

Antecedents of the LR algorithm

Beresford N. Parlett

Departments of Mathematics and Computer Science
University of California, Berkeley
parlett@math.berkeley.edu

ALA meeting, Seaside, CA, October 28, 2009

Standard Model

- ▶ LR [Rutishauser, 1957/58]
- ▶ QR [Francis (Kublanovskaja), 1960/1961]
- ▶ IEEE/ Amer. Inst. of Physics 2000
Computing in Science and Engineering
“Top 10 Algorithms of the Century” (includes QR)
Jan/Feb 1900-2000
- ▶ F. A. Grunbaum [1986]

- ▶ 2nd order linear differential operators in Schroedinger form:

$$L = -D^2 + V(x), \quad D = \frac{d}{dx}$$

- ▶ The Darboux transform (1882):

$$V \longrightarrow \tilde{V}$$

- ▶ For any $\phi_0 \in \ker(L)$, $L\phi_0 = 0$,

$$\begin{aligned}\tilde{V} &= V - 2 \left(\frac{\phi_0'}{\phi_0} \right)' = -V + 2 \left(\frac{\phi_0'}{\phi_0} \right)^2 \\ \tilde{L} &= -D^2 + \tilde{V}(x)\end{aligned}$$

Example

$$\left. \begin{array}{l} V_0 = 0 \\ \ker(L_0) = \text{span}(1, x) \\ \phi_0(x) = C(x - t) \end{array} \right\} \implies V_1(x) = -0 + 2 \left(\frac{C}{C(x-t)} \right)^2 = \frac{1 \cdot 2}{(x-t)^2},$$

where t is a free parameter.

$$\left. \begin{array}{l} V_1 = \frac{2}{(x-t)^2} \\ \ker(L_1) = \text{span} \left[(x - t_1)^2, \frac{1}{(x-t_1)} \right] \\ \phi_1(x) = (x - t)^2 \end{array} \right\} \implies V_2(x) = -\frac{2}{(x-t)^2} + 2 \left(\frac{2}{(x-t)} \right)^2 = \frac{2 \cdot 3}{(x-t)^2}$$

And so on.

$$V_3(x) = \frac{3 \cdot 4}{(x-t)^2}$$

The potential in the Darboux transformation depends on the choice of

$$\phi_0 \in \ker(L)$$

Amazing fact:

All the potentials thus obtained are the potentials that remain rational under the Korteweg-de Vries flow:

$$V_t = V_{xxx} + 6VV_x$$

[Moser and co-workers, 1977/78]

or, equivalently,

$V(\infty)$ finite, eigenfunctions of L are meromorphic in C .

Burchnall and Chaundy [1923] (interpret Darboux)

$$L = -D^2 + V(x), \quad L\phi_0 = 0$$

Define:

$$P = -D - \left(\frac{\phi'_0}{\phi_0} \right), \quad Q = D - \left(\frac{\phi'_0}{\phi_0} \right)$$

$$\begin{aligned}
PQ\psi &= -D^2\psi + D\left(\frac{\phi'_0}{\phi_0}\psi\right) - \frac{\phi'_0}{\phi_0}\psi' + \left(\frac{\phi'_0}{\phi_0}\right)^2\psi \\
&= -D^2\psi + D\left(\frac{\phi'_0}{\phi_0}\right)\psi + \left(\frac{\phi'_0}{\phi_0}\right)^2\psi \\
&= -D^2\psi + \left[\left(\frac{\phi'_0}{\phi_0}\right)' + \left(\frac{\phi'_0}{\phi_0}\right)^2\right]\psi \\
&= -D^2\psi + \left(\frac{\phi''_0}{\phi_0}\right)\psi \\
&= L\psi
\end{aligned}$$

$$\begin{aligned}
QP\psi &= -D^2\psi - D\left(\frac{\phi_0'}{\phi_0}\psi\right) + \frac{\phi_0'}{\phi_0}\psi' + \left(\frac{\phi_0'}{\phi_0}\right)^2\psi \\
&= -D^2\psi - D\left(\frac{\phi_0'}{\phi_0}\right)\psi + \left(\frac{\phi_0'}{\phi_0}\right)^2\psi \\
&= -D^2\psi + \left[-\left(\frac{\phi_0'}{\phi_0}\right)' + \left(\frac{\phi_0'}{\phi_0}\right)^2\right]\psi \\
&= -D^2\psi + \left[-V + 2\left(\frac{\phi_0'}{\phi_0}\right)^2\right]\psi \\
&= \tilde{L}\psi
\end{aligned}$$

$$L\phi = \phi\lambda \implies \tilde{L}(Q\phi) = (Q\phi)\lambda, \quad \lambda \neq 0$$

The Factorization Method

L. INFELD*

University of Toronto, Toronto, Ontario, Canada

AND

T. E. HULL†

University of British Columbia, Vancouver, British Columbia, Canada

The factorization method is an operational procedure which enables us to answer, in a direct manner, questions about eigenvalue problems which are of importance to physicists. The underlying idea is to consider a pair of first-order differential-difference equations which are equivalent to a given second-order differential equation with boundary conditions. For a large class of such differential equations the method enables us to find immediately the eigenvalues and a manufacturing process for the normalized eigenfunctions. These results are obtained merely by consulting a table of the six possible factorization types.

The manufacturing process is also used for the calculation of transition probabilities.

The method is generalized so that it will handle perturbation problems.

TABLE OF CONTENTS

. Introduction	5. Type B and C Factorizations
<i>1.1 Characterization of the factorization method</i>	<i>5.1 Confluent hypergeometric functions</i>
THE METHOD	<i>5.2 Morse potential</i>
. Theory of the Factorization Method	<i>• 5.3 System of identical oscillators</i>
<i>2.1 Standard form</i>	<i>5.4 Bessel functions</i>
<i>2.2 Definition and fundamental idea; Theorem I</i>	
<i>2.3 Mutual adjointness of the operators; Theorem II</i>	
<i>2.4 Boundary condition; Theorem III</i>	
<i>2.5 Conditions on λ that solutions exist; Theorem IV</i>	6. Type D Factorizations
<i>2.6 Normalization; Theorem V</i>	<i>6.1 Linear oscillator</i>
<i>2.7 Solutions</i>	<i>6.2 Real scalar meson field</i>
. Technique of Factorization	<i>6.3 Complex scalar meson field</i>
<i>3.1 Factorization types</i>	<i>6.4 Many component real theory</i>
<i>3.2 Artificial factorization</i>	<i>6.5 Harmonic oscillator; generalisation</i>
	<i>6.6 Real scalar meson fields and nucleons</i>
	<i>6.7 Further generalization of oscillator problem</i>
	<i>6.8 Charged scalar meson fields and nucleons</i>

Eigenvalue Problems in Mathematical Physics

- ▶ PDE
- ▶ Separation of variables + Boundary Conditions
- ▶ Sequence of ODE's with parameter $m = 0, 1, 2, \dots$

$$y''(x) + [r(x, m) + \lambda]y(x) = 0 \quad (\text{ODE})$$

Eigenvalues: $\lambda_0, \lambda_1, \lambda_2, \dots$ $\{\lambda_l\}$

Eigenfunctions: $y_l^m = y(\lambda, m)$, suppress x .

Definition

The ODE can be factored if it is equivalent to both

$$\begin{aligned} (+H^{m+1})(-H^{m+1})y(\lambda, m) &= [\lambda - L(m+1)]y(\lambda, m) \\ (-H^m)(+H^m)y(\lambda, m) &= [\lambda - L(m)]y(\lambda, m) \end{aligned}$$

where

$$\pm H^m = k(x, m) \pm \frac{d}{dx} \quad \text{and} \quad L \text{ is independent of } x \text{ and } \lambda.$$

Hence, as differential operators,

$$(+H^{m+1})(-H^{m+1}) = (-H^m)(+H^m) - [L(m+1) - L(m)]$$

Noted, in passing, by I&H, but **not developed**. **Why?**

Definition

The ODE can be factored if it is equivalent to both

$$\begin{aligned} (+H^{m+1})(-H^{m+1})y(\lambda, m) &= [\lambda - L(m+1)]y(\lambda, m) \\ (-H^m)(+H^m)y(\lambda, m) &= [\lambda - L(m)]y(\lambda, m) \end{aligned}$$

where

$$\pm H^m = k(x, m) \pm \frac{d}{dx} \quad \text{and} \quad L \text{ is independent of } x \text{ and } \lambda.$$

Hence, as differential operators,

$$(+H^{m+1})(-H^{m+1}) = (-H^m)(+H^m) - [L(m+1) - L(m)]$$

Noted, in passing, by I&H, but **not developed**. Why?

Try backward and forward difference operators for $\frac{d}{dx}$.
Get LR on a tridiagonal.

Associated Spherical Harmonics:

$$\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{dP}{d\theta} \right) - \frac{m^2}{\sin^2 \theta} P + \lambda P = 0, \quad \theta \in [0, \pi]$$

Standard form:

$$Y(\theta) = \sin^{\frac{1}{2}} \theta P(\theta)$$

$$Y'' - \frac{m^2 - \frac{1}{4}}{\sin^2 \theta} Y + \left(\lambda + \frac{1}{4} \right) Y = 0, \quad m = 1, 2, \dots$$

Clever factorizations:

$$\left[(m - \frac{1}{2}) \cot \theta - \frac{d}{d\theta} \right] \left[(m - \frac{1}{2}) \cot \theta - \frac{d}{d\theta} \right] Y \\ = \left[\lambda - (m - \frac{1}{2})^2 + \frac{1}{4} \right] Y$$

and

$$\left[(m + \frac{1}{2}) \cot \theta - \frac{d}{d\theta} \right] \left[(m + \frac{1}{2}) \cot \theta - \frac{d}{d\theta} \right] Y \\ = \left[\lambda - (m + \frac{1}{2})^2 + \frac{1}{4} \right] Y$$

17. Table of Factorizations—Continued

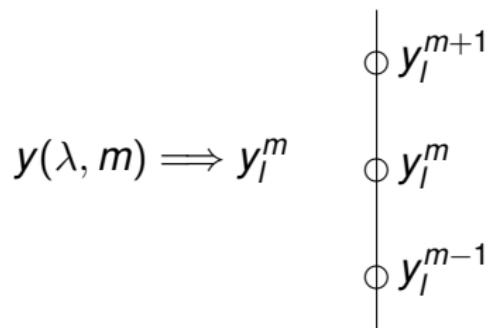
Name	$r(x, m)$	$k(x, m)$	$L(m)$
Generalized spherical harmonics	$\frac{(m+\gamma)(m+\gamma-1)}{\sin^2\theta}$	$(m+\gamma-1) \cot\theta$	$(m+\gamma-1)^2$
Generalized spherical harmonics	$\frac{(l+\gamma-\frac{1}{2})(l+\gamma+\frac{1}{2})}{\cosh^2 z}$	$(l+\gamma-\frac{1}{2}) \tanh z$	$-(l+\gamma-\frac{1}{2})^2$
Gegenbauer functions	$\frac{m(m+1)}{\sin^4\theta}$	$m \cot\theta$	m^2
Symmetric top functions	$\frac{(M-\frac{1}{2})(M+\frac{1}{2})+K^2-2MK \cos\theta}{\sin^2\theta}$	$(M-\frac{1}{2}) \cot\theta - \frac{K}{\sin\theta}$	$(M-\frac{1}{2})^2$
Harmonics with spin, magnetic pole	$\frac{m(m+1)+\frac{1}{2}\pm(m+\frac{1}{2}) \cos\theta}{\sin^2\theta}$	$m \cot\theta \pm \frac{1}{2 \sin\theta}$	m^2
Pöschl-Teller, hypergeometric	$\frac{(m+c-\frac{3}{2})(m+c-\frac{1}{2})}{\sin^2\rho}$	$(m+c-\frac{3}{2}) \cot\rho$	$(2m+a+b-2)^2$
	$\frac{(m+a+b-c-\frac{1}{2})(m+a+b-c+\frac{1}{2})}{\cos^2\rho}$	$-(m+a+b-c-\frac{1}{2}) \tan\rho$	
Pöschl-Teller, hypergeometric	$\frac{(m+a+b-c-\frac{1}{2})(m+a+b-c+\frac{1}{2})}{\sinh^2 y}$	$(m+a+b-c-\frac{1}{2}) \coth y$	$-(2m+2a-c-1)^2$

Theorem 1

How factorization works.

$$y(\lambda, m+1) = {}^+ H^{m+1} y(\lambda, m)$$
$$y(\lambda, m-1) = {}^- H^{m+1} y(\lambda, m)$$

Hence, the ladder of eigenfunctions



move up and down.

Theorem 2

${}^-H^m$ and ${}^+H^m$ are adjoints.

$$\int_a^b \phi(x)({}^-Hf(x))dx = \int_a^b ({}^-H\phi(x))f(x)dx$$

for all admissible ϕ and f ,

$$\phi(a)f(a) = \phi(b)f(b) = 0$$

Theorem 3

$L(m) \uparrow$ implies y remains in L^2 and vanishes at a, b going up.

$L(m) \downarrow$ implies y remains in L^2 and vanishes at a, b going down.

Class I, $L(m) \uparrow$
 $m = 1 : m$

Class II, $L(m) \downarrow$
 $m = 1 : m$

Theorem 4

Class I. If $\lambda \leq \max \{L(m), L(m+1)\}$ and $y_l^m \in L^2$ then $\lambda_l = L(l+1)$.

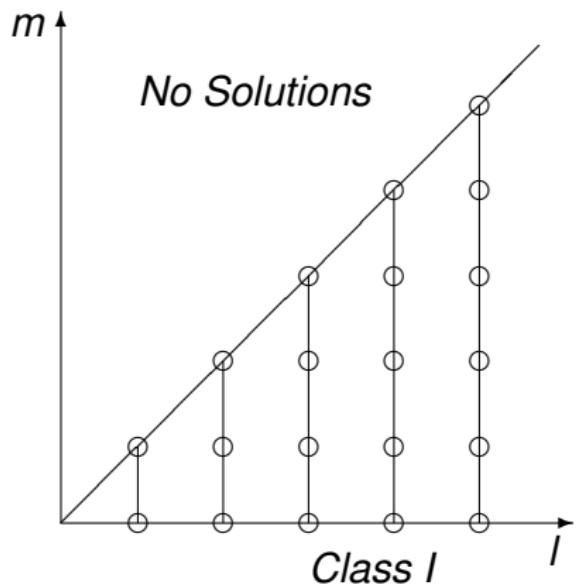
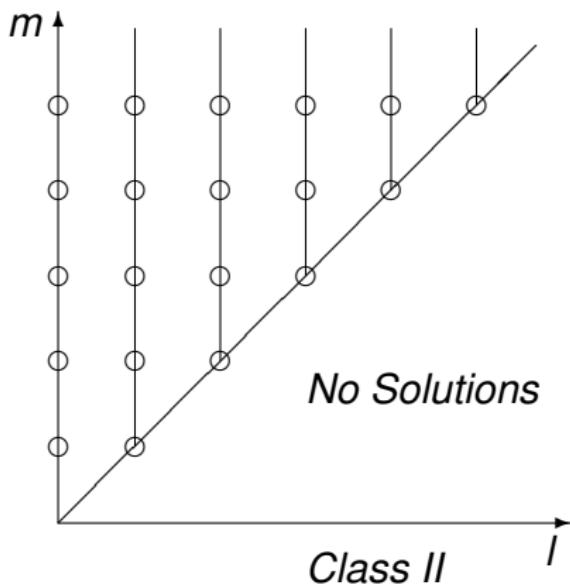
Class II. If $\lambda \leq L(0)$ and $y_l^m \in L^2$ then $\lambda_l = L(l)$.

In both cases $y_l^l(x)$ can be found by quadrature.

Class I. $y_l^l(x) = C \exp \left(\int_a^x k(s, l+1) ds \right)$
 $y_l^{m-1} = {}^+H^m y_l^m, \quad m \downarrow$

Class II. $y_l^l(x) = C \exp \left(- \int_a^x k(s, l) ds \right)$
 $y_l^{m+1} = {}^-H^{m+1} y_l^m, \quad m \uparrow$

Theorem 4 (continued)



Matrix Interpretation

Uniform discretization

$$f(x) \sim (f(x_1), f(x_2), \dots, f(x_n))^T = f$$

$$k(x, m) \sim k_m = (k(x_1, m), k(x_2, m), \dots, k(x_n, m))^T$$

Backward Differences: $f'(x_j) \sim \frac{f(x_j) - f(x_{j-1})}{\delta x}$

$$(-\Delta f)(x_j) = \frac{f(x_j) - f(x_{j-1})}{\delta x}$$

$-\Delta$ is lower diagonal, $(\dots, -1, 1, \dots)/\delta x$

$${}^+H^m = \text{diag}(k_m) + {}^-\Delta$$

Matrix Interpretation (continued)

By Theorem 2,

$$-H^m = ({}^+H^m)^T$$

$$({}^+H^{m+1})(-H^{m+1}) = (-H^m)({}^+H^m) - [L(m+1) - L(m)]I$$

$$\begin{bmatrix} x & & & \\ x & x & & \\ & x & x & \\ & & x & x \end{bmatrix} \begin{bmatrix} x & x & & \\ & x & x & \\ & & x & x \\ & & & x \end{bmatrix} = \begin{bmatrix} x & x & & \\ & x & x & \\ & & x & x \\ & & & x \end{bmatrix} \begin{bmatrix} x & & & \\ x & x & & \\ & x & x & \\ & & x & x \end{bmatrix} - \sigma_m I$$

LR with shifts, tridiagonal case.

Positive Def. \sim Choleski LR