
The Dual Flow

Between Linear Algebra and

Optimization

Margaret H. Wright

Computer Science Department

Courant Institute of Mathematical Sciences

New York University

History of Numerical Linear Algebra Minisymposium - Part II

SIAM Conference on Applied Linear Algebra

Monterey, California

October 28, 2009

This is the eighth of eight talks whose collective

purpose is

. . . to look back at the history of the

subject, to remember the founders of our

field, to honor their legacy, and to review

their accomplishments to ensure a vital

future for our field.

Many thanks to Ilse and Sven for inviting me to

speak!

My original goal for this talk: to discuss several of

the numerous two-way connections between applied

linear algebra and optimization.

This turned out to be much too ambitious for a

25-minute talk.

The compromise approach—a quick whisk through

two topics:

1. rank-one updates in the simplex method for

linear programming and

2. convexification in nonlinear optimization (what

to do with indefinite matrices that “should be”

positive definite).

Among the mathematically equivalent forms of linear

programs, we consider standard form:

minimize
x∈Rn

cT x subject to Ax = b and x ≥ 0,

where A is m× n and has rank m.

The point x∗ ∈ Rn is optimal if

1. Ax∗ = b and x∗ ≥ 0;

2. c = AT y∗ + z∗, where z∗ ≥ 0 and z∗j x∗
j = 0 for j = 1, . . . , n.

The m-vector y∗ is a Lagrange multiplier for the equality

constraints Ax = b and the n-vector z∗ is a Lagrange multiplier

for the bound constraints x ≥ 0.

Basic and Nonbasic Variables

A basic set B is a set of m distinct indices such that the m

columns of A designated by B form a nonsingular matrix. The

submatrix defined by B is denoted by B, the columns of B are

called the basic columns of A, and B itself is called a basis.

The nonbasic set N contains the n−m indices of columns of

A that are not in B. The m× (n−m) matrix of nonbasic

columns of A is denoted by N .

The subscripts B and N define subvectors and submatrices

associated with basic and nonbasic indices, such as zN .

A key theoretical result: the optimal solution of an LP

(essentially always) lies at a vertex, a feasible point where n

linearly independent constraints are active.

For standard form, this means that, at every vertex, at least

n−m of the bound constraints must be active (in addition to

the m equality constraints).

Inspired by this property, George Dantzig’s great invention in

1947 was the simplex method, which solves linear programs

by starting at a vertex and moving from vertex to vertex,

reducing the objective function as it goes.

The mechanisms used by the simplex method in moving from

vertex to vertex are (i) properties of a basic set, (ii) the need

for all iterates to satisfy Ax = b, and (iii) the nonnegativity

requirement for z at an optimal point.

1. Solve for the multipliers y from BTy = cB, and calculate

zN = cN −NTy.

2. If zN ≥ 0, x is optimal. Otherwise, pick a nonbasic variable

that becomes basic by choosing s such that [zN]s < 0.

3. Calculate the search direction for the basic variables from

BpB = −aνs

, where νs is the sth index in N and aνs

is

column νs of A.

4. Step along pB (to remain feasible) to the next iterate,

which is determined by a blocking basic variable with

index βt that will become nonbasic.

5. Update the basic and nonbasic index sets.

B ← B with column t replaced by column νs of A.

N ← N with column s replaced by column βt of A.

The linear algebraic calculations associated with the simplex

method are:

• At each iteration, two square linear systems need to be

solved, involving B and BT.

• If x is not optimal, a column of B is replaced by a column

of N , producing the new basis for the next iteration.

And, as we all know, column replacement is a special

rank-one modification.

Key names and dates relevant to linear algebra in the early

years of the simplex method:

1947 Dantzig: the simplex method.

1947 Project SCOOP (Scientific Computation of Optimal

Programs), a US Air Force research group; disbanded in

1955.

1952 Orden: the product form of the inverse (PFI). “. . . the

simplex procedure may be considered to be a

generalization of the elimination process”.

1954 Orchard Hays: programmed the simplex method for an

IBM CPC (Card-Programmed Calculator).

1957 Markowitz: the elimination form of the inverse,

designed for sparse matrices.

For detailed and fascinating information about the early days

of LP, I recommend

S. Gass (2002), “The first linear-programming shoppe”,

Operations Research.

S. Gass and A. Assad (2005), An annotated timeline of

operations research.

Consider the hardware available for pioneering simplex codes:

Computers read decks of punched cards, which were run on

card-programmed calculators (CPCs), formed by connecting

standard IBM office accounting equipment.

In 1950, there were 80 mechanical counters of the accounting

machine (an IBM tabulator). There was additional storage for

16 10-digit numbers relayed from a Type 604 electronic

calculator, which could perform about 2,000 additions or

subtractions per second, and 86 multiplications or divisions

per second.

The Gauss-Seidel CPC procedure inverted a 10× 10 matrix in

30 minutes to 7 decimal places.

How did early LP codes work in this environment?

“In the revised simplex method both the inverse and inverse

transpose of a ‘basic’ matrix are needed; more significant,

however, is the fact that each iteration replaces one of the

columns of the basis. In the product form of representation,

this change can be conveniently effected by multiplying the

previous matrix by an elementary matrix. Thus, only one

additional column of information need be recorded with each

iteration. . . . Using the IBM Card Programmed Calculator, a

novel feature results: when the inverse matrix is needed at

one stage and its transpose at another, this is achieved simply

by turning over the deck of cards representing the inverse.”

From “The product form for the inverse in the simplex

method”, Dantzig and Orchard-Hays, the RAND Corporation,

1953.

Orden (1952) first proposed using the so-called product form

of the inverse in Gauss-Jordan inversion, and then

I noticed that it was neither necessary nor

desirable to fully invert the matrix—leaving it as the

product form of the inverse cut the amount of

computation in half. When I joined project SCOOP,

there was the simplex algorithm waiting for the same

device.

With Markowitz’s elimination form of the inverse, the solution

p of Bp = b is expressed as p = B−1b = Ek . . . E2E1b, where each

Ej is the identity except for one sparse column. After

replacing a column of B to produce B̄, the solution of B̄p̄ = b̄

is given by

p̄ = B̄−1b̄ = Ek+1Ek . . . E2E1b̄.

Only in the late 1960s (it appears), did linear algebra

researchers enter the picture!

1969 Bartels and Golub: updating the LU factors in stabilized

product form, meaning that the modified matrix B̄ is

represented as a product involving L, U , and stabilized

Gauss transformations, where U is updated explicitly.

1972 Forrest and Tomlin: fast updates of LU in LP for

sparse matrices. A restricted form of Bartels-Golub;

much less concerned with stability. By far the most

popular choice in sparse implementations of simplex.

1982 Reid: sparse and efficient implementation of

Bartels-Golub.

1984 Fletcher and Matthews: updates of both L and U .

Sadly, there does not seem to be an “easy” (to present, or to

implement) way to explain stable updating of LU because we

need to allow interchanges.

In keeping updates to L in product form but explicitly

updating U , stabilized elementary transformations are used. A

new U is typically obtained by going from column spike to

upper triangle via upper-Hessenberg form, or from column

spike to upper triangle via row spike.

Standard practice is to recompute the LU factors from

scratch after a specified number of updates, or sooner if there

is unacceptably large growth in the elements of the updated

upper triangle.

Lively research continues today on low-rank updates in

large-scale active-set methods for nonlinear optimization,

involving rectangular matrices.

And now for the second topic: strategies for “convexification”

in Newton-based methods.

A reminder: When minimizing the twice-differentiable

function f(x), x ∈ Rn, the pure Newton step p at the point x

satisfies the linear system

H(x)p = −g(x)

where g(x) = ∇f(x) and H(x) = ∇2f(x).

If H is positive definite, p is the step to the (unique)

minimizer of a local strictly convex quadratic model.

Famous for its local quadratic convergence.

In Courant’s deservedly famous 1943 address to the American

Mathematical Society, “Variational methods for the solution

of problems of equilibrium and vibrations”, he notes that

. . . the n parameters ci which we may now

determine from the ordinary minimum problem of the

calculus, . . . [which] leads to a system of linear

equations for the parameters, a system which may be

solved by established methods.

No mention of any special properties of the matrix.

Early papers related to Newton’s method, in which side

comments are made about the need for the Hessian (when

minimizing) to be positive definite:

1955 Crockett and Chernoff, Gradient methods of

maximization, Pacific Journal of Mathematics.

1962 Spang, A review of minimization techniques for

nonlinear functions, SIAM Review.

Newton’s method was clearly “in the air” by the mid- to late

1950s, e.g., in Hildebrand’s (1956) textbook on numerical

analysis.

But what happens when H is not positive

definite???

How to define a good Newton-based direction

when the local quadratic model is not convex?

In linear algebraic terms, what to do if a “Hessian”,

or Hessian-like matrix, is not positive definite, or,

more generally, does not have the “correct” inertia?

When did optimizers thinking about linear algebra

enter this picture?

1967 Greenstadt, On the relative efficiencies of gradient

methods, Mathematics of Computation.

Compute the eigenvalues of H, flip the “negative

enough” ones, and set the “too small” ones to a

reasonable small value.

1974 Gill and Murray, Newton-type methods for

unconstrained and linearly constrained optimization,

Mathematical Programming.

Replace H by H + E, where E is diagonal, computed via a

modified Cholesky factorization.

1979 Moré and Sorensen, On the use of directions of

negative curvature in a modified Newton method,

Mathematical Programming.

Based on the symmetric indefinite factorization.

1981 Gill, Murray, and MHW, Practical Optimization.

Modified Cholesky with symmetric interchanges.

1990 Schnabel and Eskow, A new modified Cholesky

factorization, SIAM Journal on Scientific and Statistical

Computing.

Based on Cholesky, exploiting Gerschgorin disks.

1984 The interior-point revolution in optimization!

Special kinds of matrices become of great interest.

1995 Forsgren, Gill, and Murray, Computing modified

Newton directions using a partial Cholesky factorization,

SIAM Journal on Scientific Computing.

Based on the symmetric indefinite factorization.

1998 Cheng and Higham, A modified Cholesky algorithm

based on a symmetric indefinite factorization, SIAM

Journal on Matrix Analysis and Applications.

1999 Schnabel and Eskow, A revised modified Cholesky

factorization algorithm, SIAM Journal on Optimization.

2008 Fang and O’Leary, Modified Cholesky algorithms: a

catalog with new approaches, Mathematical

Programming.

Plus an unending stream of MANY papers in optimization

about regularization techniques in primal-dual and sequential

quadratic programming methods.

Let’s focus only on the question of how to make a

non-positive definite matrix positive definite.

This includes ways to determine (at reasonable cost) whether

the matrix is in fact positive definite, or even “sufficiently”

positive definite.

A big stumbling block: it’s not clear what the ideal solution

would be—if expense were no object, what would happen to

an indefinite matrix that “should be” positive definite?

And what does “should be positive definite” mean?

Something to keep in mind: Newton’s method in which H is

always positive definite does not always perform well.

If H is sufficiently positive definite, at least the pure Newton

direction p is a descent direction. But this does not mean

that it is a good direction.

On the bright side, because the problem we wish to solve is

not well defined, there is great scope for new methods based

on intuitive and possibly hand-waving rationales.

To say something that we all know: when H is “sufficiently”

positive definite, Cholesky without interchanges is guaranteed

to be numerically stable

H = LDLT ,

with L unit lower-triangular, D a positive diagonal, and an a

priori bound on elements of L and D in terms of elements of

H.

But otherwise, without positive-definiteness, there’s the

famous 2× 2 example:

H =





0 1

1 0



 ,

where LDLT does not exist.

And, if H is indefinite, even if LDLT exists, there is no a priori

bound on the elements of L or D, as we know from

H =





ǫ 1

1 ǫ



 = LDLT ,

for which

L =





1

1/ǫ 1



 and D = diag(ǫ, ǫ− 1/ǫ).

What’s the lesson?

Playing around with factorizations of indefinite matrices can

be very tricky!

Doesn’t everyone know this???

Apparently not. . . A very popular software package for

nonlinearly constrained optimization replaces an indefinite

Hessian H of the Lagrangian with H + δI, δ > 0, where δ is

chosen as follows:

1. Compute the LDLT of H.

2. Scan the diagonal elements of D, looking for any of the

wrong sign; let d∗ denote the largest in magnitude of

these.

3. Choose δ as a multiple of d∗.

This is almost identical to a similarly bad suggestion made by

Fiacco and McCormick (1968).

The horrible effects can be seen with the 2-variable example

of minimizing x1x2 subject to 0 ≤ x3
1 ≤ 2 and −1 ≤ x3

2 ≤ 3.

The solution is

x∗ =





3
√

2

−1



 , with f∗ = −1.2599.

At x0 = (10−7, −10−7), with λ0 = (1, 1, 1, 1), the Hessian of the

Lagrangian is





−1.2× 10−4 1.0

1.0 6.0× 10−5



 ,

which is very similar to the 2× 2 example with large elements

of L and D.

Verbatim extracts from a run with the latest version of this

software on NEOS (Network-Enabled Optimization System),

made on October 20, 2009:

nonconvex subproblem: diag[5] = 1.50e+00

pert1 = 1.650000e+00

nonconvex subproblem: diag[5] = 4.00e+01

pert1 = 4.397297e+01

nonconvex subproblem: diag[5] = 8.00e+02

pert1 = 8.800166e+02

nonconvex subproblem: diag[5] = 1.60e+04

pert1 = 1.760056e+04

nonconvex subproblem: diag[5] = 3.20e+05

pert1 = 3.520167e+05

nonconvex subproblem: diag[5] = 6.40e+06

pert1 = 7.040514e+06

nonconvex subproblem: diag[5] = 1.28e+08

pert1 = 1.408173e+08

nonconvex subproblem: diag[5] = 2.56e+09

pert1 = 2.816658e+09

nonconvex subproblem: diag[5] = 1.00e+10

pert1 = 1.100543e+10

nonconvex subproblem: diag[5] = 1.00e+10

pert1 = 1.100419e+10

[23 more iterations with perturbations of size 1010 added to

the relevant matrix; then the method gradually rallies.]

nonconvex subproblem: diag[5] = 8.82e+09

pert1 = 9.701931e+09

nonconvex subproblem: diag[5] = 8.62e+08

pert1 = 9.483910e+08

nonconvex subproblem: diag[5] = 2.38e+07

pert1 = 2.623226e+07

nonconvex subproblem: diag[5] = 6.08e+05

pert1 = 6.693377e+05

nonconvex subproblem: diag[5] = 1.55e+04

pert1 = 1.702972e+04

nonconvex subproblem: diag[5] = 3.95e+02

pert1 = 4.349272e+02

nonconvex subproblem: diag[5] = 1.01e+01

pert1 = 1.112929e+01

[42 more iterations]

OPTIMAL SOLUTION FOUND

...optimal solution (84 iterations, 84 evaluations)

primal objective -1.259921085

dual objective -1.259920712

x [*] :=

1 1.25992

2 -1

;

Strategies for treating non-convexity are

complicated, with no single strategy guaranteed to

succeed every time.

Even for IPOPT (one of today’s best interior-point

codes for nonlinearly constrained optimization),

difficulties related to nonconvexity in this 2-variable

problem arise, and are revealed via the linear

algebra.

**

*** Solving the Primal Dual System for Iteration 0:

**

In Ma27TSolverInterface::Factorization: negevals_ = 5,

but numberOfNegEVals = 4

Factorization failed with retval = 2

In Ma27TSolverInterface::Factorization: negevals_ = 5,

but numberOfNegEVals = 4

Factorization failed with retval = 2

In Ma27TSolverInterface::Factorization: negevals_ = 5,

but numberOfNegEVals = 4

Factorization failed with retval = 2

In Ma27TSolverInterface::Factorization: negevals_ = 5,

but numberOfNegEVals = 4

Factorization failed with retval = 2

Factorization successful.

Number of trial factorizations performed: 5

Similar difficulties with non-convexity arise for the first 24

iterations.

**

*** Solving the Primal Dual System for Iteration 24:

**

In Ma27TSolverInterface::Factorization: negevals_ = 5,

but numberOfNegEVals = 4

Factorization failed with retval = 2

Factorization successful.

Number of trial factorizations performed: 2

The matrix finally becomes “nice” at iteration 25, and

remains so thereafter.

**

*** Solving the Primal Dual System for Iteration 25:

**

Factorization successful.

Number of trial factorizations performed: 1

Success at iteration 37.

Number of Iterations....: 37

Number of objective function evaluations = 42

Number of objective gradient evaluations = 35

Number of inequality constraint Jacobian evaluations = 39

EXIT: Optimal Solution Found.

x [*] :=

1 1.25992

2 -1

Intense efforts continue to develop improved

convexification/regularization techniques, driven by

plausible motivation, with the goal of generating

linear systems and, in some instances, other linear

algebraic subproblems, that produce efficient and

reliable optimization methods.

In the spirit of this session, we should salute the

pioneers of linear algebra and optimization for their

many accomplishments, which produced today’s

lively research areas and their connections.

Linear Algebra and Optimization:

Together Forever!

