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» 2" order linear differential operators in Schroedinger form:
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L=-DP+V(x), D=—

» The Darboux transform (1882):

V— v
» For any ¢g € ker(L), Log = 0,
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Example

Vo =0 B 2
ker(Lp) = span(1,x) } — Vi) = _?;2( Clx— t)) :
¢o(X) =C(x—1) BNCEd

where t is a free parameter.
Vi = —2__ 2 2 \?
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ker(Ly) = span [(x —1)?, (xlin)] — —
$1(x) = (x—1t)?

(x=1)?

And so on.




The potential in the Darboux transformation depends on the
choice of

oo € ker(L)

Amazing fact:

All the potentials thus obtained are the potentials that remain
rational under the Korteweg-de Vries flow:

Vt = Vxxx +6 VVX

[Moser and co-workers, 1977/78]
or, equivalently,

V(o) finite, eigenfunctions of L are meromorphic inC.



Burchnall and Chaundy [1923]
(interpret Darboux)

L=—-D?+ V(x),

Define:

Lpo=0
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The Factorization Method
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The factorizativn wethod iz an operational procedure which enahles ug to answer, in a dintct manner,
questions about eigenvalue prablems which are of impeniance Lo physicigts. The underlying idea is Lo con-
sicer a pasr of Grst-order differential-difference equations whick are equivalent to a given scconrd-order differ-
omtial cquation with boundary conditions. For a largs class of such differential equations the mathod enaldles
us to Bnd immediately the eigenvalues and o manwfacturing process for the normalized cigendienctions.
These resulis are obtained merely by consulling a table of the six possible factorization types.

The manufacturing process is also used For the caloulation of transition probabilities.

The miethod is generalized s that it will hundie pertorbation problems.
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Eigenvalue Problems in Mathematical Physics

» PDE
» Separation of variables + Boundary Conditions

» Sequence of ODE’s with parameter m=0,1,2,...

y'(x)+ [r(x,m)+ A]y(x) =0 (ODE)

Eigenvalues: A\, A1, Az, . .. {\1}

Eigenfunctions: y;" = y(\, m), supress Xx.



Definition
The ODE can be factored if it is equivalent to both

(PH™ Y (TH™ ) y(A,m) = [A = L(m+1)]y(\, m)
(“H™) (TH™)y(A,m) =[x = L(m)]y(X, m)

where

EH™ = k(x,m) + cz( and L is independent of x and .

Hence, as differential operators,

(FH™) (TH™T) = (THT) (PHT) = [L(m 4 1) = L(m)]

Noted, in passing, by I&H, but not developed. Why?



Definition
The ODE can be factored if it is equivalent to both

(PH™ Y (TH™ ) y(A,m) = [A = L(m+1)]y(\, m)
(“H™) (TH™)y(A,m) =[x = L(m)]y(X, m)

where

EH™ = k(x,m) + cz( and L is independent of x and .

Hence, as differential operators,

(FH™) (TH™T) = (THT) (PHT) = [L(m 4 1) = L(m)]

Noted, in passing, by I&H, but not developed. Why?

Try backward and forward difference operators for cz(

Get LR on a tridiagonal.



Associated Spherical Harmonics:

1 d /. dP m?
m% (S|n9d6)—s|r]20P+)\P—o, 96[0,71']

Standard form:

Y (6) = sinz0 P(9)

— 4Y+<)\+1> Y=0, m=1,2,...
sin“é 4



Clever factorizations:

{(m )cote—:e] [(m )cotG—:H]Y

and



17. Table of Factorizations—Confinued

Name

7 7z, m} Bz, m) Lim)
_.—-_—'_-——A—._o -
7 ized spherical I+ (mtr-1) :
hﬁiﬁgs P e {m—+y~1) cotf (mdy—1)*
ized spherical  (Hy—H v+
o e G+ ~1) tanhs — Uty
- 1
nhauer functions 7"‘—(;; ;';—) m cotd P
i ir b MM+ 1+ B2 K cost K
ymmetric top _{ gz MT e -
functions : sin’@ (3 —§) cots sind -
'ﬁarmonim with spin,  _ m{m+1) Fitlm+-1) coss 1
.,P,ggetic pole sin® " cotﬂ:l:z sing m
N g2 _1
e g {)-;(!erc ’i)- {(m+c—3) cotp
‘Pischl-Teller, SIS
hypergeometric

Plischl-Telier,
hvoerzeometric

_(mtatb—c—iHm+tot+b—ctd)

costp

_lmtati—c—Dimtatb—sty)

sinh®y

—tmtoti—c—3) tanp

(m+a+b—e—3) cothy

(@mtath—2)t

—(2m+2a—c—1)2



Theorem 1

How factorization works.

yA,m+1)= "H™y(\, m)
y()\vm_ 1) = +Hm+1y(>\7m)

Hence, the ladder of eigenfunctions
m+1

yAm =y"  oym

m—1

move up and down.



Theorem 2

~“H™and *H™ are adjoints.

b b
| ato(- ) dx = [ (“HaGo)God

for all admissible ¢ and f,

¢(a)f(a) = ¢(b)f(b) =0



Theorem 3

L(m) 1 implies y remains in L? and vanishes at a, b going up.

L(m) | implies y remains in L? and vanishes at a, b going down.

Class |, L(m) t Class Il, L(m) {
m=1:m m=1:m



Theorem 4

Class |. If A <max{L(m),L(m+1)}and y™ € L2
then N\, = L(/+1).

Class Il If A < L(0) and y/" € L? then )\, = L(/).

In both cases y,’(x) can be found by quadrature.

X
Class . y/(x)= Cexp (/ k(s, |+ 1)ds>
a
y/m_1 = H"Y" m]

Class Il. y/(x) = Cexp <— /: k(s, /)ds)

ylm+1 — me+1ylm7 m T



Theorem 4 (continued)

No Solutions b d

No Solutions

A

Class | / Class Il



Matrix Interpretation

Uniform discretization

F(X) ~ (F(x1), F(32), ..., F(xn)) | = f

k(x,m) ~ km = (k(x1,m), k(x2,m), ..., k(xn, m))T

f05) = (1)
ox

() = "9 T0-)

Backward Differences: f'(x;) ~

~A is lower diagonal, (...,—1,1,...)/dx

TH™ = diag(km) + ~A



Matrix Interpretation (continued)

By Theorem 2,

(FH™) (TH™) = (THT) (FHT) = [Lim+ 1) = L(m)]/

X X
X X
X X
X X
X
X
X X
X X
X X
X X
Il
X
X X
X X
X X
X X
X X
X X
X X
X X

]o’ml
X

LR with shifts, tridiagonal case.
Positive Def. ~ Choleski LR



