T he Dual Flow

Between Linear Algebra and
Optimization

Margaret H. Wright
Computer Science Department

Courant Institute of Mathematical Sciences
New York University

History of Numerical Linear Algebra Minisymposium - Part II
SIAM Conference on Applied Linear Algebra
Monterey, California
October 28, 2009

This is the eighth of eight talks whose collective
purpose is

...Tto look back at the history of the
subject, to remember the founders of our
field, to honor their legacy, and to review
their accomplishments to ensure a vital
future for our field.

Many thanks to Ilse and Sven for inviting me to
speak!

My original goal for this talk: to discuss several of
the numerous two-way connections between applied
linear algebra and optimization.

This turned out to be much too ambitious for a
25-minute talk.

The compromise approach—a quick whisk through
two topics:

1. rank-one updates in the simplex method for
linear programming and

2. convexification in nonlinear optimization (what
to do with indefinite matrices that ‘“should be”

positive definite).

Among the mathematically equivalent forms of linear
programs, we consider standard form:

minimize ¢’z subjectto Az =0 and z >0,

TER™

where A is m x n and has rank m.
The point * € R"™ is optimal if
1. Az* =0b and z* > 0;
2. ¢ = ATy* + 2*, where z* > 0 and z;'-‘x;f:()forjzl, ., .

The m-vector y* is a Lagrange multiplier for the equality
constraints Ax = b and the n-vector z* is a Lagrange multiplier
for the bound constraints x > 0.

Basic and Nonbasic Variables

A basic set B is a set of m distinct indices such that the m
columns of A designated by B form a nonsingular matrix. The
submatrix defined by B is denoted by B, the columns of B are
called the basic columns of A, and B itself is called a basis.

The nonbasic set N' contains the n — m indices of columns of
A that are not in B. The m x (n —m) matrix of nonbasic
columns of A is denoted by N.

The subscripts B and N define subvectors and submatrices
associated with basic and nonbasic indices, such as z, .

A key theoretical result: the optimal solution of an LP
(essentially always) lies at a vertex, a feasible point where n
linearly independent constraints are active.

For standard form, this means that, at every vertex, at least
n —m of the bound constraints must be active (in addition to
the m equality constraints).

Inspired by this property, George Dantzig’'s great invention in
1947 was the simplex method, which solves linear programs
by starting at a vertex and moving from vertex to vertex,
reducing the objective function as it goes.

The mechanisms used by the simplex method in moving from
vertex to vertex are (i) properties of a basic set, (ii) the need
for all iterates to satisfy Ax = b, and (iii) the nonnegativity
requirement for z at an optimal point.

. Solve for the multipliers y from BTy — ¢z, and calculate

2y =cy — N1y.

. If 2y, > 0, x is optimal. Otherwise, pick a nonbasic variable
that becomes basic by choosing s such that [z,]s < 0.

. Calculate the search direction for the basic variables from

Bps = —a, _, where vy is the sth index in A and q,_is

column v, of A.

. Step along p; (to remain feasible) to the next iterate,
which is determined by a blocking basic variable with
index (; that will become nonbasic.

Update the basic and nonbasic index sets.
B «— B with column t replaced by column v, of A.

N «— N with column s replaced by column j3; of A.

The linear algebraic calculations associated with the simplex
method are:

e At each iteration, two square linear systems need to be
solved, involving B and BT,

e If x is not optimal, a column of B is replaced by a column
of N, producing the new basis for the next iteration.

And, as we all know, column replacement is a special
rank-one modification.

Key names and dates relevant to linear algebra in the early
years of the simplex method:

1947 Dantzig: the simplex method.

1947 Project SCOOP (Scientific Computation of Optimal
Programs), a US Air Force research group; disbanded in
1955.

1952 Orden: the product form of the inverse (PFI). “...the
simplex procedure may be considered to be a
generalization of the elimination process’ .

1954 Orchard Hays: programmed the simplex method for an
IBM CPC (Card-Programmed Calculator).

1957 Markowitz: the elimination form of the inverse,
designed for sparse matrices.

For detailed and fascinating information about the early days
of LP, I recommend

S. Gass (2002), “The first linear-programming shoppe”,
Operations Research.

S. Gass and A. Assad (2005), An annotated timeline of
operations research.

Consider the hardware available for pioneering simplex codes:

Computers read decks of punched cards, which were run on
card-programmed calculators (CPCs), formed by connecting
standard IBM office accounting equipment.

In 1950, there were 80 mechanical counters of the accounting
machine (an IBM tabulator). There was additional storage for
16 10-digit numbers relayed from a Type 604 electronic
calculator, which could perform about 2,000 additions or
subtractions per second, and 86 multiplications or divisions
per second.

The Gauss-Seidel CPC procedure inverted a 10 x 10 matrix in
30 minutes to 7 decimal places.

How did early LP codes work in this environment?

“In the revised simplex method both the inverse and inverse
transpose of a ‘basic’ matrix are needed; more significant,
however, is the fact that each iteration replaces one of the
columns of the basis. In the product form of representation,
this change can be conveniently effected by multiplying the
previous matrix by an elementary matrix. Thus, only one
additional column of information need be recorded with each
iteration. ... Using the IBM Card Programmed Calculator, a
novel feature results: when the inverse matrix is needed at
one stage and its transpose at another, this is achieved simply
by turning over the deck of cards representing the inverse.”

From “The product form for the inverse in the simplex

method”, Dantzig and Orchard-Hays, the RAND Corporation,
1953.

Orden (1952) first proposed using the so-called product form
of the inverse in Gauss-Jordan inversion, and then

I noticed that it was neither necessary nor
desirable to fully invert the matrix—Ileaving it as the
product form of the inverse cut the amount of
computation in half. When I joined project SCOOP,

there was the simplex algorithm waiting for the same
device.

With Markowitz’s elimination form of the inverse, the solution
p of Bp=1» is expressed as p = B~ 'b=E,, ... E5E;b, where each
E; is the identity except for one sparse column. After

replacing a column of B to produce B, the solution of Bp =5
IS given by

p=B"'=FE,1Ey... E,Fb.

Only in the late 1960s (it appears), did linear algebra
researchers enter the picture!

1969 Bartels and Golub: updating the LU factors in stabilized
product form, meaning that the modified matrix B is
represented as a product involving L, U, and stabilized
Gauss transformations, where U is updated explicitly.

1972 Forrest and Tomlin: fast updates of LU in LP for
sparse matrices. A restricted form of Bartels-Golub;
much less concerned with stability. By far the most
popular choice in sparse implementations of simplex.

1982 Reid: sparse and efficient implementation of
Bartels-Golub.

1984 Fletcher and Matthews: updates of both L and U.

Sadly, there does not seem to be an “easy” (to present, or to
implement) way to explain stable updating of LU because we
need to allow interchanges.

In keeping updates to L in product form but explicitly
updating U, stabilized elementary transformations are used. A
new U is typically obtained by going from column spike to
upper triangle via upper-Hessenberg form, or from column
spike to upper triangle via row spike.

Standard practice is to recompute the LU factors from
scratch after a specified number of updates, or sooner if there
IS unacceptably large growth in the elements of the updated
upper triangle.

Lively research continues today on low-rank updates in
large-scale active-set methods for nonlinear optimization,
involving rectangular matrices.

And now for the second topic: strategies for ‘“convexification”
in Newton-based methods.

A reminder: When minimizing the twice-differentiable
function f(z), x € R", the pure Newton step p at the point «
satisfies the linear system

where g(z) = Vf(z) and H(z) = V?f(x).

If H is positive definite, p is the step to the (unique)
Mminimizer of a local strictly convex quadratic model.

Famous for its local quadratic convergence.

In Courant’s deservedly famous 1943 address to the American
Mathematical Society, “Variational methods for the solution
of problems of equilibrium and vibrations”, he notes that

... the n parameters ¢; which we may now
determine from the ordinary minimum problem of the
calculus, ... [which] leads to a system of linear
equations for the parameters, a system which may be
solved by established methods.

No mention of any special properties of the matrix.

Early papers related to Newton’s method, in which side
comments are made about the need for the Hessian (when
minimizing) to be positive definite:

1955 Crockett and Chernoff, Gradient methods of
maximization, Pacific Journal of Mathematics.

1962 Spang, A review of minimization techniques for
nonlinear functions, SIAM Review.

Newton's method was clearly “in the air” by the mid- to late
1950s, e.g., in Hildebrand's (1956) textbook on numerical
analysis.

But what happens when H is not positive
definite???

How to define a good Newton-based direction
when the local quadratic model is not convex?

In linear algebraic terms, what to do if a “Hessian’,
or Hessian-like matrix, is not positive definite, or,
more generally, does not have the “correct” inertia?

When did optimizers thinking about linear algebra
enter this picture?

1967 Greenstadt, On the relative efficiencies of gradient
methods, Mathematics of Computation.

Compute the eigenvalues of H, flip the “negative
enough’” ones, and set the “too small’ ones to a
reasonable small value.

1974 Gill and Murray, Newton-type methods for
unconstrained and linearly constrained optimization,
Mathematical Programming.

Replace H by H + E, where E is diagonal, computed via a
modified Cholesky factorization.

1979 Moré and Sorensen, On the use of directions of
negative curvature in a modified Newton method,
Mathematical Programming.

Based on the symmetric indefinite factorization.

1981 Gill, Murray, and MHW, Practical Optimization.

Modified Cholesky with symmetric interchanges.

1990 Schnabel and Eskow, A new modified Cholesky
factorization, SIAM Journal on Scientific and Statistical
Computing.

Based on Cholesky, exploiting Gerschgorin disks.

1984 The interior-point revolution in optimization!

Special kinds of matrices become of great interest.

1995 Forsgren, Gill, and Murray, Computing modified
Newton directions using a partial Cholesky factorization,
SIAM Journal on Scientific Computing.

Based on the symmetric indefinite factorization.

1998 Cheng and Higham, A modified Cholesky algorithm
based on a symmetric indefinite factorization, SIAM
Journal on Matrix Analysis and Applications.

1999 Schnabel and Eskow, A revised modified Cholesky
factorization algorithm, SIAM Journal on Optimization.

2008 Fang and O’'Leary, Modified Cholesky algorithms: a
catalog with new approaches, Mathematical
Programming.

Plus an unending stream of MANY papers in optimization
about regularization techniques in primal-dual and sequential
quadratic programming methods.

Let's focus only on the question of how to make a
non-positive definite matrix positive definite.

This includes ways to determine (at reasonable cost) whether
the matrix is in fact positive definite, or even ‘‘sufficiently”
positive definite.

A big stumbling block: it's not clear what the ideal solution
would be—if expense were no object, what would happen to
an indefinite matrix that “should be” positive definite?

And what does ‘should be positive definite” mean?

Something to keep in mind: Newton's method in which H is
always positive definite does not always perform well.

If H is sufficiently positive definite, at least the pure Newton
direction p is a descent direction. But this does not mean
that it is a good direction.

On the bright side, because the problem we wish to solve is
not well defined, there is great scope for new methods based
on intuitive and possibly hand-waving rationales.

To say something that we all know: when H is ‘“sufficiently”

positive definite, Cholesky without interchanges is guaranteed
to be numerically stable

H=LDL"',

with L unit lower-triangular, D a positive diagonal, and an a

priori bound on elements of L and D in terms of elements of
H.

But otherwise, without positive-definiteness, there's the
famous 2 x 2 example:

H —

where LDLY does not exist.

And, if H is indefinite, even if LDLT exists, there is no a priori
bound on the elements of L or D, as we know from

1
H — ¢ _ LDLT,
1 €
for which
1 .
L= and D =diag(e, €—1/e).
1/e 1

What’s the lesson?

Playing around with factorizations of indefinite matrices can
be very tricky!

Doesn’'t everyone know this7?7?7

Apparently not... A very popular software package for
nonlinearly constrained optimization replaces an indefinite
Hessian H of the Lagrangian with H +4d1, 0 > 0, where ¢ is

chosen as follows:
1. Compute the LDLT of H.

2. Scan the diagonal elements of D, looking for any of the
wrong sign; let d* denote the largest in magnitude of

these.
3. Choose) as a multiple of d*.

This is almost identical to a similarly bad suggestion made by
Fiacco and McCormick (19683).

The horrible effects can be seen with the 2-variable example
of minimizing zx2 subject to 0 < 2 <2 and —1 < 235 < 3.

T he solution is

3
2
o v2 . with fF = —1.2599.
—1

At 2o = (1077, —1077), with Xy = (1,1,1,1), the Hessian of the
Lagrangian is

~12x 104 1.0
1.0 6.0 x 10~°

which is very similar to the 2 x 2 example with large elements
of L and D.

Verbatim extracts from a run with the latest version of this
software on NEOS (Network-Enabled Optimization System),
made on October 20, 2009:

nonconvex subproblem: diagl[5] = 1.50e+00
pertl = 1.650000e+00

nonconvex subproblem: diagl[5] = 4.00e+01
pertl = 4.397297e+01

nonconvex subproblem: diagl[5] = 8.00e+02
pertl = 8.800166e+02

nonconvex subproblem: diagl[5] = 1.60e+04
pertl = 1.760056e+04

nonconvex subproblem: diag[5] = 3.20e+05
pertl = 3.520167e+05

nonconvex subproblem: diagl[5] = 6.40e+06
pertl = 7.040514e+06

nonconvex subproblem: diagl[5] = 1.28e+08
pertl = 1.408173e+08

nonconvex subproblem: diag[5] = 2.56e+09
pertl = 2.816658e+09

nonconvex subproblem: diagl[5] = 1.00e+10
pertl = 1.100543e+10

nonconvex subproblem: diagl[5] = 1.00e+10
pertl = 1.100419e+10

[23 more iterations with perturbations of size 10" added to
the relevant matrix; then the method gradually rallies.]

nonconvex

pertl = 9

nonconvex

pertl = 9

nonconvex

pertl = 2.

nonconvex

pertl = 6.

nonconvex

pertl = 1.

nonconvex

pertl = 4.

nonconvex

pertl = 1.

subproblem:
.701931e+09

subproblem:
.483910e+08

subproblem:

623226e+07

subproblem:

69337 7e+05

subproblem:

702972e+04

subproblem:

349272e+02

subproblem:

112929e+01

diagl

diag[

diagl

diag[

diagl

diag[

diagl

5]

5]

5]

5]

5]

5]

5]

.82e+09

.62e+08

.38e+07

.08e+05

.55e+04

.95e+02

.01e+01

[42 more iterations]

OPTIMAL SOLUTION FOUND
...optimal solution (84 iterations, 84 evaluations)
primal objective -1.259921085
dual objective -1.259920712
x [*x] :=
1 1.25992
2 -1

.
)

Strategies for treating non-convexity are
complicated, with no single strategy guaranteed to
succeed every time.

Even for IPOPT (one of today’s best interior-point
codes for nonlinearly constrained optimization),
difficulties related to nonconvexity in this 2-variable
problem arise, and are revealed via the linear
algebra.

3k 3k 5k 5k >k >k 5k >k >k >k >k 3k >k >k >k >k >k >k 5k >k >k >k >k >k >k >k >k >k >k >k >k 5k >k >k >k >k >k >k >k %k >k >k %k >k >k %k >k >k %k %k

***x Solving the Primal Dual System for Iteration O:

3k >k 5k 3k 3k >k 5k 3k >k >k >k >k 5k >k >k >k >k >k 5k >k >k >k >k >k >k %k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k >k %k >k >k %k %k

In Ma27TSolverInterface: :Factorization: negevals_ = b,
but number(OfNegEVals = 4

Factorization failed with retval = 2

In Ma27TSolverInterface::Factorization: negevals_ = b,
but numberOfNegEVals = 4

Factorization failed with retval = 2

In Ma27TSolverInterface::Factorization: negevals_ = b,
but number(OfNegEVals = 4

Factorization failed with retval = 2

In Ma27TSolverInterface: :Factorization: negevals_ = b,

but number(OfNegEVals = 4

Factorization failed with retval = 2
Factorization successful.

Number of trial factorizations performed: 5

Similar difficulties with non-convexity arise for the first 24
iterations.

3k 3k 5k 3k >k 5k 5k >k >k >k >k 3k >k >k >k >k >k >k 5k kK >k >k >k >k >k >k >k >k 5k >k >k 5k >k >k >k >k >k >k >k %k >k >k %k >k >k %k >k >k %k %k

***x Solving the Primal Dual System for Iteration 24:

3k 3k 5k 5k >k >k 5k >k >k >k >k 3k >k >k >k >k >k >k >k kK >k >k >k >k >k 5k >k >k 5k >k >k 5k >k >k >k >k >k >k >k %k >k >k %k >k >k %k >k >k %k %k

In Ma27TSolverInterface: :Factorization: negevals_ = b,
but number(QfNegEVals = 4

Factorization failed with retval = 2
Factorization successful.

Number of trial factorizations performed: 2

The matrix finally becomes “nice’” at iteration 25, and
remains so thereafter.

3k 3k 5k 3k >k 5k 5k >k >k >k >k 3k >k >k >k >k >k >k 5k kK >k >k >k >k >k >k >k >k 5k >k >k 5k >k >k >k >k >k >k >k %k >k >k %k >k >k %k >k >k %k %k

***x Solving the Primal Dual System for Iteration 25:
sk ok ok ok ok ok sk ok ok ok ok ok ok sk ok sk ok ok sk ok ok ok sk ok sk ok sk ok sk ok ok sk sk ok ok sk ok sk ok sk ok ok sk ok ok ok k sk ok

Factorization successful.

Number of trial factorizations performed: 1

Success at iteration 37.

Number of Iteratiomns....: 37

Number of objective function evaluations

Number of objective gradient evaluations

Number of inequality constraint Jacobian evaluations
EXIT: Optimal Solution Found.

x [*] :=
1 1.25992
2 -1

42
35
39

Intense efforts continue to develop improved
convexification/regularization techniques, driven by
plausible motivation, with the goal of generating
linear systems and, in some instances, other linear

algebraic subproblems, that produce efficient and
reliable optimization methods.

In the spirit of this session, we should salute the
pioneers of linear algebra and optimization for their
many accomplishments, which produced today's
lively research areas and their connections.

Linear Algebra and Optimization:

Together Forever!

