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Standard Model

I LR [Rutishauser, 1957/58]

I QR [Francis (Kublanovskaja), 1960/1961]

I IEEE/ Amer. Inst. of Physics 2000
Computing in Science and Engineering
“Top 10 Algorithms of the Century” (includes QR)
Jan/Feb 1900-2000

I F. A. Grunbaum [1986]



I 2nd order linear differential operators in Schroedinger form:

L = −D2 + V (x), D =
d
dx

I The Darboux transform (1882):

V −→ Ṽ

I For any φ0 ∈ ker(L), Lφ0 = 0,

Ṽ = V − 2
(
φ′0
φ0

)′
= −V + 2

(
φ′0
φ0

)2

L̃ = −D2 + Ṽ (x)



Example

V0 = 0
ker(L0) = span(1, x)
φ0(x) = C(x − t)

 =⇒ V1(x) = −0 + 2
(

C
C(x−t)

)2

= 1·2
(x−t)2

,

where t is a free parameter.

V1 = 2
(x−t)2

ker(L1) = span
[
(x − t1)2, 1

(x−t1)

]
φ1(x) = (x − t)2

 =⇒
V2(x) = − 2

(x−t)2 + 2
(

2
(x−t)

)2

= 2·3
(x−t)2

.

And so on.
V3(x) =

3 · 4
(x − t)2



The potential in the Darboux transformation depends on the
choice of

φ0 ∈ ker(L)

Amazing fact:
All the potentials thus obtained are the potentials that remain
rational under the Korteweg-de Vries flow:

Vt = Vxxx + 6VVx

[Moser and co-workers, 1977/78]
or, equivalently,

V (∞) finite, eigenfunctions of L are meromorphic inC.



Burchnall and Chaundy [1923]
(interpret Darboux)

L = −D2 + V (x), Lφ0 = 0

Define:

P = −D −
(
φ′0
φ0

)
, Q = D −

(
φ′0
φ0

)



PQψ = −D2ψ + D
(
φ′0
φ0
ψ

)
−
φ′0
φ0
ψ′ +

(
φ′0
φ0

)2

ψ

= −D2ψ + D
(
φ′0
φ0

)
ψ +

(
φ′0
φ0

)2

ψ

= −D2ψ +

[(
φ′0
φ0

)′
+

(
φ′0
φ0

)2
]
ψ

= −D2ψ +

(
φ′′0
φ0

)
ψ

= Lψ



QPψ = −D2ψ − D
(
φ′0
φ0
ψ

)
+
φ′0
φ0
ψ′ +

(
φ′0
φ0

)2

ψ

= −D2ψ − D
(
φ′0
φ0

)
ψ +

(
φ′0
φ0

)2

ψ

= −D2ψ +

[
−
(
φ′0
φ0

)′
+

(
φ′0
φ0

)2
]
ψ

= −D2ψ +

[
−V + 2

(
φ′0
φ0

)2
]
ψ

= L̃ψ

Lφ = φλ =⇒ L̃(Qφ) = (Qφ)λ, λ 6= 0







Eigenvalue Problems in Mathematical Physics

I PDE

I Separation of variables + Boundary Conditions

I Sequence of ODE’s with parameter m = 0,1,2, . . .

y ′′(x) +
[
r(x ,m) + λ

]
y(x) = 0 (ODE)

Eigenvalues: λ0, λ1, λ2, . . . {λl}

Eigenfunctions: ym
l = y(λ,m), supress x .



Definition
The ODE can be factored if it is equivalent to both(

+Hm+1)(−Hm+1)y(λ,m) =
[
λ− L(m + 1)

]
y(λ,m)(−Hm)(+Hm)y(λ,m) =

[
λ− L(m)

]
y(λ,m)

where

±Hm = k(x ,m)± d
dx

and L is independent of x and λ.

Hence, as differential operators,(
+Hm+1)(−Hm+1) =

(−Hm)(+Hm)− [L(m + 1)− L(m)
]

Noted, in passing, by I&H, but not developed. Why?

Try backward and forward difference operators for
d
dx

.
Get LR on a tridiagonal.
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Noted, in passing, by I&H, but not developed. Why?

Try backward and forward difference operators for
d
dx

.
Get LR on a tridiagonal.



Associated Spherical Harmonics:

1
sin θ

d
dθ

(
sin θ

dP
dθ

)
− m2

sin2θ
P + λP = 0, θ ∈ [0, π]

Standard form:

Y (θ) = sin
1
2 θP(θ)

Y ′′ −
m2 − 1

4

sin2θ
Y +

(
λ+

1
4

)
Y = 0, m = 1,2, . . .



Clever factorizations:[(
m − 1

2

)
cot θ − d

dθ

] [(
m − 1

2

)
cot θ − d

dθ

]
Y

=
[
λ−

(
m − 1

2

)2
+ 1

4

]
Y

and [(
m + 1

2

)
cot θ − d

dθ

] [(
m + 1

2

)
cot θ − d

dθ

]
Y

=
[
λ−

(
m + 1

2

)2
+ 1

4

]
Y





Theorem 1

How factorization works.

y(λ,m + 1) = −Hm+1y(λ,m)

y(λ,m − 1) = +Hm+1y(λ,m)

Hence, the ladder of eigenfunctions

y(λ,m) =⇒ ym
l

eym−1
l

eym
l

eym+1
l

move up and down.



Theorem 2

−Hm and +Hm are adjoints.

∫ b

a
φ(x)

(−Hf (x)
)
dx =

∫ b

a

(−Hφ(x)
)
f (x)dx

for all admissible φ and f ,

φ(a)f (a) = φ(b)f (b) = 0



Theorem 3

L(m) ↑ implies y remains in L2 and vanishes at a,b going up.

L(m) ↓ implies y remains in L2 and vanishes at a,b going down.

Class I, L(m) ↑ Class II, L(m) ↓
m = 1 : m m = 1 : m



Theorem 4
Class I . If λ ≤ max {L(m),L(m + 1)} and ym

l ∈ L2

then λl = L(l + 1).

Class II . If λ ≤ L(0) and ym
l ∈ L2 then λl = L(l).

In both cases y l
l (x) can be found by quadrature.

Class I. y l
l (x) = C exp

(∫ x

a
k(s, l + 1)ds

)
ym−1

l = +Hmym
l , m ↓

Class II. y l
l (x) = C exp

(
−
∫ x

a
k(s, l)ds

)
ym+1

l = −Hm+1ym
l , m ↑



Theorem 4 (continued)
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Matrix Interpretation

Uniform discretization

f (x) ∼
(
f (x1), f (x2), . . . , f (xn)

)T
= f

k(x ,m) ∼ km =
(
k(x1,m), k(x2,m), . . . , k(xn,m)

)T

Backward Differences: f ′(xj) ∼
f (xj)− f (xj−1)

δx

(−∆f )(xj) =
f (xj)− f (xj−1)

δx

−∆ is lower diagonal, (. . . ,−1,1, . . .)/δx

+Hm = diag(km) + −∆



Matrix Interpretation (continued)

By Theorem 2,

−Hm =
(
+Hm)T

(
+Hm+1)(−Hm+1) =

(−Hm)(+Hm)− [L(m + 1)− L(m)
]
I


×
× ×

× ×
× ×

× ×



× ×

× ×
× ×

× ×
×

 =


× ×

× ×
× ×

× ×
×



×
× ×

× ×
× ×

× ×

−σm I

LR with shifts, tridiagonal case.
Positive Def. ∼ Choleski LR


