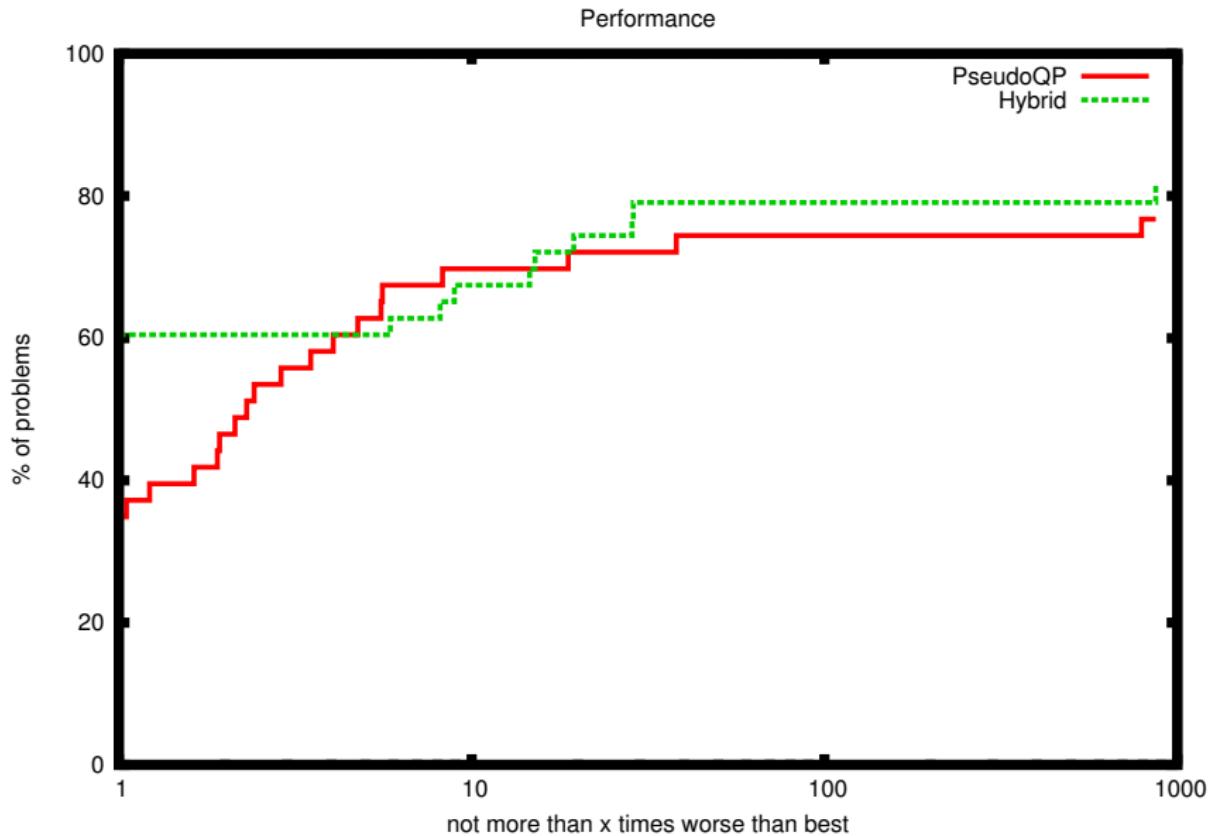
Branch-And-Bound Comparison (# Nodes)



Branch-And-Bound Comparison (CPU time)



B&B and Hybrid Comparison



Experiments Summary

- Strong-branching, pseudo-costs work for nonlinear B&B
 - ▶ Hot-started QP approximations improve performance
 - ▶ LP approximation not efficient
 - ▶ In these experiments: Reliability branching not helpful

Experiments Summary

- Strong-branching, pseudo-costs work for nonlinear B&B
 - ▶ Hot-started QP approximations improve performance
 - ▶ LP approximation not efficient
 - ▶ In these experiments: Reliability branching not helpful
- B&B competitive to OA-based Hybrid method
 - ▶ Methods should “learn from each other”
 - e.g., use nonlinear strong-branching in Hybrid approach
- Best choice depends on problem instance
 - ▶ Need to identify relevant problem characteristics

Experiments Summary

- Strong-branching, pseudo-costs work for nonlinear B&B
 - ▶ Hot-started QP approximations improve performance
 - ▶ LP approximation not efficient
 - ▶ In these experiments: Reliability branching not helpful
- B&B competitive to OA-based Hybrid method
 - ▶ Methods should “learn from each other”
 - e.g., use nonlinear strong-branching in Hybrid approach
- Best choice depends on problem instance
 - ▶ Need to identify relevant problem characteristics
- Number of nodes for solved problems:

	Min	Max	GeoMean
Hybrid	8	436393	6226.5
StrongQP	14	2033352	1685.8

Node Solvers

In MILP:

- Very efficient implementation of dual simplex
 - ▶ Tailored to B&B: Changes in bounds; added cuts
- Hot-starts (reusing factorization) extremely efficient

Node Solvers

In MILP:

- Very efficient implementation of dual simplex
 - ▶ Tailored to B&B: Changes in bounds; added cuts
- Hot-starts (reusing factorization) extremely efficient

In MINLP:

- NLP solvers now much more robust and efficient than in the past
 - ▶ For `trimloss4`: Solved >2,000,000 NLPs! (105 [85] var, 64 con)

Node Solvers

In MILP:

- Very efficient implementation of dual simplex
 - ▶ Tailored to B&B: Changes in bounds; added cuts
- Hot-starts (reusing factorization) extremely efficient

In MINLP:

- NLP solvers now much more robust and efficient than in the past
 - ▶ For `trimloss4`: Solved >2,000,000 NLPs! (105 [85] var, 64 con)
- Large-scale problems:
 - ▶ Large-scale active-set methods?
 - ▶ Combine interior-point and active-set methods?

Node Solvers

In MILP:

- Very efficient implementation of dual simplex
 - ▶ Tailored to B&B: Changes in bounds; added cuts
- Hot-starts (reusing factorization) extremely efficient

In MINLP:

- NLP solvers now much more robust and efficient than in the past
 - ▶ For `trimloss4`: Solved >2,000,000 NLPs! (105 [85] var, 64 con)
- Large-scale problems:
 - ▶ Large-scale active-set methods?
 - ▶ Combine interior-point and active-set methods?
- Hot-starts possible?

Node Solvers

In MILP:

- Very efficient implementation of dual simplex
 - ▶ Tailored to B&B: Changes in bounds; added cuts
- Hot-starts (reusing factorization) extremely efficient

In MINLP:

- NLP solvers now much more robust and efficient than in the past
 - ▶ For `trimloss4`: Solved >2,000,000 NLPs! (105 [85] var, 64 con)
- Large-scale problems:
 - ▶ Large-scale active-set methods?
 - ▶ Combine interior-point and active-set methods?
- Hot-starts possible?
- Storing warm-start information more memory intensive
 - ▶ In experiments: Use optimal solution of root node

Node Solvers

In MILP:

- Very efficient implementation of dual simplex
 - ▶ Tailored to B&B: Changes in bounds; added cuts
- Hot-starts (reusing factorization) extremely efficient

In MINLP:

- NLP solvers now much more robust and efficient than in the past
 - ▶ For `trimloss4`: Solved >2,000,000 NLPs! (105 [85] var, 64 con)
- Large-scale problems:
 - ▶ Large-scale active-set methods?
 - ▶ Combine interior-point and active-set methods?
- Hot-starts possible?
- Storing warm-start information more memory intensive
 - ▶ In experiments: Use optimal solution of root node
- Need fast detection of infeasibility

Cuts

- Approximate convex hull of integer-feasible points
 - ▶ Strengthen the relaxation

Cuts

- Approximate convex hull of integer-feasible points
 - ▶ Strengthen the relaxation
- **MILP:** (hot topic over past 30 years)
 - ▶ Many cut generators available (many easy to compute)

Cuts

- Approximate convex hull of integer-feasible points
 - ▶ Strengthen the relaxation
- **MILP:** (hot topic over past 30 years)
 - ▶ Many cut generators available (many easy to compute)
- **MINLP:**
 - ▶ For linear parts, can use MILP machinery directly
 - Hybrid method works with linear formulation
 - B&B: could work with linearizations

Cuts

- Approximate convex hull of integer-feasible points
 - ▶ Strengthen the relaxation
- **MILP:** (hot topic over past 30 years)
 - ▶ Many cut generators available (many easy to compute)
- **MINLP:**
 - ▶ For linear parts, can use MILP machinery directly
 - Hybrid method works with linear formulation
 - B&B: could work with linearizations
 - ▶ Some research specific for nonlinear case:
 - Stubbs, Mehrotra (1999, 2002)
 - Atamtürk, Narayanan (2007)
 - ...
 - ▶ Can also use nonlinear cuts
 - ▶ Ideally: Need access to problem representation (expression tree)

Other MILP techniques

Primal heuristics (quickly finding good integer feasible points)

- Have answer when time limit exceeded
- Improve upper bounds (e.g, for strong branching)

Other MILP techniques

Primal heuristics (quickly finding good integer feasible points)

- Have answer when time limit exceeded
- Improve upper bounds (e.g, for strong branching)
- MILP: A dozen generic heuristics (root node and in tree)
(hot topic over last 7 years)
- MINLP: Preliminary work, e.g.,
 - Nonlinear feasibility pump [Bonami et al. (2006)]

Other MILP techniques

Node selection

- In experiments: Use “best-bound” (node with smallest LB)
- Diving
 - Quickly find integer solution
 - Allows hot-starts when proceeding to child nodes

Other MILP techniques

Node selection

- In experiments: Use “best-bound” (node with smallest LB)
- Diving
 - Quickly find integer solution
 - Allows hot-starts when proceeding to child nodes

Presolve (tighten and simplify formulation)

- At root node and in search tree
- MILP: Just look at coefficients of linear functions
- MINLP: General nonlinear functions difficult to predict
 - Requires access to problem representation (e.g., expression tree)

What is Good Modeling?

Example: Uncapacitated facility location problem

$$\begin{aligned} \min \quad & \sum_{i=1}^n c_i x_i + \sum_{i=1}^n \sum_{j=1}^m d_{ij} y_{ij} \\ \text{s.t.} \quad & \sum_{j=1}^m y_{ij} = 1 \quad (i = 1, \dots, n) \end{aligned}$$

Weak : $\sum_{i=1}^n y_{ij} \leq n \cdot x_i \quad (j = 1, \dots, m)$

Strong : $y_{ij} \leq x_i \quad (i = 1, \dots, n; j = 1, \dots, m)$

$$x \in \{0, 1\}^n, \quad y \in \mathbb{R}_+^m$$

$n = 30, m = 100$	MILP		MINLP	
	nodes	time	nodes	time
weak formulation	46,294	143.16		
strong formulation	0	0.18		

What is Good Modeling?

Example: Uncapacitated facility location problem

$$\begin{array}{ll} \min & \sum_{i=1}^n c_i x_i + \sum_{i=1}^n \sum_{j=1}^m d_{ij} y_{ij}^2 \\ s.t. & \sum_{j=1}^m y_{ij} = 1 \quad (i = 1, \dots, n) \end{array}$$

Weak : $\sum_{i=1}^n y_{ij} \leq n \cdot x_i \quad (j = 1, \dots, m)$

Strong : $y_{ij} \leq x_i \quad (i = 1, \dots, n; \; j = 1, \dots, m)$

$$x \in \{0, 1\}^n, \quad y \in \mathbb{R}_+^m$$

$n = 30, m = 100$	MILP		MINLP	
	nodes	time	nodes	time
weak formulation	46,294	143.16	46,384	8117.52
strong formulation	0	0.18	30,112	7888.24

What is Good Modeling?

Example: Uncapacitated facility location problem

$$\begin{aligned} \min \quad & \sum_{i=1}^n c_i x_i + \sum_{i=1}^n \sum_{j=1}^m d_{ij} y_{ij}^2 \\ \text{s.t.} \quad & \sum_{j=1}^m y_{ij} = 1 \quad (i = 1, \dots, n) \end{aligned}$$

Weak : $\sum_{i=1}^n y_{ij} \leq n \cdot x_i \quad (j = 1, \dots, m)$

Strong : $y_{ij} \leq x_i \quad (i = 1, \dots, n; j = 1, \dots, m)$

$$x \in \{0, 1\}^n, \quad y \in \mathbb{R}_+^m$$

$n = 30, m = 100$	MILP		MINLP	
	nodes	time	nodes	time
weak formulation	46,294	143.16	46,384	8117.52
strong formulation	0	0.18	30,112	7888.24
weak with cuts/presolve	25	2.71		

The Nonconvex Case

- Global optimization already very difficult
 - ▶ **Spatial branch-and-bound** with **convex under-estimators**
 - ▶ Incorporation of discrete variables natural
 - ▶ Several algorithms and codes:
 - Alpha-BB [Adjiman et al.], **BARON** [Sahinidis, Tawarmalani],
 - Couenne** [Belotti et al.], **LaGO**, [Nowak, Vigerske], ...
 - ▶ Limitation in problem size

The Nonconvex Case

- Global optimization already very difficult
 - ▶ **Spatial branch-and-bound** with **convex under-estimators**
 - ▶ Incorporation of discrete variables natural
 - ▶ Several algorithms and codes:
 - Alpha-BB [Adjiman et al.], **BARON** [Sahinidis, Tawarmalani],
 - Couenne** [Belotti et al.], **LaGO**, [Nowak, Vigerske], ...
 - ▶ Limitation in problem size
- **Heuristics** based on convex MINLP algorithms
 - ▶ Outer-approximation based (e.g., **DICOPT** [Grossmann et al.])
 - use one side of equality constraints based on multipliers
 - allow penalized slack in OA cuts
 - delete violated OA cuts

The Nonconvex Case

- Global optimization already very difficult
 - ▶ **Spatial branch-and-bound** with **convex under-estimators**
 - ▶ Incorporation of discrete variables natural
 - ▶ Several algorithms and codes:
 - Alpha-BB [Adjiman et al.], **BARON** [Sahinidis, Tawarmalani],
 - Couenne** [Belotti et al.], **LaGO**, [Nowak, Vigerske], ...
 - ▶ Limitation in problem size
- **Heuristics** based on convex MINLP algorithms
 - ▶ Outer-approximation based (e.g., **DICOPT** [Grossmann et al.])
 - use one side of equality constraints based on multipliers
 - allow penalized slack in OA cuts
 - delete violated OA cuts
 - ▶ Nonlinear branch-and-bound
 - resolve NLPs from different starting points
 - do not trust lower bounds or infeasibilities

Conclusions

- **Encouraging progress**

- ▶ New algorithms and implementations (e.g., [Bonmin](#), [FiLMINT](#))
- ▶ Outer-approximation based algorithms
 - MILP framework with NLP solves
- ▶ Nonlinear branch-and-bound
 - Pseudo costs, QP-based strong branching

Conclusions

- **Encouraging progress**

- ▶ New algorithms and implementations (e.g., [Bonmin](#), [FiLMINT](#))
- ▶ Outer-approximation based algorithms
 - MILP framework with NLP solves
- ▶ Nonlinear branch-and-bound
 - Pseudo costs, QP-based strong branching

- **Many open questions**

- ▶ Can we repeat the success of MILP?
 - Further explore MILP techniques in the nonlinear case
 - Robust large-scale NLP solvers with hot starts?
 - Devise specific nonlinear techniques (e.g., cuts)

Conclusions

- **Encouraging progress**

- ▶ New algorithms and implementations (e.g., [Bonmin](#), [FiLMINT](#))
- ▶ Outer-approximation based algorithms
 - MILP framework with NLP solves
- ▶ Nonlinear branch-and-bound
 - Pseudo costs, QP-based strong branching

- **Many open questions**

- ▶ Can we repeat the success of MILP?
 - Further explore MILP techniques in the nonlinear case
 - Robust large-scale NLP solvers with hot starts?
 - Devise specific nonlinear techniques (e.g., cuts)
- ▶ Nonconvex problems

Conclusions

- **Encouraging progress**

- ▶ New algorithms and implementations (e.g., [Bonmin](#), [FiLMINT](#))
- ▶ Outer-approximation based algorithms
 - MILP framework with NLP solves
- ▶ Nonlinear branch-and-bound
 - Pseudo costs, QP-based strong branching

- **Many open questions**

- ▶ Can we repeat the success of MILP?
 - Further explore MILP techniques in the nonlinear case
 - Robust large-scale NLP solvers with hot starts?
 - Devise specific nonlinear techniques (e.g., cuts)
- ▶ Nonconvex problems
- ▶ Implementation
 - Collaboration essential (through open source?)
 - “Accessible” nonlinear problem representation
 - Parallel implementation

Conclusions

- **Encouraging progress**

- ▶ New algorithms and implementations (e.g., [Bonmin](#), [FiLMINT](#))
- ▶ Outer-approximation based algorithms
 - MILP framework with NLP solves
- ▶ Nonlinear branch-and-bound
 - Pseudo costs, QP-based strong branching

- **Many open questions**

- ▶ Can we repeat the success of MILP?
 - Further explore MILP techniques in the nonlinear case
 - Robust large-scale NLP solvers with hot starts?
 - Devise specific nonlinear techniques (e.g., cuts)
- ▶ Nonconvex problems
- ▶ Implementation
 - Collaboration essential (through open source?)
 - “Accessible” nonlinear problem representation
 - Parallel implementation

- **Need representative real-world test problems**

Thank you!