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Context of this presentation

» Overview over recent combinatorial graph cut methods and
convex relaxation methods in imaging science with focus on
interface problems

» Category 1: Problems that can be solved exactly

> Always direct relation between graph cut and convex
relaxations via continuous max-flow

» Category 2: Problems that can only be solved approximately
(NP-hard)
» Very good approximations can be obtained via different convex
relaxations

» Dual problems can be interpreted as continuous max-flow
problems

» Efficient convex max-flow algorithms can be derived for all
problems



Interface problems

Interface problems exists everywhere in science and technology. For
imaging and vision, it is somehow classical:

» Mumford-Shal model (Mumford-Shah-1989)
» GAC model (Caselles-Kimmel-Sapiro-1997)
» Chan-Vese model (Chan-Vese-2001)

How to solve these interface problems?



Interface problems

Interface problems exists everywhere in science and technology. For
imaging and vision, it is somehow classical:

» Mumford-Shal model (Mumford-Shah-1989)
» GAC model (Caselles-Kimmel-Sapiro-1997)
» Chan-Vese model (Chan-Vese-2001)
How to solve these interface problems?
» active contour (Kass-Witkin-Terzopoulos-1998)
> level set (Osher-Sethian-1988)
» phase-field ( Modica-Mortola-1977, Ambresio-Tortorelli-1990)

> ...



Introduction to Max-Flow / Min-Cut

Ref: Ford and D. R. Fulkerson, 1962.
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Introduction to Max-Flow / Min-Cut

(Vs, Vi) is a cut, wj; = cost of cutting edge(/, /)

cost of cut c(Vs, Vi) = > ic v, jev, Wi

Min-cut: find cut of minimum cost,

Max-Flow: Find the maximum amount of flow from s to t.
Max-flow = min-cut.

Ref: Ford and D. R. Fulkerson, 1962.



Graph-cut for image segmentation

A simple 1d signal /(x):

Graph-cut for images: Boykov-Kolmogorov (2001).



Graph-cut for image segmentation

The graph, a graph-cut and its corresponding label:

(tftf2fu]1]2]

Popular " capacity” choices: (Chan-Vese-2001)

Ws,p = ’/(p)_q’z? Wt p = ‘I(p)_62‘27 a=0,0=1, W(p, q) = Q.



Graph-cut for image segmentation

The graph, a graph-cut and its corresponding label:

(tftf2fu]1]2]

Popular " capacity” choices: (Chan-Vese-2001)
Ws,p = ’/(p)_q’z? Wt p = ‘I(p)_62‘27 a=0,0=1, W(p, q) = Q.
More generally

wsp = f1(p), wep = fa(p), w(p,q) = a or g(p, q) (edge force).



Relation with k-mean (o = 0 and unknown ¢;)

0(450—‘0;50

NNV

[tftf2fu]1]2]

» Given ¢; and o.
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Relation with k-mean (o = 0 and unknown ¢;)

[tftf2fu]1]2]

» Given ¢; and o.
» use cut (threshold) to get Q21 and Q5.
> update
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c Area(Q;) :



Relation with k-mean (o = 0 and unknown ¢;)

[tftf2fu]1]2]

» Given ¢; and o.
» use cut (threshold) to get Q21 and Q5.
> update

o fQ,. I(x)
‘= Area(Q,-)’I

> go to the next iteration.

=1,2.

k-mean is a non-regularized Chan-Vese model.



k-mean model (o = 0 and unknown ¢;)

k-mean algorithm is an alternating minimization procedure for:
n

minZ/Q;(l(x) — )%

¢, 4
1 1 ’:1

This formulation is in the continuous setting.

Ref: K-means clustering, http://en.wikipedia.org/wiki/K-means_clustering.



Regularized Graph-cut: @ # 0

(tfafofai]ef2]

The "virtual graph and the corresponding label function
U(p)p: 1*25

Costs:
wsp = |I(p) — c1|2, wep = |I(p) — C2|2a Wp,qg = Q.

The corresponding minimization problem is: (N(p) — neighbors of
P)

min > |l(p)—al+ > [l(p)—cl+a > > |u(p)-u(q)l-

{12
up)ed }PEQ1 pED P qeN(p)



Discrete vs continuous

Discrete minimization:

min Z |I(p)—c1|2—|—z |1(p) cz|2+ozz Z u(q)|.
u(p)e{0,1} pesy

pE2 P qeN(p)

Continuous minimization:

NICRETE / |l(x)—C2|2+4a/ Dul.

u(X)G{O 1}

min I(x)—al(1—u +/Ix—c2u+4a/ Dul.
u(x)e{o’l}/ﬂm P+ [ 116~ P+ 4o [ Jou



Higher dimensional problems

A graph for 2D images:

Figure : Graph used for discrete 2D binary labeling



Two-phase Min-cut — Discretized setting

BT 4 av

Figure : Graph and cut for discrete binary labeling

It is easy to see the cost of a cut (u(p) =0 or 1). A minimum cut
is to find u for:

min Zﬂ p)(1-u(p))+hH(p)u(p)+>_ D &(p,q)lu(p)—u(q)l.

ue{0,1} peP qeNk
Capacity:

wsp = fi(p), wrp = H(p), Wpq = g(p,q).

Ref: N¥ is the k-neighborhood of p € P.



Two-phase Min-cut — corresponding continuous setting

Figure : Graph used for discrete and continuous binary labeling

A " continuous” minimum cut is to solve:

N /Qfl(X)(l—“(X))+f2(><)u(x)+g1(x)lDlu(x)|+gz(x)|Dzu(x)|.

Capacity:

ws(x) = fi(x), we(x) = h(x), wi(x) = gi(x), wa(x) = g2(x).



Max-Flow over a graph

Figure : Graph used for discrete binary labeling

Max-flow formulation

max Z ps(v)
Ps:Pt,q

veV\{s,t}
subject to lq(v, u)] < g(v,u), Y(v,u) €V XV
0 < ps(v) < fi(v), VveV\{st}
0 < pe(v) < h(v), YveV\{s,t};

( Z q(v,u)) —ps(v) + pe(v) = 0, Vv eV\{s t}.

e N



Continuous Max-Flow

P S &

sl e -

e

B 4
Figure : Discrete (left) vs. Continuous (right)

Continuous max-flow formulation

sup /ps(x)dx
Q

Ps;Pt:q
I )y ()] < &1(x): ()| < g2, VxeQ,
0 < ps(x) < f(x), VxeQ;
0 < pe(x) < h(x), Vxe
div g(x) — ps(x) + pe(x) = 0, ae. x € Q.
Related: (G. Strang (1983)).



Continuous Max-Flow: different internal flow capacity
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Figure : Discrete (left) vs. Continuous (right)

Continuous max-flow formulation

sup / ps(x) dx
Q

Ps:pt,q
subject to
[a()| = gt (x) + a3(x) < g(x), Vxe;
0 < ps(x) < fi(x), ¥xe
0 < pi(x) < h(x), Vxe
divg(x) — ps(x) + pe(x) = 0, ae. xe€Q.



Connection: Continuous Max-Flow and Min-Cut

Lagrange multiplier u for flow conservation condition
divg(x) — ps(x) + pt(x) = 0, ae x €.

yields primal-dual formulation

sup inf/ps+u(divq—ps+pt)dx
ps,pt,g 4 JQ

st ps(x) < A(x),  pe(x) < R(x), a(x)| < g(x)-

Optimizing for flows ps, p:, g results in:

uem[ciJr,]l] /Q A(x)(1 — u(x)) + f2(x)u(x) dx + g(x) [Vu(x)| dx.

This is exactly the same model as the model in CEN (2006). !

IT.F. Chan and S. Esedoglu and M. Nikolova: Algorithms for finding global
minimizers of image segmentation and denoising models, SIAM J. Appl. Math.,
66, 1632-1648,(2006)
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Three problems

PCLMS or Binary LM (Lie-Lysaker-T.,2005):

f 1-— f- Vuld
u(xnél{% 1}/ 1 u) + hu+ g(x)|Vuldx.

Convex problem (CEN, (Chan-Esdoglu-Nikolova,2006))

i f(l— hu+ Vu|dx.
omin [ A=) + s gVl

Graph-cut (Boykov-Kolmogorov,2001)

max /psdx subject to:
Ps:Pt,q J Q)

ps(x) < Ax), pe(x) < Ba(x), [P(x)] < g(x),
divp(x) — ps(x) + pt(x) = 0.




The following approaches are solving the same problem, but did
not know each other:
» max-flow and min-cut.
» Chan-Esedougla-Nikolova 2006 (convex relaxation approach)
» Binary Level set methods and PCLSM (piecewise constant
level set method)

» A cut is nothing else, but the Lagrangian multiplier for the
flow conservation constraint!!!



Continuous Max-Flow: Remarks

» Min-cut problem is minimizing an energy functional. (Many
existing algorithms) Are not using the decent (gradient) info
of the energy.

» Continuous max-flow/min-cut is a convex minimization
problem. A lot of choices, can use decent (gradient) info.



Continuous Max-Flow: How to solve it (Only 2-phase

case)?

» Popular (discrete) Min-cut algorithms: Augmented Path.
Push-relabel, etc,

» Available continuouse max-flow/Min-cut approaches:
Split-Bregman, Augmented Lagrangian, Primal-Dual
approaches. We can use these approach to solve the convex
min-cut problem.



Continuous Max-Flow and Min-Cut

Multiplier-Based Maximal-Flow Algorithm
Augmented lagrangian functional (Glowinski & Le Tallec, 1989)

. C, ..
Le(ps, pt, g, A) = / Pst+)\<d'Vq_Ps+Pt)_§|d|vq_P5+Pt|2dX'

Q

minmax subject to:

ps(x) < A(x), pe(x) < B(x), la(x)] < g(x)
ADMM algorithm: For k=1,... until convergence, solve

g“t! i=arg max Lc(pk, pf.q,\")
gl <c
k+1 .__ k _k+1 yk
= ar max L ) Pt s ;A
P< gps(x)gﬂ(x) c(ps; Pt.q )
k+1 . k+1 k+1 k
1= ar, max L A
p: gpt(x)gz(x) (P P, g T AT

AT = MK — ¢ (div g* T — pET 4 pEtT)



Continuous Max-Flow and Min-Cut

Other algorithms for solving the relaxed problem: add p = Vu

» Bresson et. al.

» fix ©* and solve ROF problem
1
A+ . arg min {a/ IVA(X)| dx + = | A(x) —,uk(x)||2}
A Q 20
» fix A**1 and solve

pkt i arg min {2 InG-NT 4 [ 00 (R()—A(0) o)

» Goldstein-Osher: Split Bregman / augmented lagrangian



Convergence

100 200 300 400 500 0o 100 200

Figure : Red line: max-flow algorithm. Blue line: Splitting algorithm
(Bresson et. al. 2007)



rication error, Parallel, GPU, ...

Experiment of mean-curvature driven 3D surface evolution (volume size: 150X150X150 voxels). (a) The radius plot
of the 3D ball evolution driven by its mean-curvature flow, which is computed by the proposed continuous max-flow
algorithm; its function is theoretically r(t) = v/C — 2t. (b) The computed 3D ball at one discrete time frame,
which fits a perfect 3D ball shape. This is in contrast to (c), the computation result by graph cut [15] with a 3D
26-connected graph. The computation time of the continuous max-flow algorithm for each discrete time evolution

is around 1 sec., which is faster than the graph cut method (120 sec.)

Ref: Y. Yuan, E. Ukwatta, X. Tai, A. Fenster, and C. Schnorr. A fast
global optimization-based approach to evolving contours with generic shape
prior. Technical report, also UCLA Tech. Report CAM 12-38, 2012.



Metrication error, Parallel, GPU, ...

» Fully parallel, easy GPU implementation.
» linear grow of computational cost (per iteration): 2D, 3D, ...



Gamma convergence

When h — 0, the energy at the minimizer on the discrete graph
converges to energy at the minimizer of the continuous problem
both for isotropic and anisotropic TV:

TV(u):/Q(|qu+|uy|)dx, TV(u):/Q,/|uX|2+|uy|2dx.
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Gamma convergence

When h — 0, the energy at the minimizer on the discrete graph
converges to energy at the minimizer of the continuous problem
both for isotropic and anisotropic TV:

TV(u):/Q(|qu+|uy|)dx, TV(u):/Q\/]uX|2+|uy|2dx.

» Anisotropic TV: sub-modular, Can use standard graph cut
methods.

» Isotropic TV: not sub-modular, Cannot use stander graph cut
methods, primal-dual approach is faster even !



Literature: Gamma convergence for discrete TV

> Isotropic TV: h+— 0 h = mesh size.
Braides-2002, Chambolle-2004,
Chambolle-Caselles-Novaga-Cremers-Pock-2010,

» Anisotropic TV: h+— 0 h = mesh size.
Chambolle-Caselles-Novaga-Cremers-Pock-2010,
Gennip-Bertozzi-2012, Trillo-Slepcev-2013,



Multiphase Approaches

Multiphase Approaches



From Two-phase to multi-phases

» Related to garph cut, a-expansion and a — 8 swap are mostly
popular approaches for multiphase " labelling” .

» Approximations are made and upper bounded has been given.

Ref: Y. Boykov and O. Veksler and R. Zabih: Fast approximate energy
minimization via graph cuts, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23, 1222-1239, (2001).



Multiphase problems — Approach |

We need to identify n
characteristic functions
Gilx), =120

vilx) €{0,1}, D vilx) =1.
i=1




Multiphase problems — Approach Il

Each point x € Q is labelled by a vector function:

u(x) = (v1(2), ua(x), - - - ua(x)).
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Multiphase problems — Approach Il

Each point x € Q is labelled by a vector function:

u(x) = (v1(2), ua(x), - - - ua(x)).

» Multiphase: Total number of phases n = 29. (Chan-Vese)

I L_‘ LL‘ u,'(X) S {0, 1}

» More than binary labels: Total number of phases n = B¢,

ui(x) € {0,1,2,--- B}.



Multiphase problems — Approach IlI




Literature: Multiphase Approach |

Zach-et-al-2008 (VMV),
Lellmann-Kappes-Yuan-Becker-Schnérr-2009 (SSVM),
Lellman-Schnorr-2011 (SIIMS), Li-Ng-Zeng-Chen-2010 (SIIMS),
Lellman-Lellman-Widman-Schnorr-2013 (1JCV),
Qiao-Wang-Ng-2013, Bae-Yuan-Tai-2011 (1JCV)



Literature: Multiphase Approach Il

Vese-Chan-2002 (1JCV),Lie-Lysaker-Tai-2006 (IEEE TIP),
Brown-Chan-Bresson-2010 (cam-report 10-43), Bae-Tai 2009/2014
(JMIV)



Literature: Multiphase Approach Il

Chung-Vese-2005 (EMMCVPR), Lie-Lysaker-Tai-2006 (Math.
Comp), Ishikawa-2004 (PAMI), Pock-Chambolle-Bischof-Cremers
2008/2010 (SIIMS), Kim-Kang-2012 (IEEE TIP),
Jung-Kang-Shen-2007, Wei-Wang-2009,
Luo-Tong-Luo-Wei-Wang-2009, Bae-Yuan-Tai-Boykov 2010/2014



Multiphase Approach

Multiphase Approach (1)

Graph for characteristic functions

Ref: Yuan-Bae-T.-Boykov (ECCV10): A continuous max-flow approach to
Potts model, Computer Vision—-ECCV (2010), pp. 379-392.

Ref: Bae-Yuan-Tai: Global minimization for continuous multiphase
partitioning problems using a dual approach, International journal of computer
vision, 92, 112-129(2011).



Multi-partitioning problem

Multi-partitioning problem (Pott’s model)

n

min fidx + / x)ds,

1

such that U7 ;Q;=Q, N, Q; =10
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Multi-partitioning problem

Multi-partitioning problem (Pott’s model)

min fidx + /
(i} 5 Z / Z
such that U7 ;Q;=Q, N, Q; =10

Pott’s model in terms of characteristic functions

n

o xr)nelPO 5 Z/ ui(x dx+2/ ) |Vui| dx, s.t. Z ui(x) =1

i=1

1, xef .
ui(x) = xa,(x) :—{O xdQ i=1,...,n



A convex relaxation approach

Relaxed Potts’ model in terms of characteristic functions
(primal model)

m|n EP(u Z/ ui(x)fi(x) dx +Z/g(x |Vui| dx,



A convex relaxation approach

Relaxed Potts’ model in terms of characteristic functions
(primal model)

m|n EP(u Z/ ui(x)fi(x) dx +Z/g(x |Vui| dx,

sit. ue Ay ={(u1(x),...,un(x))] Z ui(x) =1; wui(x)>0}
i=1

» Convex optimization problem

» Optimization techniques: Zach et. al. alternating TV
minimization. Lellmann et. al: Douglas Rachford splitting and
special thresholding, Bae-Yuan-T. (2010),
Chambolle-Crmer-Pock (2012).



Dual formulation of relaxation: Bae-Yuan-T. (IJCV, 2011)

Dual model: Cy := {p : Q+— R?||p(x)]2 < g(x), pnloa =07},

» Hence the primal-dual model can be optimized pointwise for u

i 32 [ et + 3t v .



Dual formulation of relaxation: Bae-Yuan-T. (IJCV, 2011)

Dual model: Cy := {p : Q+— R?||p(x)]2 < g(x), pnloa =07},

» Hence the primal-dual model can be optimized pointwise for u
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i i Elw) / 3 uts + o)



Dual formulation of relaxation: Bae-Yuan-T. (IJCV, 2011)

Dual model: Cy := {p : Q+— R?||p(x)]2 < g(x), pnloa =0},

» Hence the primal-dual model can be optimized pointwise for u
min x)dx + ) V| dx,
min 3 [ ut) Z [ 0w

max min E(u ui(fi + div
pi€Cy ueAy ) /Z ’ pi)

= max/Q min Zu,-( )(fi(x) + div pi(x)) dx

piGC)\ U(X)€A+ i1



Dual formulation of relaxation: Bae-Yuan-T. (IJCV, 2011)

Dual model: Cy := {p : Q+— R?||p(x)]2 < g(x), pnloa =0},

» Hence the primal-dual model can be optimized pointwise for u
min x) dx )|V d
Az/ +2/ ) IVui] dx,

E( (fi +d
i i Eoe) = /ZM+W“

= o [ in, S0 + o)

i=1

= max/{min(fl+divp1,...,fn+divpn)}dx
pi€Cx Jq



Dual formulation of relaxation: Bae-Yuan-T. (IJCV, 2011)

Dual model: Cy := {p : Q+— R?||p(x)]2 < g(x), pnloa =0},

» Hence the primal-dual model can be optimized pointwise for u

- /Q Stk st

i=1
= max / { min(fi + div p1,. .., f, +div p,,)} dx
pi€Cy

— max EP
= max E7(p)



Convex relaxation over unit simplex

p* €arg sup EP(p) = / min(fy +divp1,..., f, +divp,) dx
pieca Q

u* € argmin E(u, p* :/ min ui(x)(fi(x) + div p; (x)) dx
min€(up) = [ min 32 u(0(60) + v ()

Theorem
Let p* be optimal to the dual model. For each x € 2, a binary
primal optimal variable u*(x) can be recovered by

‘() = 1 if k = argminj=1,._, (fi(x) + div pf(x))
UlX) = 0 otherwise ’

provided the n values (fi(x) + div pf(x), ..., fa(x) + div pj;(x)) have
a unique minimizer. Then (u*, p*) is a saddle point, i.e.

EP(u") = E(u", p*) = E°(p")



Convex relaxation over unit simplex

p* € arg sup EP(p) = / min(fy +divp, ..., f, +divp,) dx
p,'ECa Q

u* € argmin E(u, p*) = /Q min Z ui(x)(fi(x) + div p7(x)) dx

ueA, u(x)eL P

Theorem

Let p* be optimal to the dual model. If the n values

(fi(x) + div pj(x), ..., fa(x) + div p};(x)) have at most two
minimizers for each x € €2, there exists optimal binary primal
variables u* such that (u*, p*) is a saddle point, i.e.

EP(u*) = E(u", p*) = E°(p")



Convex relaxation over unit simplex

Top: (a) Input, (b) alpha expansion (c) dual model.
Bottom: (d) Input, (e) ground truth, (f) alpha expansion, (g)
alpha-beta swap, (h) Lellmann et. al., (i) dual model.



Multiple Phases: Convex Relaxed Potts Model (CR-PM)

—Yuan-Bae-T.-Boykov (ECCV'10)
Continuous Max-Flow Model (CMF-PM)

1. ncopies Q;, i=1,...,n, of Q,

2. For Vx € Q, the same source flow ps(x) from the source s to
x €, i=1,...,n, simultaneously;

3. For ¥x € Q, the sink flow p;j(x) from x at Q;, i =1,...,n, of
Q to the sink t. pi(x), i =1,...,n, may be different one by
one;

4. The spatial flow gj(x), i =1,..., n defined within each ;.



Max-flow on this graph

Max-Flow:

max {P(ps, p, q) = / psdx}

Ps;P,q Q

[qi(x)] < g(x),  pi(x) < fi(x),

(divgi — ps + pi)(x) =0, i=1,2,---n.
Note that

ps(x) = divgi(x) + pi(x),i =1,2---n.

Thus

ps(x) = min(f; +divps, ..., f, +divp,).

Therefore, the maximum of [, ps(x) is:

max min(f; +divpy,...,f +divp,)dx
Iq,-(X)ISg(X)/Q (it divp - fa i o)



(Convex) min-cut on this graph

m
max min{E(ps, p, q, u) = / psdx + Z ui(divg; — ps + p;)dx}
Ps,p,q U Q —

s.t. pi(x) < fi(x), [qi(x)] < g(x).

Rearranging the energy functional E(-), we that

m m m
E(ps,p,q,u) = /(1 — Z ui)ps + Z uip;i + Z uidivg;.dx.
Q i=1 i=1 i=1

The following constraint are automatically satisfied from the
optimization:



(Convex) min-cut: Dual formulation

It gives the convex min-cut from the dual formulation:

min/ ui(x)fi(x) + g(x)|Vui(x)]
Q

uj

s.t Z ui(x) =1, wui(x) > 0.
i=1



Algorithms

Augmented Lagrangian functional

/ps dx + Z uj, div g; — ps+pl ZHdwa Ps‘i‘pl”

i=1

Augmented Lagrangian Method (ADMM):
Initialize pg,p?, g% and ¢°. For k = 0,1, ...

2
q;‘H ‘= arg max _< Hdiv qi + pf — pk — uf‘/c‘ ,I=1,...,n
laillo<a 2
k41 . o k41 ko k .
: = ar ma ——\lpi +divg ™ — ps — u; c‘ ,i=1..n
o g o T2 ‘ pi + div g; ps — uj/ i
pktl = arg max / ps dx — — kH + div qu) + uk/c‘ ,

kt1 :u,k—c(dwq,- kH—i—pl T i=1,..,n



Algorithms

Comparisons between algorithms: Zach et al 08, Lellmann et al.
09 and the proposed max-flow algorithm: for three images,
different precision € are used and the total number of iterations to
reach convergence is evaluated.

Brain e <10° | Flower e <10 | Beare <10~*
Zach et al 08 fail to reach such a precision

Lellmann et al. 09 421 iter. 580 iter. 535 iter.
Proposed algorithm 38 iter. 147 iter. 133 iter.




Outline of this presentation

First part: Exact optimization

» Will focus on two approaches for multiphase problems with

>

>

global optimality guarantee.
Both can be formulated as max-flow/min-cut problems on a
graph in discrete setting.

Both can be exactly formulated as convex problems on
continuous setting. Dual problems can be formulated as
continuous max-flow problems.

Second part: Approximate optimization

>

>

Convex relaxations for broader set of non-convex problems.

Includes Potts’ model and joint optimization of regions and
region parameters in image segmentation.

Dual problems can be formulated as max-flow, but now there
may be a duality gap to original problems



Problem formulations

Image partition problems with multiple regions
Given input image /9 defined over Q. Find partition {Q;}7_; of Q
by solving

miin Z/ £(1°(x)) dx + aR({O}"_,)
{Qi}7:1 i—1 Q,‘

such that U7, Q;=Q, N, Q; =0
n is known or unknown in advance. Example (Potts’ model):
n n
min f:(1°(x)) dx + a/ ds,
{sz,-},v_l,z_;/g, ’ z_; o0

Discretized problem is NP-hard for n > 2



Problem formulations

Image partition problems with multiple regions
Given input image /9 defined over Q. Find partition {Q;}7_; of Q
by solving

miin Z/ £(1°(x)) dx + aR({O}"_,)
{Qi}7:1 i—1 Q,‘

such that U7, Q;=Q, N, Q; =0
n is known or unknown in advance. Example (Potts’ model):
n n
min 119(x) — &i|P dx + a/ ds,
{Qi},nzl Iz_; ~/Qi I Iz_; 082

Discretized problem is NP-hard for n > 2



Problem formulations

Image partition problems with multiple regions
Given input image /9 defined over Q. Find partition {Q;}7_, of Q
by solving

min - (& 19(x)) dx + o A0
> /Q RCOLRRL TN

{ & eX

such that U7 ;Q;=Q, N,Q; =10

n is known or unknown in advance. Example:

min 1°(x —5,-de+ a/ ds,
{Qi},-"p{fi},-"ﬁR;/Q;‘ &) | ; 09;

If regularization o« = 0: "k-mean” problem, which is known to be
NP-hard.



Different representations of partitions in terms of functions

» 1) Vector function: u(x) = (v}(x), ..., u"(x)) = ¢ for x € Q;
» 2) Labeling function: ¢(x) =i for all x € Q;
» 3) log representation by m = log,(n) binary functions ¢*, ...¢™

xeWiff | ux)=e | {x)=1 | ¢}(x)=1,¢*(x) =0
xeNiff | ux)=e | {(x)=2 | ¢'(x)=1,¢*(x)=1
xeWiff | u(x)=e | €(x)=3 | ¢}(x)=0,¢%(x) =0
x€Qiff | u(x)=e | Ux)=4 #(x) =0,¢°(x) =1

Table: Representation of 4 regions.



Log representation by two binary functions

$1<0
$2<0

Q1 = {x € Qs.t. ¢*(x) > 0,¢%(x) < 0}
Qo = {x € Qs.t. p*(x) > 0,¢%(x) > 0}
Q3 = {x € Qs.t. ¢1(x) < 0,¢%(x) < 0}
Qs = {x € Qs.t. ¢*(x) < 0,¢%(x) > 1}

Vese and Chan 2002, A Multiphase Level Set Framework for Image
Segmentation Using the Mumford and Shah Model, International Journal of
Computer Vision 50(3), 271-293



Log representation by two binary functions

Q1 = {x € Qs.t. ¢1(x) = 1, ¢%(x) = 0}
Qo = {x € Qst. ¢} (x) = 1,¢%(x) = 1}
Q3 = {x € Qs.t. p1(x) = 0, ¢?(x) = 0}
Q= {x € Qst. ¢} (x) = 0,¢%(x) = 1}

Lie et al. 2006, A Binary Level Set Model and Some Applications to
Mumford—Shah Image Segmentation, IEEE transactions on image processing,
15(5), pg. 1171 - 1181



Log representation by two binary functions

4 regions as intersection of 2 level set functions
m|n a/ |VH(o') |+a/ |VH(¢?)|
+ /Q {HS (&) + HO)(L ~ (@)
(1= H(6))H(@*)fa + (1= H(#"))(A — H(6%))f}dx.

» Heaviside function H(¢) =1if ¢ > 0 and H(¢) =0if ¢ <O
> Interpretation of regions:

Q1 = {x € Qs.t. ¢1(x) > 0, ¢%(x) < 0}
Qo = {x € Qs.t. ¢*(x) > 0,¢%(x) > 0}
Q3 = {x € Qs.t. ¢1(x) < 0,¢%(x) < 0}
Q= {x € Qs.t. p*(x) < 0,¢%(x) < 0}

Vese and Chan 2002, A Multiphase Level Set Framework for Image
Segmentation Using the Mumford and Shah Model, International Journal of
Computer Vision 50(3), 271-293



Log representation by two binary functions

4 regions as intersection of 2 binary functions

min o [ [Vl +a [ [V
+ [ {¢'6*h + 0 (1 - 0*)A
HL= 06+ (1= 0)(1 - 7))o
» Minimize over constraint ¢!(x), ¢?(x) € {0,1} ¥ x € Q.

> Interpretation of regions:

Q1 = {x € Qs.t. ¢1(x) = 1, ¢%(x) = 0}
Qo = {x € Qst. ¢} (x) = 1,¢%(x) = 1}
Q3 = {x € Qs.t. p1(x) = 0, ¢?(x) = 0}
Q4 = {x € Qs.t. p*(x) = 0,¢%(x) = 1}

Lie et al. 2006, A Binary Level Set Model and Some Applications to
Mumford—Shah Image Segmentation, IEEE transactions on image processing,
15(5), pg. 1171 - 1181



Convex formulation log representation
. 1 2
L a/ﬂlvcb |+a/Q\V¢ |
/Q(l—cbl(X))C(X)Jr(l—¢2(X))D(X)+¢1(X)A(X)+¢2(X)B(X) dx

+ [ max{9!(x) — 62(x), 0} E(x) — min{6}(x) ~ 6%(x), O} (x)
Q

A(x) + B(x) = fr(x)
C(x) + D(x) = f3(x)
A(x) + E(x) + D(x) = fi(x)
B(x)+ F(x) + C(x) = fa(x)

» Energy is convex provided E(x), F(x) > 0 for all x € Q.

» Discrete counterpart is submodular iff 3 E(x), F(x) > 0 for all

x € Q (otherwise NP-hard)

Bae and Tai, Efficient Global Minimization Methods for Image
Segmentation Models with Four Regions, Journal of Mathematical Imaging and
Vision, 2014




Convex formulation log representation

min « o —l—a/ V?
#1(x),9%(x)€[0,1] /Q‘ ¢l Q| ¢l

/Q(l = ¢ (x))C(x) + (1= ¢*(x)) D(x) + ¢! (x)A(x) + ¢* (x) B(x) dx

+ /Q max{¢'(x) — ¢*(x),0}E(x) — min{¢! (x) — ¢*(x), 0} F(x) dx

A(x) + B(x)
C(x)+ D(x)

» Minimize over convex constraint ¢!(x), ¢?(x) € [0,1] Vx € Q.

» Theorem: Binary functions obtained by thresholding solution
of convex problem ¢!, ¢? at any level t € (0,1] is a global
minimizer to the original problem.



Convex formulation log representation

Exists E(x), F(x) > 0 if f(x) + (x) < fi(x) + fa(x).
In case of f; = |I° — ¢;|®, a sufficient condition is

o= 1P+l = 1P <lca = 1P +|ca — 1P, V1oL,

v

v

» Proposition 1: Let 0 < ¢ < & < ¢3 < ¢4. Condition is
satisfied for all | € [25<L, #5%] for any 5 > 1.

» Proposition 2: Let 0 < ¢ < & < ¢3 < ¢4. There exists a
B € N such that condition is satisfied for any 5 > B.

v 2@ %, Condition satisfied
0 29, Condition satisfied
v el ¢, Condition satisfied

H 120 “Tl , Condition not satisfied for 4 =1




O ONX OXN

Figure: L2 data fidelity: (a) input, (b) level set method gradient descent,
(c) New convex formulation of Chan-Vese model (global minimum).

Figure: Level set method: (d) bad initialization, (e) result.



Convex formulation log representation

d e f
Figure: (a) Input image, (b) ground truth, (c) level set method gradient
descent, (d) global minimum computed by new graph cut approach in
discrete setting, (e) New convex optimization approach in continuous
setting before threshold, (f) convex minimization approach after
threshold (global optimum).



Convex formulation log representation

Figure: L? data fidelity: (a) Input, (b) global minimum discrete
Chan-Vese model 4 neighbors, (c) convex formulation before threshold,
(d) convex formulation after threshold (global minimum).



Convex formulation log representation

d

Figure: Segmentation with L2 data term: (a) Input, (b) graph cut 4
neighbors (c) convex formulation before threshold, (d) convex
formulation after threshold (global minimum).



Convex formulation log representation

Figure: Segmentation with L2 data term: (a) Input, (b) result graph cut
8 neighbors in discrete setting (c) result convex formulation before
threshold, (d) result convex formulation after threshold (global optimum).



Convex formulation log representation

Figure: (a) Input image, (b) ground truth, (c) gradient descent, (d)
alpha expansion, (e) alpha-beta swap, (f) convex model.



Log representation - minimization by graph cuts

Discrete energy, anisotropic TV

min Eq(6',¢%) = D ESP(4p, 03)

Pt p2eB oeP
FaY D Wegldp — dglHa Y D weeldh — 3
PEP qeNk PEP qeNk

ES2(gn, 02) = {9nd36(p) + ¢(1 — ¢2)A(p))
+(1 = ¢p)dafa(p) + (1 — ¢p)(1 — 63)f3(p)}-



Log representation - minimization by graph cuts

Graph construction

1 grid point 2 grid points
» Associate two vertices to each grid point (v, 1 and v )
» For any cut (Vs, V4)
> If vy, € Vs then ¢/ =1 for j = 1,2
» If v,; € Vi then ¢’ =0 fori=1,2
» Figure left: graph corresponding to one grid point p
| 4

Figure right: graph corresponding to two grid points p and g
» Red: Data edges, constituting E%(¢1, ¢)
» Blue: Regularization edges with weight wp,

Bae and Tai EMMCVPR 2009, Kolmogorov PAMI 2004




Log representation - minimization by graph cuts

Graph construction

» Linear system for finding edge weights

A(p) + B(p) = f(p)
C(p) + D(p) = f3(p)
A(p) + E(p) + D(p) = fi(p)
B(p) + F(p) + C(p) = fa(p)

such that E(p), F(p) > 0

» For each p, Egata(gzb,l,, ,2,) interaction between two binary
variables. Linear system has solution iff S (¢}, ¢2) is
submodular.
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Log representation - minimization by graph cuts

Graph construction

» Linear system for finding edge weights

A(p) + B(p) = f(p)
C(p) + D(p) = f3(p)
A(p) + E(p) + D(p) = fi(p)
B(p) + F(p) + C(p) = fa(p)

such that E(p), F(p) >0

» For each p, Egata(gzb,l,, ,2,) interaction between two binary
variables. Linear system has solution iff S (¢}, ¢2) is
submodular.



Log representation - minimization by graph cuts

Graph construction

P =0¢>=1

» Linear system for finding edge weights

A(p) + B(p) = f(p)
C(p) + D(p) = f3(p)
A(p) + E(p) + D(p) = fi(p)
B(p) + F(p) + C(p) = fa(p)

such that E(p), F(p) >0

» For each p, Egata(gzb,l,, ,2,) interaction between two binary
variables. Linear system has solution iff S (¢}, ¢2) is
submodular.



Log representation - minimization by graph cuts

Graph construction

» Linear system for finding edge weights

A(p) + B(p) = f(p) + o(p)
C(p) + D(p) = f3(p) + a(p)
A(p) + E(p) + D(p) = fi(p) +a(p)
B(p) + F(p) + C(p) = fa(p) +o(p)

such that E(p), F(p) > 0

» For each p, Egata(gzb,l,, ,2,) interaction between two binary
variables. Linear system has solution iff S (¢}, ¢2) is

submodular.



Dual max-flow problem over graph

1 pixel 2 pixels

Max-flow problem

sup [ () + p2(x) e
p57pt7p127q Q

subject to

ps(x) < C(x), pI(x) < D(x), p(x) < A(x), P < B(x),
—F(x) <pB(x) S E(), g’ (x)li < e, |¢*()h <a, Vxe
divg'(x) — ps(x) + pt(x) + p(x) =0, VxeQ

divg?®(x) — p3(x) + pi(x) — p*(x) =0, VxeQ.



Continuous generalization of max-flow problem

2 pixels

Dual formulation

sup / pL(x) + p2(x) dx

ps,pt,p'2,q /Q
subject to
ps(x) < C(x )7 ps(x) < D(x), p;(x) < A(x), p; < B(x),
—F(x) < p(x) S E(X), lg°()2 <@, [¢* ()} < a, ae xeQ.

div g*(x) — pt(x) + pr(x) + p2(x) =0, ae. x€Q
div g?(x) — p2(x) + p2(x) — p?(x) =0, a.e x€Q.



Continuous generalization of max-flow problem

Primal-dual formulation

inf  sup /pl(x) + p2(x) dx
O pepepi2g o ’

T / H1)(div g1 (x) — pH(x) + pL(x) + p2(x)) dx
Q

4 / $2(x)(div 2(x) — p2(x) + p2(x) — p12(x)) dx},
Q

subject to

PL(x) < C(x), PA(x) < D(x), PH(x) < A(x), p? < B(x),
~F() < PP() S EX), [q 0k < ay [Pl S av ae xe Q.



Continuous generalization of max-flow problem

Primal-dual formulation

it sup /Q (1= 6Y)pt + (1 — 62)p2}(x) dx

1 A2
¢%.9% ps,pe,p12,q

+ /Q ' (x)pt (x) + 0*(x)pE (x) + (¢ (x) — &% (x))p"*(x) dx

+ /Q #*(x) div g*(x) dx + /Q #?(x) div g% (x) dx,
subject to

PL(x) < C(x), PA(x) < D(x), pH(x) < A(x), p? < B(x),
~F() < pP() S ER), (g 0k < ay [Pl S v ae xe Q.



Continuous generalization of max-flow problem

Primal problem
: 1 2
amin o [ Vol +a [ 90
/Q(l —¢M(x))C(x) + (1= 6% () D(x) + ¢" (x)A(x) + ¢* (x) B(x) dx

+ /Q max{¢'(x) — ¢*(x),0}E(x) — min{o"(x) — ¢°(x),0}F(x) dx

subject to ¢!(x), ¢?(x) € [0,1] a.e. x € Q



Max-flow algorithm

Augmented Lagrangian Problem

sup inf L(ps,pt,plz,q,cb)=/p51(><)+p52(><)dx
ps.pe,p12,q ¢ Q

+ Z/S?"(X)(div q'(x) = PL(x) + Pi(x) + (1) p*3(x)) dx
i=1

S5 v ) — A+ R0 + (1))

pL(x) < C(x), P(x) < D(x),
pL(x) < A(x), p? < B(x),

—F(x) < p*(x) < E(x),

g ()2 < o, [¢?(X)2 <a, YxeQ.



Max-flow algorithm

Augmented Lagrangian Method (ADMM)
Initialize pg, p?, p120, qo, gbo, for k=0,1,...

pi"" = arg  max )Lc(pi,pik,q'k,¢k), i=1,2

Pi(x)<Ci(x
12k+1 ik+1 ik ik ey
= ar max L Pt 5 q , 1=1,2
p L R clps Pt g, 9%)
k+1 .
g = arg max Lc(pEtt pf q,0%), i=1,2
lg'|<a
k . . . .
P = arg max  L(p T pif 0P g 6, i = 1,2
Pi(x)<Ci(x)

k41 ik k1, k1 ik+1 ; .
@' oo ¢ —c(divg' N (—ps N + p; * —1—(—1)’+1p12k+1)7 i=1,2



Max-flow algorithm

Simple image Brain image
iter | flops/iter flops iter | flops/iter flops
Chan-Vese MF | 11 | 9.94%10° | 1.09% 10" | 60 | 4.20%«10° | 2.52 % 10°
Special MF 12 | 3.92%10° | 470%10" | 60 | 1.65%10" | 9.93 % 10°
Potts MF 12 | 5.07%10° | 6.09%10" | 60 | 2.14%10" | 1.29 % 10°
Simplex MF 60 | 1.96+10° | 1.18+10%° | 190 | 8.21 x10° | 1.56 * 10°
Pock MF 205 | 1.12 %107 | 3.31 %10° | 1020 | 4.71 % 10" | 4.79 = 10

Table: Comparisons with other relaxations implemented with similar
max-flow algorithm (MF). Number of iterations k, number of flops per
iteration and total number of flops to reach energy precision

k *
EZE <1073




Labeling function representation

(23 ]afaf2]2]

1 2 3 4 5 6 p
» H. Ishikawa 2003, Exact optimization for Markov random

fields with convex priors, IEEE PAMI Volume 25 Issue 10,
Page 1333-1336

» Pock et al. 2010/2008, Global Solutions of Variational Models
with Convex Regularization, SIAM J. Imaging Sci., 3(4),
1122-1145, ECCV

» Bae et al.: A Fast Continuous Max-Flow Approach to
Non-Convex Multi-Labeling Problems, LNCS 8293, pg.

124 1EA4 DS2©°N1 A



Graph cut minimization labeling function

i convex _
PP DV ORI DI s (TS}
pev (p,q)ENCVY XV

Minimal cut on graph <+ minimizer of energy

(23 ]afaf2]2]

1D illustration: Example of cut Corresponding labeling

H. Ishikawa 2003, Exact optimization for Markov random fields with
convex priors, IEEE PAMI Volume 25 Issue 10, Page 1333-1336



Graph cut minimization labeling function

U'QE{T H}Zp(up,p)—koz Z lup — ug|
’ T pey (p,q)ENCYXV

Minimal cut on graph <+ minimizer of energy

(23 J4f4]2]2]

1D illustration: Example of cut Corresponding labeling

H. Ishikawa 2003, Exact optimization for Markov random fields with
convex priors, IEEE PAMI Volume 25 Issue 10, Page 1333-1336



Convex relaxation labeling function

min /Qp(u(x),x) dx+/ﬂgc°”vex(|VU(x)|)dx,

u: Q—R

Pock et al. proposed to represent u through binary function
A QxR—{0,1}

1, ifu(x) > ¢
Al £) = { 0, ifu(x)<¢

Problem was expressed in terms of \ as

emax
i VA l, O N4, dxd/? .
i /g /Q{a| |+ o6, x) [ 9L x)]| } d

subject to

Alminsx) =1, Almax;x) =0, x€Q

Pock et al. 2010, Global Solutions of Variational Models with Convex
Regularization, SIAM J. Imaging Sci., 3(4), 1122-1145



Convex relaxation labeling function

min /Qp(u(x),x)dx—ka/ﬂ|Vu(x)|dx,

u: Q—R

Pock et al. proposed to represent u through binary function
A QxR+~ {0,1}

1, ifu(x) > ¢
Al £) = { 0, ifu(x)<¢

Problem was expressed in terms of \ as

emax
i VA l, O (4, dxd/? .
i /g /Q{a| |+ o6, %) [9A(E x)]| } d

subject to

Alminsx) =1, A(lmax,x) =0, x€Q

Pock et al. 2010, Global Solutions of Variational Models with Convex
Regularization, SIAM J. Imaging Sci., 3(4), 1122-1145



Convex relaxation labeling function

min /Qp(u(x),x)dx—ka/ﬂ|Vu(x)|dx,

u: Q—R

Pock et al. proposed to represent u through binary function
A QxR+~ {0,1}

1, ifu(x) > ¢
Al £) = { 0, ifu(x)<¢

Problem was expressed in terms of \ as

Zmax
i VA l, O N4, dxd/? .
Wmn A /Q Lo [V + p(6, x) |9eM(E x)] } dix

subject to

Alminsx) =1, A(lmax;x) =0, x€Q

Pock et al. 2010, Global Solutions of Variational Models with Convex
Regularization, SIAM J. Imaging Sci., 3(4), 1122-1145



Convex relaxation labeling function

Discrete labels
min / p(u(x),x) dx—i—a/ |Vu(x)| dx,
-ny Ja Q

Can be written as

min /()\, 1—Ni)p(liyx)dx + aZ/ |V dx

S e={01}
1—)\0(X)>)\1(X)>)\2( ) 2 W 1( )ZAn(X):OVXEQ.

u related to \ by

u = zn:()\,'_l — A\ )
i=1

Hochbaum 02, Darbon 06, Chambolle 05, Pock 09



Convex relaxation labeling function

Discrete labels
min / p(u(x),x) dx—i—a/ |Vu(x)| dx,
-ny Ja Q

Convex relaxation

min Z/()\, 1— i) p(4i, x) dx + aZ/ |V i dx

a0,
1—)\0(X)>)\1(X)>)\2( ) 2 Y 1( )>)\n(X):0VX€Q.

u related to \ by

u = zn:()\,'_l 4
i=1



Graph cut minimization labeling function (recall)

min Zp(up,p)—l—a Z lup — ug]

:Q—{1,...

(p,q)ENCVY XV

Minimal cut on graph <+ minimizer of energy

1D illustration: Example of cut

(23 ]afaf2]2]

Corresponding labeling



Corresponding discrete max-flow problem

SUP/PI(X)dX

p.a JQ

\q,-(x)|1:}q,-1‘+}q,-2‘ <a forxeQ,i=1...,n—1
pi(x) < p(i,x) forxeQ, i=1,...,n
(divgi — pi+ pit1)(x) =0 forxeQ, i=1,...,n—1
gi-n=20 ondQ, i=1...,.n—1.

» 1D illustration




Continuous max-flow problem

sup/pl(x)dx

P.a JQ

lgi(x)], = ‘q,-l}2—|—‘q,-2‘2§a forxeQ, i=1,...,n—1
pi(x) < p(¥i,x) forxeQ, i=1,...,n
(divgi — pi + pit1)(x) = 0 forxeQ,i=1,....,n—1
gi-n=20 ondQ, i=1,...,n—1.

» 1D illustration

34 5 6
Bae et al.: A Fast Continui)us f\/lax-FIow Approachpto Non-Convex
Multi-Labeling Problems, LNCS 8293, pg. 134-154, 2014



Continuous max-flow problem

sup / p1(x) dx
pg JQ

lqi(x)|, = \q}\2+}q,-2\2§a forxeQ, i=1,...,n—1
pi(x) < pli,x)forx e Q, i=1,...,n

(divgi — pi + pit1)(x) = 0 forxeQ,i=1,...,n—1
gi-n= ondQ2, i=1,...,n—1.

Lagrange multipliers \; for flow conservation constraints results in

n—1

|nfsup/{pl+Z)\ divg; — p,+p,+1)}dx
P.q ]

pi(x) < p(ti,x), lai(x)l2 <a x€Q



Continuous max-flow problem

sup / p1(x) dx
pg JQ

lgi(x)], = ‘q,-l}2+‘q,-2‘2§a forxeQ, i=1,...,n—1
pi(x) < p(¥i,x) forxeQ, i=1,...,n

(divgi — pi + pit1)(x) = 0 forxeQ,i=1,....,n—1
gi-n=20 ondQ, i=1,...,n—1.

Rearranged primal-dual formulation

|nfsupZ/ i—1— A\j)pidx + Z/ i div g dx

pi(x) < p(ti,x), lai(x)l2 <a x€Q



Continuous max-flow problem

Rearranged primal-dual formulation (repeat)

mfsupZ/ i 1—)\)p,dx+2/)\d|vq,dx
pi(x) < p(li,x), qi(x)2 < x€Q

Leads back to primal formulation

min Z/()\, 1—Ni)p(liyx)dx + aZ/ |V dx

N 9—{0,1}
1=Xo(x) > Ai(x) > Xa(x) > ... > Apo1(x) > Ap(x) =0V x € Q.



Augmented Lagrangian algorithm

n—1
. c .
Le(p,g,N) = /P1+Z)\i(d'VPi+Pi+1—Pi)——|d'VPi+Pi+1—Pi|2 dx,
Q i=1 2

Init. pt, g and A!, let k,i=1. For k =1, ...

» For each layer i = 1...n solve

ot = arg max LB ). (a5 00 af5) X)
k+1 . k+1 k k+1 k
p,-+ = arg max ((pJ:—, ’plvpj>i) (qj<+, 7q_/>l) A )?

pi(x)<p(li,x)VxeQ
» Update multipliers \;, i=1,...,n—1, by

AL = Xf — c(divgitt — pftt 4+ pith);



Stereo reconstruction application

Given two images /; and Iz taken from slightly different viewpoints

Want to reconstruct "depth” u by minimizing
min u(x),x)dx + « Vul|,
u: QH{l,...,16}AP( ( ) ) ~/Q | |

3

plu.x) = 3 [H () — Byl + (u,0)T)).

Jj=1



Stereo reconstruction application

graph cut 4 eigh bors




Stereo reconstruction application

e< 1077 e<107° €<107°
Primal-dual | Max-flow Primal-dual | Max-flow Primal-dual | Max-flow
14305 920 (x 5) | > 30000 1310 (x 5) | > 30000 1635 (x 5)

Table: Iteration counts for stereo experiment. Number of iterations to
reach an energy precision of 10, 10> and 107°.

E'—E*
E*

£ =

, E'is energy at iteration i and E* is energy of final solution.




Convex relaxations for other related NP-hard problems

Will derive convex relaxations for
» Total curve length (Potts’ regularization term)
> /(o of gradient

> joint minimization over regions and region parameters in
segmentation

» non-submodular data terms



Convex relaxations for total curvelength (Potts’ regularizer)

» Chambolle et al. 2012/2009, A Convex Approach to Minimal
Partitions, SIAM J. Imaging Sci., 5(4), 1113-1158.

» Bae and Tai, Efficient Global Minimization Methods for Image
Segmentation Models with Four Regions, Journal of
Mathematical Imaging and Vision, 2014

» Simplex constrained relaxation (Zach et al. 08, Lellmann et
al. 09, Bae et al. 09/11) was covered in previous talk



Convex relaxations for total curvelength (Potts’ regularizer)

n

n—1
min  sup /()\,-_1 —Ai)p(li,x)dx + « / ;i div g; dx
DY (g z—; Q z—; 0

st. 1= )\o(X) > )\1(X) > )\Q(X) > )\n—l(X) > )\n(X) =0 xeq.

‘ql‘oo S 17 = 17"'7”

Pock et al 09,12 proposed to avoid multiple countings of
boundaries by optimize over the convex set

i
a(x) e {geR™N| | qf<a;
i=i
V(il,i2), 1§i1§i2§n—1},X€Q
and relax binary constraint by )\,-(Xl) €01, xeQ,i=1,..n
> Advantage: tighest relaxation for Potts’ model

» Disadvantage: number of contraints grow quadratically in
number of regions

Chambolle et al. 2012/2009, A Convex Approach to Minimal Partitions,
SIAM J. Imaging Sci., 5(4), 1113-1158.



Convex relaxations for total curvelength (Potts’ regularizer)

Potts model in terms of overlapping binary functions
min  sup « | ¢*divgldx+a | ¢*divg? dx,
L% gl g2 <1 JQ Q
+ [ 100G + (0 CEx)
Q
—I—/ max{¢!(x)—¢?(x), 0} C*?(x) dx—/ min{¢*(x)—¢>(x), 0} C?1(x) d>
Q Q
+ [ = G0 + (1 - 620) 2 o
Q
such that ¢'(x), ¢?(x) € [0,1] ¥x € Q

» Convex relaxation of Potts model by adding additional dual

constraints
')+ (X)) <1, [¢'(x) —¢*(x)| <1, VxeQ

Bae and Tai, Efficient Global Minimization Methods for Image
Segmentation Models with Four Regions, Journal of Mathematical Imaging and
Vision, 2014



Convex relaxations for total curvelength (Potts’ regularizer)

Example of other regularization term
Constraint set that disfavors interphases between region 1 and
region 4

(X)) <a, [ <a, [¢'(x)+F ()| <1, VxeQ




Convex relaxations for total curvelength (Potts’ regularizer)

Different representations of partitions in terms of functions
» 1) Vector function: u(x) = (v}(x), ..., u"(x)) = ¢ for x € Q;
» 2) Labeling function: ¢(x) =i for all x € Q;

» 3) Intersection of m = log,(n) binary functions ¢!,...¢™

xeWiff | ux)=e | {x)=1 | ¢}(x)=1,¢*(x) =0
xeDiff | ux)=e | {(x)=2 | ¢'(x)=1,¢*(x)=1
xeWiff | u(x)=e | €(x)=3 | ¢}(x)=0,¢%(x) =0
x€Wiff | ux)=e | (x)=4 | ¢} (x)=0,¢°(x) =1

Table: Representation of 4 regions.



Convex relaxations for total curvelength (Potts’ regularizer)

» Relaxation over unit simplex (Zach et al. 08, Lellmann et al.
09, Bae et al. 09/11)

1, € Q; .
ui(x) = Ig;(x) ::{O igéQ,- , i=1,...,n

» Problem can be expressed as

Xr;’lel?o 5 Z/ ui(x)fi(x) dx + aZ/ |Vui| dx,

n
s.t. Z ui(x) =1 ,ui(x) €{0,1} VxeQ, i=1,..,n
i=1
» Convex relaxation: vj(x) € [0,1]Vx € Q, i=1,...,n
» If computed solution is binary: also global minimum

» else: convert into binary by rounding schemes (not generally
exact)



Image reconstruction with sparse gradients

» Piecewise constant Mumford-Shah model

inf  lim /|I(x)—lo(x)\f3dx+)\/ |VI|2dx—|—a/ds.
IleX A—=o0 Jo O\r r

» Can also be expressed as a partition problem where the
number of regions n is unknown.

min min m|n Pi— l0 ’de + « /
n {Q }, 1{#: i= 1€X Z/ ‘/’L | Z

where I(x) = pj forall x € Q;, i=1,...,n
» Discrete version can be formulated as

. 408
min ||/ — 1°l[3 + @[V /l]o

» The set of gray values X can be continuous X = [0, 1], or
discretized X = {{1,....,¢, } eg. X ={0,1/L,2/L,...,1}



Image reconstruction with sparse gradients

» PC Mumford-Shah model with X = {¢;,...,¢;}

inf  lim /|/ IO(X)\ﬁderA/ |VI|2dx—|—a/ds.
Q\r r

I1eX A—o0

» Reformulated problem

L
min g /u,-(x)|lo(x)—€,-|5 + o |Vui| dx
u " Q

i=1

subject to L
Zu;(x) =1, VxeQ

i=1
ui(x) € {0,1}, VxeQ, i=1,..,L

Theorem: Given a minimizer u*. Define | = Z,-Lzl liu7, then | is a
global minimizer to the quantized piecewise constant
Mumford-Shah model with X = {/1,....,¢;




Image reconstruction with sparse gradients

» PC Mumford-Shah model with X = {¢;,...,¢;}

inf  lim /|/ IO(X)\ﬁderA/ |VI|2dx—|—a/ds.
Q\r r

I1eX A—o0

» Reformulated problem

L
min g /u,-(x)|lo(x)—€,-|5 + o |Vui| dx
u " Q

i=1

subject to L
Zu;(x) =1, VxeQ
i=1

ui(x) € [0,1], VxeQ, i=1,..,L

Theorem: Given a minimizer u*. Define | = Z,-Lzl liu7, then | is a
global minimizer to the quantized piecewise constant
Mumford-Shah model with X = {/1,....,¢;




Image reconstruction with sparse gradients




Image reconstruction with sparse gradients

Left: ¢; relaxation (total variation), Right: New convex relaxation.
Bottom: Set of pixels with non-zero gradient V/. Set of gray
values quantized to X = {0, 1, ....,255}.



Image reconstruction with sparse gradients

Left: total variation (¢; relaxation), Right: New relaxation.
Bottom: Set of pixels with non-zero gradient V/. Set of gray
values quantized to X = {0,1,....,255}.



Convex relaxation for parametric image segmentation

» We are interested in problem

n n
min 11°(x) = il ? dx + / ds,
{9,-},-"1,{uf}7leX,Z_;/n,- 00 =i z—; o9,

such that U7, Q;=Q, N;Q; =0

» Equivalent formulation

min min u;(x 1°(x)— ,-dex—l—a / Vu;| dx.
ui(x)€{0,1} pieX IX_;/Q ( )| ( ) M| ,z_; Q| |

such that Z ui(x) =1, VxeQ
i=1
» We assume X is discrete X = {{1,...,¢1}
» For instance X = {1,...,255} or X ={0,1/L,2/L,...,1}



Convex relaxation for parametric image segmentation

Related work with parameters:

» Alternating minimization w.r.t. parameters and regions: no
guarantee of global minimizers
» Darbon 07, Lempitsky 08, Strandmark 09 considered n = 2
and avoided checking all L2 combinations
» Brown et al. 2011: optimization of binary function defined
over space of O(L? - ||) dimensions for n = 2
Our work:

» Size of convex problem grows linearly in L, i.e. as O(L - |Q]),
and can handle any number of regions n, known or unknown.



Convex relaxation for parametric image segmentation

Reformulation as minimal binary function over Q x X
» For each discrete gray value ¢; define a binary function
u: Q—{0,1},i=1,...,L

» Define minimization problem

L
muin Z/Qu,-(x)ﬂo(x) —4)° + a|Vui| dx
i=1

subject to

Zu,-(x) =1, VxeQ
i=1
L

Z supui(x) <n

i—1 X€Q
ui(x) € {0,1}, VxeQ, i=1,..,L



Convex relaxation for parametric image segmentation

L
muin Z/Q ui()|1°(x) = 4]° + a|Vu| dx
i=1

subject to L
Zu,-(x) =1, ¥xeQ
i=1
L
Z sup ui(x) < n
i—1 xeN

ui(x) €{0,1}, VxeQ, i=1,..L

Theorem: Given an optimizer u*. Let n* be the number of indices
i for which u? # 0. Define the set of indices {11}1”;1 c{1,..L}
such that uj # 0. Then {u ya 1,{6,}.}]’-’;1 is a global optimizer to

the original problem. | = Zi:l fiuj is an optimal piecewise
constant function




Convex relaxation for parametric image segmentation

L
muin Z/Q ui()|1°(x) = 4]° + a|Vu| dx
i=1

subject to L
Zu,-(x) =1, ¥xeQ
i=1
L
Z sup ui(x) < n
i—1 xeN

ui(x) € [0,1], VxeQ, i=1,..L

Theorem: Given an optimizer u*. Let n* be the number of indices
i for which u? # 0. Define the set of indices {11}1”;1 c{1,..L}
such that uj # 0. Then {u ya 1,{6,}.}]’-’;1 is a global optimizer to

the original problem. | = Zi:l fiuj is an optimal piecewise
constant function




Convex relaxation for parametric image segmentation

(a) Input image. (b) convex relaxation L; data term |/°(x) — p;l,
(c) convex relaxation L2 data term |/%(x) — ;|2 (d) piecewise
constant Mumford-Shah model.



Convex relaxation for parametric image segmentation

(a) Input image. (b) convex relaxation L, data term [/9(x) — |2,
(c) piecewise constant Mumford-Shah model.



Convex relaxation for parametric image segmentation

OY OY ON O%

(a) Input. (b)-(c) Convex relaxation with: (b) n=4, (c) n=2.
(d) Convex relaxation of piecewise constant Mumford-Shah model.



Max-flow based algorithm

L
min E /u,-(x)\lo(x)—f,-\ﬁ + o |Vui| dx
u " Q

i=1

subject to L
Zu,-(x) =1, ¥xeQ
i=1
L
S sup ux) < n
xeN

i=1
ui(x) €[0,1], VxeQ, i=1,..,L



Max-flow based algorithm

» Let v be lagrange multiplier for the constraint

» Lagrangian formulation

max min £(u, ")
Yy u

L L
=3 [ w6~ i+ [Vl dx-+(3 mas ) — )
i—179 i-1 "
L

s.t. Z ui(x) =1, wui(x)>0vVxeQ,i=1,..,L ~v>0
i=1



Max-flow based algorithm

max min L(u, )
~y u
L L
=3 [ w000~ 67+ a [Vl a4 (3 maxue) )
— Jq — x
I:E i=1
s.t. {Z ui(x) =1, wui(x)>0,i=1,..,L} =A,VxeQ, >0

i=1

Lo = argmin £(u,7Y), st u(x) € A VX €Q
u

L
2. 4% = max(0,7* + C(Z max uft(x) — n))
i=1



Max-flow based algorithm

max min L(u, )
~y u
L L
= i) — 4P + |V d i(x) —
;/Qu(xn 09 =+ V623 mag o) )
s.t. {Z ui(x) =1, wui(x)>0,i=1,..,L} =A,VxeQ, >0

i=1

L u* =argmin L(u,7%), st u(x) € ALV xeEQ

u
L
k1 _ k k1)
2. 4" = max(0,7" + c(lz_; max u; (x) —n))

» 1. has form of image segmentation model with label cost prior
(Zhu and Yuille 96)

n n
min min fi(1°(x)) dx + a/ ds+ - n,
n {Qf},-"_;l;/n,- (769) ; 9Q;



Max-flow based algorithm

L n
muin Z /Q ui(X)|1°(x) — 4% dx + o |V uj| dx + ’yz max ui(x)
i=1 i=1

L
such that Z ui(x) = 1, ui(x) € [0,1], Vx € Q, i=1,...,L
i=1

Primal-dual formulation in case v > 0

L
sup inf /psdx + Z/ Ui(ddii—Ps-i-Pi—ri)dX}
Q =179

ps,p,q Y
p(x) < £(x), laix)] < o /\ri(X)\dXSv; i=1...1
Q

Augmented Lagrangian functional

n n
. c . 2
dx—l—g uj,divg; — ps + -—r-——E divgi —ps+pi—ri
/st £ < i 4i — Ps T Pi 1> 5 £ || qi — Ps T Pi 1||



Max-flow based algorithm

Augmented Lagrangian Method (ADMM):
Initialize pg,p?, q° r%and ¢°. For k=0,1, ...

cll, ?
i = arg max 5 divar+ pb0) — pEGe) — 1) — ut (/e
k+1
pt i=arg  max
! pi(x)<p(¢i,x)
c . ?
=l diva ) — p) — k() — (/e
c . ?
rik+1 1= arg ,.(T)?;(w —E Hr,' — div q,“'l(X) + pﬁ(X) - plk(X) + ulk(X)/CH
pktl = arg max/ ps dx
Ps Q

2
ps = P (x) = div g (x) + £/ (x) + uf (x) e

n

52 |

2 4

i=1

k+1 _  k okl k1 kDl k1
U™t =uf —c(divg T —pd T+ p T =)

1



Convex relaxation non-submodular data term

» Convex relaxation if E(x) or F(x) are negative for some x € Q

. 1 2
min o [ V6t +a [ 1967
/Q(l—¢1(x))C(X)+(1—¢2(X))D(X)+¢1(X)A(X)+¢2(X)B(X) dx

+/{max{¢1—¢2,0} max(E, 0)—min{¢'—¢?,0} max(F,0)}(x) dx
Q

A(x) + B(x) = fo(x)
C(x) + D(x) = f3(x)
A(x) + E(x) + D(x) = fi(x)
B(x)+ F(x) + C(x) = fa(x)

» Minimize over convex constraint ¢!, ¢? € [0, 1].

» Theorem: Binary solution obtained by thresholding ¢!, #? at
any level t € (0,1] is a global minimizer over ¢!, ¢? € {0,1}
under conditions which can be checked after computation.



Convex relaxation non-submodular data term

it sup /Q (1= G(x))pH(x) + (1 — G2(x))p2(x) dx

1 A2
¢%.9% ps,pe,p12,q

T /Q ()P (x) + 62 (x)p2(x) dx + /Q (6(x) — 6%(x))p12(x) dx
+ /Q ¢t (x) div g*(x) dx + /Q $?(x) div g°(x) dx.

pL(x) < C(x), P2(x) < D(x), PA(x) < A(x), p? < B(x),
_F(X) < P12(X) < E(X)7 ‘ql(x)|27 < «, ‘q2(X)|2 < «, Vx € .

» Minimize over convex constraint ¢!, ¢? € [0, 1].

» Theorem: Binary solution obtained by thresholding ¢!, #? at
any level t € (0,1] is a global minimum over ¢!, ¢ € {0,1}
provided

(A= pp)(x) + (D = p3)(x) = —E(x), VxeQ
(B—pi)(x) +(C = p)(x) = —F(x), ¥xeQ,



Convex relaxation non-submodular data term




Exact minimization

» Focused on two approaches for multiphase problems with
global optimality guarantee.

» Both could be formulated as max-flow/min-cut problems on a
graph in discrete setting.

» Both could be exactly formulated as convex problems in
continuous setting. Dual problems could be formulated as
continuous max-flow problems.

Approximate minimization

> Presented convex relaxations for broader set of non-convex
problems.

» Included Potts’ model and joint optimization of regions and
region parameters.

» Dual problems were formulated as max-flow, but now there
may be a duality gap to original problems
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