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Context of this presentation

I Overview over recent combinatorial graph cut methods and
convex relaxation methods in imaging science with focus on
interface problems

I Category 1: Problems that can be solved exactly
I Always direct relation between graph cut and convex

relaxations via continuous max-flow

I Category 2: Problems that can only be solved approximately
(NP-hard)

I Very good approximations can be obtained via different convex
relaxations

I Dual problems can be interpreted as continuous max-flow
problems

I Efficient convex max-flow algorithms can be derived for all
problems



Interface problems

Interface problems exists everywhere in science and technology. For
imaging and vision, it is somehow classical:

I Mumford-Shal model (Mumford-Shah-1989)

I GAC model (Caselles-Kimmel-Sapiro-1997)

I Chan-Vese model (Chan-Vese-2001)

How to solve these interface problems?

I active contour (Kass-Witkin-Terzopoulos-1998)

I level set (Osher-Sethian-1988)

I phase-field ( Modica-Mortola-1977, Ambresio-Tortorelli-1990)

I ...
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Introduction to Max-Flow / Min-Cut

(Vs ,Vt) is a cut, wij = cost of cutting edge(i , j)
cost of cut c(Vs ,Vt) =

∑
i∈Vs ,j∈Vt

wij

Min-cut: find cut of minimum cost,
Max-Flow: Find the maximum amount of flow from s to t.

Max-flow = min-cut.

Ref: Ford and D. R. Fulkerson, 1962.
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Graph-cut for image segmentation

A simple 1d signal I (x):
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Graph-cut for images: Boykov-Kolmogorov (2001).



Graph-cut for image segmentation

The graph, a graph-cut and its corresponding label:

Popular ”capacity” choices: (Chan-Vese-2001)

ws,p = |I (p)−c1|2,wt,p = |I (p)−c2|2, c1 = 0, c2 = 1, w(p, q) = α.

More generally

ws,p = f1(p), wt,p = f2(p), w(p, q) = α or g(p, q) (edge force).
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Relation with k-mean (α = 0 and unknown ci )

I Given c1 and c2.

I use cut (threshold) to get Ω1 and Ω2.

I update

ci =

∫
Ωi

I (x)

Area(Ωi )
, i = 1, 2.

I go to the next iteration.

k-mean is a non-regularized Chan-Vese model.
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k-mean model (α = 0 and unknown ci )

k-mean algorithm is an alternating minimization procedure for:

min
ci ,Ωi

n∑
i=1

∫
Ωi

(I (x)− ci )
2.

This formulation is in the continuous setting.

Ref: K-means clustering, http://en.wikipedia.org/wiki/K-means clustering.



Regularized Graph-cut: α 6= 0

The ”virtual graph and the corresponding label function

u(p), p = 1, 2, · · · .

Costs:

ws,p = |I (p)− c1|2,wt,p = |I (p)− c2|2,wp,q = α.

The corresponding minimization problem is: (N(p) – neighbors of
p)

min
u(p)∈{1,2}

∑
p∈Ω1

|I (p)−c1|2+
∑
p∈Ω2

|I (p)−c2|2+α
∑
p

∑
q∈N(p)

|u(p)−u(q)|.



Discrete vs continuous

Discrete minimization:

min
u(p)∈{0,1}

∑
p∈Ω1

|I (p)−c1|2+
∑
p∈Ω2

|I (p)−c2|2+α
∑
p

∑
q∈N(p)

|u(p)−u(q)|.

Continuous minimization:

min
u(x)∈{0,1}

∫
Ω1

|I (x)− c1|2 +

∫
Ω2

|I (x)− c2|2 + 4α

∫
Ω
|Du|.

min
u(x)∈{0,1}

∫
Ω
|I (x)− c1|2(1− u) +

∫
Ω
|I (x)− c2|2u + 4α

∫
Ω
|Du|.



Higher dimensional problems

A graph for 2D images:

Figure : Graph used for discrete 2D binary labeling



Two-phase Min-cut – Discretized setting

Figure : Graph and cut for discrete binary labeling

It is easy to see the cost of a cut (u(p) = 0 or 1). A minimum cut
is to find u for:

min
u∈{0,1}

∑
p∈P

f1(p)(1−u(p))+f2(p)u(p)+
∑
p∈P

∑
q∈N k

p

g(p, q)|u(p)−u(q)|.

Capacity:

ws,p = f1(p), wt,p = f2(p), wp,q = g(p, q).

Ref: N k
p is the k-neighborhood of p ∈ P.



Two-phase Min-cut – corresponding continuous setting

Figure : Graph used for discrete and continuous binary labeling

A ”continuous” minimum cut is to solve:

min
u∈{0,1}

∫
Ω

f1(x)(1−u(x))+f2(x)u(x)+g1(x)|D1u(x)|+g2(x)|D2u(x)|.

Capacity:

ws(x) = f1(x), wt(x) = f2(x), w1(x) = g1(x), w2(x) = g2(x).



Max-Flow over a graph

Figure : Graph used for discrete binary labeling

Max-flow formulation

max
ps ,pt ,q

∑
v∈V\{s,t}

ps(v)

subject to |q(v , u)| ≤ g(v , u), ∀(v , u) ∈ V × V
0 ≤ ps(v) ≤ f1(v), ∀v ∈ V\{s, t};
0 ≤ pt(v) ≤ f2(v), ∀v ∈ V\{s, t};( ∑

u∈N(v)

q(v , u)
)
− ps(v) + pt(v) = 0, ∀v ∈ V\{s, t}; .



Continuous Max-Flow

Figure : Discrete (left) vs. Continuous (right)

Continuous max-flow formulation

sup
ps ,pt ,q

∫
Ω

ps(x) dx

subject to|q1(x)| ≤ g1(x); q2(x)| ≤ g2(x), ∀x ∈ Ω;

0 ≤ ps(x) ≤ f1(x), ∀x ∈ Ω;

0 ≤ pt(x) ≤ f2(x), ∀x ∈ Ω;

div q(x)− ps(x) + pt(x) = 0, a.e. x ∈ Ω.

Related: (G. Strang (1983)).



Continuous Max-Flow: different internal flow capacity

Figure : Discrete (left) vs. Continuous (right)

Continuous max-flow formulation

sup
ps ,pt ,q

∫
Ω

ps(x) dx

subject to
|q(x)| =

√
q2

1(x) + q2
2(x) ≤ g(x), ∀x ∈ Ω;

0 ≤ ps(x) ≤ f1(x), ∀x ∈ Ω;

0 ≤ pt(x) ≤ f2(x), ∀x ∈ Ω;

div q(x)− ps(x) + pt(x) = 0, a.e. x ∈ Ω.



Connection: Continuous Max-Flow and Min-Cut

Lagrange multiplier u for flow conservation condition

div q(x)− ps(x) + pt(x) = 0, a.e. x ∈ Ω.

yields primal-dual formulation

sup
ps ,pt ,q

inf
u

∫
Ω

ps + u
(

div q − ps + pt

)
dx

s.t. ps(x) ≤ f1(x) , pt(x) ≤ f2(x) , |q(x)| ≤ g(x) .

Optimizing for flows ps , pt , q results in:

min
u∈[0,1]

∫
Ω

f1(x)(1− u(x)) + f2(x)u(x) dx + g(x) |∇u(x)| dx .

This is exactly the same model as the model in CEN (2006). 1

1T. F. Chan and S. Esedoglu and M. Nikolova: Algorithms for finding global
minimizers of image segmentation and denoising models, SIAM J. Appl. Math.,
66, 1632–1648,(2006)



Three problems

min
u(x)∈{0,1}

∫
Ω

f1(1− u) + f2u + g(x)|∇u|dx .

min
u(x)∈[0,1]

∫
Ω

f1(1− u) + f2u + g(x)|∇u|dx .

max
ps ,pt ,q

∫
Ω

psdx subject to:

ps(x) ≤ f1(x), pt(x) ≤ f2(x), |p(x)| ≤ g(x),

divp(x)− ps(x) + pt(x) = 0.
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Three problems

PCLMS or Binary LM (Lie-Lysaker-T.,2005):

min
u(x)∈{0,1}

∫
Ω

f1(1− u) + f2u + g(x)|∇u|dx .

Convex problem (CEN, (Chan-Esdoglu-Nikolova,2006))

min
u(x)∈[0,1]

∫
Ω

f1(1− u) + f2u + g(x)|∇u|dx .

Graph-cut (Boykov-Kolmogorov,2001)

max
ps ,pt ,q

∫
Ω

psdx subject to:

ps(x) ≤ f1(x), pt(x) ≤ f2(x), |p(x)| ≤ g(x),

divp(x)− ps(x) + pt(x) = 0.



Remarks

The following approaches are solving the same problem, but did
not know each other:

I max-flow and min-cut.

I Chan-Esedougla-Nikolova 2006 (convex relaxation approach)

I Binary Level set methods and PCLSM (piecewise constant
level set method)

I A cut is nothing else, but the Lagrangian multiplier for the
flow conservation constraint!!!



Continuous Max-Flow: Remarks

I Min-cut problem is minimizing an energy functional. (Many
existing algorithms) Are not using the decent (gradient) info
of the energy.

I Continuous max-flow/min-cut is a convex minimization
problem. A lot of choices, can use decent (gradient) info.



Continuous Max-Flow: How to solve it (Only 2-phase
case)?

I Popular (discrete) Min-cut algorithms: Augmented Path.
Push-relabel, etc,

I Available continuouse max-flow/Min-cut approaches:
Split-Bregman, Augmented Lagrangian, Primal-Dual
approaches. We can use these approach to solve the convex
min-cut problem.



Continuous Max-Flow and Min-Cut

Multiplier-Based Maximal-Flow Algorithm
Augmented lagrangian functional (Glowinski & Le Tallec, 1989)

Lc(ps , pt , q, λ) :=

∫
Ω

ps dx+λ
(

div q−ps+pt

)
−c

2
| div q−ps+pt |2 dx .

minmax subject to:
ps(x) ≤ f1(x) , pt(x) ≤ f2(x) , |q(x)| ≤ g(x)
ADMM algorithm: For k=1,... until convergence, solve

qk+1 := arg max
‖q‖∞≤α

Lc(pk
s , p

k
t , q, λ

k)

pk+1
s := arg max

ps(x)≤f1(x)
Lc(ps , p

k
t , q

k+1, λk)

pk+1
t := arg max

pt(x)≤f2(x)
Lc(pk+1

s , pt , q
k+1, λk)

λk+1 = λk − c (div qk+1 − pk+1
s + pk+1

t )



Continuous Max-Flow and Min-Cut

Other algorithms for solving the relaxed problem: add p = ∇u

I Bresson et. al.

I fix µk and solve ROF problem

λk+1 := arg min
λ

{
α

∫
Ω

|∇λ(x)| dx +
1

2θ
‖λ(x)− µk(x)‖2

}
I fix λk+1 and solve

µk+1 := arg min
µ∈[0,1]

{ 1

2θ
‖µ(x)−λk+1‖2 +

∫
Ω

µ(x)
(
f1(x)−f2(x)

)
dx
}

I Goldstein-Osher: Split Bregman / augmented lagrangian



Convergence

Figure : Red line: max-flow algorithm. Blue line: Splitting algorithm
(Bresson et. al. 2007)



Metrication error, Parallel, GPU, ...

Experiment of mean-curvature driven 3D surface evolution (volume size: 150X150X150 voxels). (a) The radius plot

of the 3D ball evolution driven by its mean-curvature flow, which is computed by the proposed continuous max-flow

algorithm; its function is theoretically r(t) =
√
C − 2t. (b) The computed 3D ball at one discrete time frame,

which fits a perfect 3D ball shape. This is in contrast to (c), the computation result by graph cut [15] with a 3D

26-connected graph. The computation time of the continuous max-flow algorithm for each discrete time evolution

is around 1 sec., which is faster than the graph cut method (120 sec.)

Ref: Y. Yuan, E. Ukwatta, X. Tai, A. Fenster, and C. Schnorr. A fast
global optimization-based approach to evolving contours with generic shape
prior. Technical report, also UCLA Tech. Report CAM 12-38, 2012.



Metrication error, Parallel, GPU, ...

I Fully parallel, easy GPU implementation.

I linear grow of computational cost (per iteration): 2D, 3D, ...



Gamma convergence
When h 7→ 0, the energy at the minimizer on the discrete graph
converges to energy at the minimizer of the continuous problem
both for isotropic and anisotropic TV:

TV (u) =

∫
Ω

(|ux |+ |uy |)dx , TV (u) =

∫
Ω

√
|ux |2 + |uy |2dx .

Γ
=⇒

I Anisotropic TV: sub-modular, Can use standard graph cut
methods.

I Isotropic TV: not sub-modular, Cannot use stander graph cut
methods, primal-dual approach is faster even !
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Literature: Gamma convergence for discrete TV

I Isotropic TV: h 7→ 0 h = mesh size.
Braides-2002, Chambolle-2004,
Chambolle-Caselles-Novaga-Cremers-Pock-2010,

I Anisotropic TV: h 7→ 0 h = mesh size.
Chambolle-Caselles-Novaga-Cremers-Pock-2010,
Gennip-Bertozzi-2012, Trillo-Slepcev-2013,



Multiphase Approaches

Multiphase Approaches



From Two-phase to multi-phases

I Related to garph cut, α-expansion and α− β swap are mostly
popular approaches for multiphase ”labelling”.

I Approximations are made and upper bounded has been given.

Ref: Y. Boykov and O. Veksler and R. Zabih: Fast approximate energy
minimization via graph cuts, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23, 1222-1239, (2001).



Multiphase problems – Approach I

We need to identify n
characteristic functions
ψi (x), i = 1, 2 · · · n:

ψi (x) ∈ {0, 1},
n∑

i=1

ψi (x) = 1.
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Multiphase problems – Approach II

Each point x ∈ Ω is labelled by a vector function:

u(x) = (u1(2), u2(x), · · · ud(x)).

I Multiphase: Total number of phases n = 2d . (Chan-Vese)

ui (x) ∈ {0, 1}.
I More than binary labels: Total number of phases n = Bd .

ui (x) ∈ {0, 1, 2, · · ·B}.
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Multiphase problems – Approach III

Each point x ∈ Ω is labelled by

u(x) = i , i = 1, 2, · · · n.

I One label function is enough
for any n phases.

I More generall
u(x) = `i , i = 1, 2, · · · n.
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Literature: Multiphase Approach I

Zach-et-al-2008 (VMV),
Lellmann-Kappes-Yuan-Becker-Schnörr-2009 (SSVM),
Lellman-Schnorr-2011 (SIIMS), Li-Ng-Zeng-Chen-2010 (SIIMS),
Lellman-Lellman-Widman-Schnorr-2013 (IJCV),
Qiao-Wang-Ng-2013, Bae-Yuan-Tai-2011 (IJCV)



Literature: Multiphase Approach II

Vese-Chan-2002 (IJCV),Lie-Lysaker-Tai-2006 (IEEE TIP),
Brown-Chan-Bresson-2010 (cam-report 10-43), Bae-Tai 2009/2014
(JMIV)



Literature: Multiphase Approach III

Chung-Vese-2005 (EMMCVPR), Lie-Lysaker-Tai-2006 (Math.
Comp), Ishikawa-2004 (PAMI), Pock-Chambolle-Bischof-Cremers
2008/2010 (SIIMS), Kim-Kang-2012 (IEEE TIP),
Jung-Kang-Shen-2007, Wei-Wang-2009,
Luo-Tong-Luo-Wei-Wang-2009, Bae-Yuan-Tai-Boykov 2010/2014



Multiphase Approach

Multiphase Approach (I)

Graph for characteristic functions

Ref: Yuan-Bae-T.-Boykov (ECCV10): A continuous max-flow approach to
Potts model, Computer Vision–ECCV (2010), pp. 379–392.

Ref: Bae-Yuan-Tai: Global minimization for continuous multiphase
partitioning problems using a dual approach, International journal of computer
vision, 92, 112–129(2011).



Multi-partitioning problem

Multi-partitioning problem (Pott’s model)

min
{Ωi}

n∑
i=1

∫
Ωi

fidx +
n∑

i=1

∫
∂Ωi

g(x)ds,

such that ∪ni=1 Ωi = Ω, ∩ni=1Ωi = ∅

Pott’s model in terms of characteristic functions

min
ui (x)∈{0,1}

n∑
i=1

∫
Ω

ui (x)fi (x) dx +
n∑

i=1

∫
Ω

g(x) |∇ui | dx , s.t.
n∑

i=1

ui (x) = 1

ui (x) = χΩi (x) :=

{
1, x ∈ Ωi

0, x /∈ Ωi
, i = 1, . . . , n
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A convex relaxation approach

Relaxed Potts’ model in terms of characteristic functions
(primal model)

min
u

EP(u) =
n∑

i=1

∫
Ω

ui (x)fi (x) dx +
n∑

i=1

∫
Ω

g(x) |∇ui | dx ,

s.t. u ∈ 4+ = {(u1(x), . . . , un(x)) |
n∑

i=1

ui (x) = 1 ; ui (x) ≥ 0 }

I Convex optimization problem

I Optimization techniques: Zach et. al. alternating TV
minimization. Lellmann et. al: Douglas Rachford splitting and
special thresholding, Bae-Yuan-T. (2010),
Chambolle-Crmer-Pock (2012).
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Dual formulation of relaxation: Bae-Yuan-T. (IJCV, 2011)

Dual model: Cλ := {p : Ω 7→ R2 | |p(x)|2 ≤ g(x) , pn|∂Ω = 0 } ,
I Hence the primal-dual model can be optimized pointwise for u

min
u∈4+

n∑
i=1

∫
Ω

ui (x)fi (x) dx +
n∑

i=1

∫
Ω

g(x) |∇ui | dx ,

max
pi∈Cλ

min
u∈4+

E (u, p) =

∫
Ω

n∑
i=1

ui (fi + div pi ) dx

= max
pi∈Cλ

∫
Ω

min
u(x)∈4+

n∑
i=1

ui (x)(fi (x) + div pi (x)) dx

= max
pi∈Cλ

∫
Ω

{
min(f1 + div p1, . . . , fn + div pn)

}
dx

= max
pi∈Cλ

ED(p)
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Convex relaxation over unit simplex

p∗ ∈ arg sup
pi∈Cα

ED(p) =

∫
Ω

min(f1 + div p1, . . . , fn + div pn) dx

u∗ ∈ arg min
u∈4+

E (u, p∗) =

∫
Ω

min
u(x)∈4+

n∑
i=1

ui (x)(fi (x) + div p∗i (x)) dx

Theorem
Let p∗ be optimal to the dual model. For each x ∈ Ω, a binary
primal optimal variable u∗(x) can be recovered by

u∗k(x) =

{
1 if k = arg mini=1,...,n (fi (x) + div p∗i (x))
0 otherwise

,

provided the n values (f1(x) + div p∗1(x), ..., fn(x) + div p∗n(x)) have
a unique minimizer. Then (u∗, p∗) is a saddle point, i.e.

EP(u∗) = E (u∗, p∗) = ED(p∗)



Convex relaxation over unit simplex

p∗ ∈ arg sup
pi∈Cα

ED(p) =

∫
Ω

min(f1 + div p1, . . . , fn + div pn) dx

u∗ ∈ arg min
u∈4+

E (u, p∗) =

∫
Ω

min
u(x)∈4+

n∑
i=1

ui (x)(fi (x) + div p∗i (x)) dx

Theorem
Let p∗ be optimal to the dual model. If the n values
(f1(x) + div p∗1(x), ..., fn(x) + div p∗n(x)) have at most two
minimizers for each x ∈ Ω, there exists optimal binary primal
variables u∗ such that (u∗, p∗) is a saddle point, i.e.

EP(u∗) = E (u∗, p∗) = ED(p∗)



Convex relaxation over unit simplex

a b e

a b c d e f

Top: (a) Input, (b) alpha expansion (c) dual model.
Bottom: (d) Input, (e) ground truth, (f) alpha expansion, (g)
alpha-beta swap, (h) Lellmann et. al., (i) dual model.



Multiple Phases: Convex Relaxed Potts Model (CR-PM)
–Yuan-Bae-T.-Boykov (ECCV’10)

Continuous Max-Flow Model (CMF-PM)

1. n copies Ωi , i = 1, . . . , n, of Ω;

2. For ∀x ∈ Ω, the same source flow ps(x) from the source s to
x ∈ Ωi , i = 1, . . . , n, simultaneously;

3. For ∀x ∈ Ω, the sink flow pi (x) from x at Ωi , i = 1, . . . , n, of
Ω to the sink t. pi (x), i = 1, . . . , n, may be different one by
one;

4. The spatial flow qi (x), i = 1, . . . , n defined within each Ωi .



Max-flow on this graph

Max-Flow:

max
ps ,p,q

{P(ps , p, q) =

∫
Ω

psdx}

|qi (x)| ≤ g(x), pi (x) ≤ fi (x),

(divqi − ps + pi )(x) = 0, i = 1, 2, · · · n.

Note that

ps(x) = divqi (x) + pi (x), i = 1, 2 · · · n.

Thus
ps(x) = min(f1 + div p1, . . . , fn + div pn).

Therefore, the maximum of
∫

Ω ps(x) is:

max
|qi (x)|≤g(x)

∫
Ω

min(f1 + div p1, . . . , fn + div pn)dx



(Convex) min-cut on this graph

max
ps ,p,q

min
u
{E (ps , p, q, u) =

∫
Ω

psdx +
m∑
i=1

ui (divqi − ps + pi )dx}

s.t. pi (x) ≤ fi (x), |qi (x)| ≤ g(x).

Rearranging the energy functional E (·), we that

E (ps , p, q, u) =

∫
Ω

(1−
m∑
i=1

ui )ps +
m∑
i=1

uipi +
m∑
i=1

uidivqi .dx .

The following constraint are automatically satisfied from the
optimization:

ui (x) ≥ 0,
m∑
i=1

ui = 1.



(Convex) min-cut: Dual formulation

It gives the convex min-cut from the dual formulation:

min
ui

∫
Ω

ui (x)fi (x) + g(x)|∇ui (x)|

s.t
n∑

i=1

ui (x) = 1, ui (x) ≥ 0.



Algorithms

Augmented Lagrangian functional∫
Ω

ps dx +
n∑

i=1

〈ui , div qi − ps + pi 〉 −
c

2

n∑
i=1

‖div qi − ps + pi‖2

Augmented Lagrangian Method (ADMM):
Initialize p0

s , p
0
i , q0 and φ0. For k = 0, 1, ...

qk+1
i := arg max

‖qi‖∞≤α
−c

2

∥∥∥div qi + pk
i − pk

s − uk
i /c
∥∥∥2
, i = 1, ..., n

pk+1
i := arg max

pi (x)≤ρ(li ,x)
−c

2

∥∥∥pi + div qk+1
i − pk

s − uk
i /c
∥∥∥2
, i = 1, ..., n

pk+1
s := arg max

ps

∫
Ω

ps dx − c

2

n∑
i=1

∥∥∥ps − (pk+1
i + div qk+1

i ) + uk
i /c
∥∥∥2
,

uk+1
i = uk

i − c (div qk+1
i − pk+1

s + pk+1
i ), i = 1, ..., n



Algorithms

Comparisons between algorithms: Zach et al 08, Lellmann et al.
09 and the proposed max-flow algorithm: for three images,
different precision ε are used and the total number of iterations to
reach convergence is evaluated.

Brain ε ≤ 10−5 Flower ε ≤ 10−4 Bear ε ≤ 10−4

Zach et al 08 fail to reach such a precision

Lellmann et al. 09 421 iter. 580 iter. 535 iter.

Proposed algorithm 88 iter. 147 iter. 133 iter.



Outline of this presentation

First part: Exact optimization

◮ Will focus on two approaches for multiphase problems with
global optimality guarantee.

◮ Both can be formulated as max-flow/min-cut problems on a
graph in discrete setting.

◮ Both can be exactly formulated as convex problems on
continuous setting. Dual problems can be formulated as
continuous max-flow problems.

Second part: Approximate optimization

◮ Convex relaxations for broader set of non-convex problems.

◮ Includes Potts’ model and joint optimization of regions and
region parameters in image segmentation.

◮ Dual problems can be formulated as max-flow, but now there
may be a duality gap to original problems



Problem formulations

Image partition problems with multiple regions
Given input image I 0 defined over Ω. Find partition {Ωi}

n
i=1 of Ω

by solving

min
{Ωi}ni=1

n
∑

i=1

∫

Ωi

fi (I
0(x)) dx + αR({∂Ωi}

n
i=1)

such that ∪n
i=1 Ωi = Ω, ∩n

i=1Ωi = ∅

n is known or unknown in advance. Example (Potts’ model):

min
{Ωi}ni=1

n
∑

i=1

∫

Ωi

fi(I
0(x)) dx +

n
∑

i=1

α

∫

∂Ωi

ds,

Discretized problem is NP-hard for n > 2
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Problem formulations

Image partition problems with multiple regions
Given input image I 0 defined over Ω. Find partition {Ωi}

n
i=1 of Ω

by solving

min
{Ωi}ni=1,{ξi}

n
i=1∈X

n
∑

i=1

∫

Ωi

fi(ξi , I
0(x)) dx + αR({∂Ωi}

n
i=1)

such that ∪n
i=1 Ωi = Ω, ∩n

i=1Ωi = ∅

n is known or unknown in advance. Example:

min
{Ωi}ni=1,{ξi}

n
i=1∈R

n
∑

i=1

∫

Ωi

|I 0(x)− ξi |
β dx +

n
∑

i=1

α

∫

∂Ωi

ds,

If regularization α = 0: ”k-mean” problem, which is known to be
NP-hard.



Different representations of partitions in terms of functions

◮ 1) Vector function: u(x) = (u1(x), ..., un(x)) = ei for x ∈ Ωi

◮ 2) Labeling function: ℓ(x) = i for all x ∈ Ωi

◮ 3) log representation by m = log2(n) binary functions φ1, ...φm

x ∈ Ω1 iff u(x) = e1 ℓ(x) = 1 φ1(x) = 1, φ2(x) = 0

x ∈ Ω2 iff u(x) = e2 ℓ(x) = 2 φ1(x) = 1, φ2(x) = 1

x ∈ Ω3 iff u(x) = e3 ℓ(x) = 3 φ1(x) = 0, φ2(x) = 0

x ∈ Ω4 iff u(x) = e4 ℓ(x) = 4 φ1(x) = 0, φ2(x) = 1

Table: Representation of 4 regions.



Log representation by two binary functions

Ω1 = {x ∈ Ω s.t. φ1(x) > 0, φ2(x) < 0}
Ω2 = {x ∈ Ω s.t. φ1(x) > 0, φ2(x) > 0}
Ω3 = {x ∈ Ω s.t. φ1(x) < 0, φ2(x) < 0}
Ω4 = {x ∈ Ω s.t. φ1(x) < 0, φ2(x) > 1}

Vese and Chan 2002, A Multiphase Level Set Framework for Image
Segmentation Using the Mumford and Shah Model, International Journal of
Computer Vision 50(3), 271–293



Log representation by two binary functions

Ω1 = {x ∈ Ω s.t. φ1(x) = 1, φ2(x) = 0}
Ω2 = {x ∈ Ω s.t. φ1(x) = 1, φ2(x) = 1}
Ω3 = {x ∈ Ω s.t. φ1(x) = 0, φ2(x) = 0}
Ω4 = {x ∈ Ω s.t. φ1(x) = 0, φ2(x) = 1}

Lie et al. 2006, A Binary Level Set Model and Some Applications to
Mumford–Shah Image Segmentation, IEEE transactions on image processing,
15(5), pg. 1171 - 1181



Log representation by two binary functions
4 regions as intersection of 2 level set functions

min
φ1,φ2

α

∫

Ω
|∇H(φ1)|+ α

∫

Ω
|∇H(φ2)|

+

∫

Ω
{H(φ1)H(φ2)f2 + H(φ1)(1− H(φ2))f1

+(1− H(φ1))H(φ2)f4 + (1− H(φ1))(1− H(φ2))f3}dx .

◮ Heaviside function H(φ) = 1 if φ > 0 and H(φ) = 0 if φ < 0

◮ Interpretation of regions:

Ω1 = {x ∈ Ω s.t. φ1(x) > 0, φ2(x) < 0}
Ω2 = {x ∈ Ω s.t. φ1(x) > 0, φ2(x) > 0}
Ω3 = {x ∈ Ω s.t. φ1(x) < 0, φ2(x) < 0}
Ω4 = {x ∈ Ω s.t. φ1(x) < 0, φ2(x) < 0}

Vese and Chan 2002, A Multiphase Level Set Framework for Image
Segmentation Using the Mumford and Shah Model, International Journal of
Computer Vision 50(3), 271–293



Log representation by two binary functions
4 regions as intersection of 2 binary functions

min
φ1,φ2

α

∫

Ω
|∇φ1|+ α

∫

Ω
|∇φ2|+

+

∫

Ω
{φ1φ2f2 + φ1(1− φ2)f1

+(1− φ1)φ2f4 + (1− φ1)(1− φ2)f3}dx .

◮ Minimize over constraint φ1(x), φ2(x) ∈ {0, 1} ∀ x ∈ Ω.

◮ Interpretation of regions:

Ω1 = {x ∈ Ω s.t. φ1(x) = 1, φ2(x) = 0}
Ω2 = {x ∈ Ω s.t. φ1(x) = 1, φ2(x) = 1}
Ω3 = {x ∈ Ω s.t. φ1(x) = 0, φ2(x) = 0}
Ω4 = {x ∈ Ω s.t. φ1(x) = 0, φ2(x) = 1}

Lie et al. 2006, A Binary Level Set Model and Some Applications to
Mumford–Shah Image Segmentation, IEEE transactions on image processing,
15(5), pg. 1171 - 1181



Convex formulation log representation

min
φ1,φ2∈{0,1}

α

∫

Ω
|∇φ1|+ α

∫

Ω
|∇φ2|

∫

Ω
(1−φ1(x))C (x)+ (1−φ2(x))D(x)+φ1(x)A(x)+φ2(x)B(x) dx

+

∫

Ω
max{φ1(x) − φ2(x), 0}E (x) −min{φ1(x)− φ2(x), 0}F (x) dx















A(x) + B(x) = f2(x)
C (x) + D(x) = f3(x)
A(x) + E (x) + D(x) = f1(x)
B(x) + F (x) + C (x) = f4(x)

◮ Energy is convex provided E (x),F (x) ≥ 0 for all x ∈ Ω.

◮ Discrete counterpart is submodular iff ∃E (x),F (x) ≥ 0 for all
x ∈ Ω (otherwise NP-hard)

Bae and Tai, Efficient Global Minimization Methods for Image
Segmentation Models with Four Regions, Journal of Mathematical Imaging and
Vision, 2014



Convex formulation log representation

min
φ1(x),φ2(x)∈[0,1]

α

∫

Ω
|∇φ1|+ α

∫

Ω
|∇φ2|

∫

Ω
(1−φ1(x))C (x)+ (1−φ2(x))D(x)+φ1(x)A(x)+φ2(x)B(x) dx

+

∫

Ω
max{φ1(x) − φ2(x), 0}E (x) −min{φ1(x)− φ2(x), 0}F (x) dx















A(x) + B(x) = f2(x)
C (x) + D(x) = f3(x)
A(x) + E (x) + D(x) = f1(x)
B(x) + F (x) + C (x) = f4(x)

◮ Minimize over convex constraint φ1(x), φ2(x) ∈ [0, 1] ∀x ∈ Ω.

◮ Theorem: Binary functions obtained by thresholding solution
of convex problem φ1, φ2 at any level t ∈ (0, 1] is a global
minimizer to the original problem.



Convex formulation log representation

◮ Exists E (x),F (x) ≥ 0 if f2(x) + f3(x) ≤ f1(x) + f4(x).
◮ In case of fi = |I 0 − ci |

β , a sufficient condition is

|c2 − I |β + |c3 − I |β ≤ |c1 − I |β + |c4 − I |β , ∀ I ∈ [0, L],

◮ Proposition 1: Let 0 ≤ c1 < c2 < c3 < c4. Condition is
satisfied for all I ∈ [ c2−c1

2 , c4−c3
2 ] for any β ≥ 1.

◮ Proposition 2: Let 0 ≤ c1 < c2 < c3 < c4. There exists a
B ∈ N such that condition is satisfied for any β ≥ B.



Convex formulation log representation

a b c

Figure: L2 data fidelity: (a) input, (b) level set method gradient descent,
(c) New convex formulation of Chan-Vese model (global minimum).

d e

Figure: Level set method: (d) bad initialization, (e) result.



Convex formulation log representation

a b c

d e f

Figure: (a) Input image, (b) ground truth, (c) level set method gradient
descent, (d) global minimum computed by new graph cut approach in
discrete setting, (e) New convex optimization approach in continuous
setting before threshold, (f) convex minimization approach after
threshold (global optimum).



Convex formulation log representation

a b

c d

Figure: L2 data fidelity: (a) Input, (b) global minimum discrete
Chan-Vese model 4 neighbors, (c) convex formulation before threshold,
(d) convex formulation after threshold (global minimum).



Convex formulation log representation

a b

c d

Figure: Segmentation with L2 data term: (a) Input, (b) graph cut 4
neighbors (c) convex formulation before threshold, (d) convex
formulation after threshold (global minimum).



Convex formulation log representation

a b

c d

Figure: Segmentation with L2 data term: (a) Input, (b) result graph cut
8 neighbors in discrete setting (c) result convex formulation before
threshold, (d) result convex formulation after threshold (global optimum).



Convex formulation log representation

a b c

d e f

Figure: (a) Input image, (b) ground truth, (c) gradient descent, (d)
alpha expansion, (e) alpha-beta swap, (f) convex model.



Log representation - minimization by graph cuts

Discrete energy, anisotropic TV

min
φ1,φ2∈B

Ed (φ
1, φ2) =

∑

p∈P

Edata
p (φ1

p , φ
2
p)

+α
∑

p∈P

∑

q∈N k
p

wpq |φ
1
p − φ1

q|+ α
∑

p∈P

∑

q∈N k
p

wpq|φ
2
p − φ2

q |

Edata
p (φ1

p , φ
2
p) = {φ1

pφ
2
pf2(p) + φ1

p(1− φ2
p)f1(p))

+(1− φ1
p)φ

2
pf4(p) + (1− φ1

p)(1− φ2
p)f3(p)}.



Log representation - minimization by graph cuts
Graph construction

1 grid point 2 grid points

◮ Associate two vertices to each grid point (vp,1 and vp,2)
◮ For any cut (Vs ,Vt)

◮ If vp,i ∈ Vs then φi = 1 for i = 1, 2
◮ If vp,i ∈ Vt then φi = 0 for i = 1, 2

◮ Figure left: graph corresponding to one grid point p
◮ Figure right: graph corresponding to two grid points p and q

◮ Red: Data edges, constituting E data(φ1, φ2)
◮ Blue: Regularization edges with weight wpq

Bae and Tai EMMCVPR 2009, Kolmogorov PAMI 2004



Log representation - minimization by graph cuts
Graph construction

◮ Linear system for finding edge weights














A(p) + B(p) = f2(p)
C (p) + D(p) = f3(p)
A(p) + E (p) +D(p) = f1(p)
B(p) + F (p) + C (p) = f4(p)

such that E (p),F (p) ≥ 0

◮ For each p, Edata
p (φ1

p , φ
2
p) interaction between two binary

variables. Linear system has solution iff Edata
p (φ1

p, φ
2
p) is

submodular.
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Log representation - minimization by graph cuts
Graph construction

◮ Linear system for finding edge weights














A(p) + B(p) = f2(p) + σ(p)
C (p) + D(p) = f3(p) + σ(p)
A(p) + E (p) + D(p) = f1(p) + σ(p)
B(p) + F (p) + C (p) = f4(p) + σ(p)

such that E (p),F (p) ≥ 0

◮ For each p, Edata
p (φ1

p , φ
2
p) interaction between two binary

variables. Linear system has solution iff Edata
p (φ1

p, φ
2
p) is

submodular.



Dual max-flow problem over graph

1 pixel 2 pixels

Max-flow problem

sup
ps ,pt ,p12,q

∫

Ω
p1s (x) + p2s (x) dx

subject to

p1s (x) ≤ C (x), p2s (x) ≤ D(x), p1t (x) ≤ A(x), p2t ≤ B(x),

− F (x) ≤ p12(x) ≤ E (x), |q1(x)|1 ≤ α, |q2(x)|1 ≤ α, ∀ x ∈ Ω.

div q1(x)− p1s (x) + p1t (x) + p12(x) = 0, ∀ x ∈ Ω

div q2(x)− p2s (x) + p2t (x)− p12(x) = 0, ∀ x ∈ Ω.



Continuous generalization of max-flow problem

1 pixel 2 pixels

Dual formulation

sup
ps ,pt ,p12,q

∫

Ω
p1s (x) + p2s (x) dx

subject to

p1s (x) ≤ C (x), p2s (x) ≤ D(x), p1t (x) ≤ A(x), p2t ≤ B(x),

− F (x) ≤ p12(x) ≤ E (x), |q1(x)|2 ≤ α, |q2(x)|2 ≤ α, a.e. x ∈ Ω.

div q1(x)− p1s (x) + p1t (x) + p12(x) = 0, a.e. x ∈ Ω

div q2(x)− p2s (x) + p2t (x)− p12(x) = 0, a.e. x ∈ Ω.



Continuous generalization of max-flow problem

Primal-dual formulation

inf
φ1,φ2

sup
ps ,pt ,p12,q

∫

Ω
p1s (x) + p2s (x) dx

+

∫

Ω
φ1(x)(div q1(x)− p1s (x) + p1t (x) + p12(x)) dx

+

∫

Ω
φ2(x)(div q2(x)− p2s (x) + p2t (x)− p12(x)) dx

}

,

subject to

p1s (x) ≤ C (x), p2s (x) ≤ D(x), p1t (x) ≤ A(x), p2t ≤ B(x),

− F (x) ≤ p12(x) ≤ E (x), |q1(x)|2 ≤ α, |q2(x)|2 ≤ α, a.e. x ∈ Ω.



Continuous generalization of max-flow problem

Primal-dual formulation

inf
φ1,φ2

sup
ps ,pt ,p12,q

∫

Ω
{(1− φ1)p1s + (1− φ2)p2s }(x) dx

+

∫

Ω
φ1(x)p1t (x) + φ2(x)p2t (x) + (φ1(x)− φ2(x))p12(x) dx

+

∫

Ω
φ1(x) div q1(x) dx +

∫

Ω
φ2(x) div q2(x) dx ,

subject to

p1s (x) ≤ C (x), p2s (x) ≤ D(x), p1t (x) ≤ A(x), p2t ≤ B(x),

− F (x) ≤ p12(x) ≤ E (x), |q1(x)|2 ≤ α, |q2(x)|2 ≤ α, a.e. x ∈ Ω.



Continuous generalization of max-flow problem

Primal problem

min
φ1,φ2∈{0,1}

α

∫

Ω
|∇φ1|+ α

∫

Ω
|∇φ2|

∫

Ω
(1−φ1(x))C (x)+ (1−φ2(x))D(x)+φ1(x)A(x)+φ2(x)B(x) dx

+

∫

Ω
max{φ1(x) − φ2(x), 0}E (x) −min{φ1(x)− φ2(x), 0}F (x) dx

subject to φ1(x), φ2(x) ∈ [0, 1] a.e. x ∈ Ω



Max-flow algorithm
Augmented Lagrangian Problem

sup
ps ,pt ,p12,q

inf
φ1,φ2

L(ps , pt , p
12, q, φ) =

∫

Ω
p1s (x) + p2s (x) dx

+

2
∑

i=1

∫

Ω
φi (x)(div qi (x)− pis(x) + pit(x) + (−1)i+1p12(x)) dx

−
c

2

2
∑

i=1

|| div qi(x) − pis(x) + pit(x) + (−1)i+1p12(x)||2

p1s (x) ≤ C (x), p2s (x) ≤ D(x),

p1t (x) ≤ A(x), p2t ≤ B(x),

−F (x) ≤ p12(x) ≤ E (x),

|q1(x)|2 ≤ α, |q2(x)|2 ≤ α, ∀x ∈ Ω.



Max-flow algorithm

Augmented Lagrangian Method (ADMM)

Initialize p0s , p
0
t , p

120, q0, φ0, for k = 0, 1, ...

pis
k+1

:= arg max
pis(x)≤C i

s (x)
Lc(p

i
s , p

i
t

k
, qi

k
, φk), i = 1, 2

p12
k+1

:= arg max
−C21(x)≤p12(x)≤C12(x)

Lc(p
i
s

k+1
, pit

k
, qi

k
, φk), i = 1, 2

qi
k+1

:= arg max
|qi |≤α

Lc(p
k+1
s , pkt , q, φ

k), i = 1, 2

pit
k+1

:= arg max
pit(x)≤C i

t (x)
Lc(p

i
s

k+1
, pit

k
, p12

k+1
, qi

k
, φk), i = 1, 2

φi k+1
= φi k − c (div qi

k+1
(−pis

k+1
+ pit

k+1
+ (−1)i+1p12

k+1
), i = 1, 2



Max-flow algorithm

Simple image Brain image

iter flops/iter flops iter flops/iter flops

Chan-Vese MF 11 9.94 ∗ 105 1.09 ∗ 107 60 4.20 ∗ 106 2.52 ∗ 108

Special MF 12 3.92 ∗ 106 4.70 ∗ 107 60 1.65 ∗ 107 9.93 ∗ 108

Potts MF 12 5.07 ∗ 106 6.09 ∗ 107 60 2.14 ∗ 107 1.29 ∗ 109

Simplex MF 60 1.96 ∗ 106 1.18 ∗ 108 190 8.21 ∗ 106 1.56 ∗ 109

Pock MF 295 1.12 ∗ 107 3.31 ∗ 109 1020 4.71 ∗ 107 4.79 ∗ 1010

Table: Comparisons with other relaxations implemented with similar
max-flow algorithm (MF). Number of iterations k , number of flops per
iteration and total number of flops to reach energy precision
E k

−E∗

E∗
< 10−3.



Labeling function representation

◮ H. Ishikawa 2003, Exact optimization for Markov random
fields with convex priors, IEEE PAMI Volume 25 Issue 10,
Page 1333-1336

◮ Pock et al. 2010/2008, Global Solutions of Variational Models
with Convex Regularization, SIAM J. Imaging Sci., 3(4),
1122–1145, ECCV

◮ Bae et al.: A Fast Continuous Max-Flow Approach to
Non-Convex Multi-Labeling Problems, LNCS 8293, pg.
134-154, 2014



Graph cut minimization labeling function

min
u : Ω 7→{1,...,n}

∑

p∈V

ρ(up , p) + α
∑

(p,q)∈N⊂V×V

g convex(|up − uq|) .

Minimal cut on graph ↔ minimizer of energy

1D illustration: Example of cut Corresponding labeling

H. Ishikawa 2003, Exact optimization for Markov random fields with
convex priors, IEEE PAMI Volume 25 Issue 10, Page 1333-1336



Graph cut minimization labeling function

min
u : Ω 7→{1,...,n}

∑

p∈V

ρ(up , p) + α
∑

(p,q)∈N⊂V×V

|up − uq| .

Minimal cut on graph ↔ minimizer of energy

1D illustration: Example of cut Corresponding labeling

H. Ishikawa 2003, Exact optimization for Markov random fields with
convex priors, IEEE PAMI Volume 25 Issue 10, Page 1333-1336



Convex relaxation labeling function

min
u : Ω 7→R

∫

Ω
ρ(u(x), x) dx +

∫

Ω
g convex(|∇u(x)|) dx ,

Pock et al. proposed to represent u through binary function
λ : Ω× R 7→ {0, 1}

λ(x , ℓ) :=

{

1 , if u(x) > ℓ
0 , if u(x) ≤ ℓ

.

Problem was expressed in terms of λ as

min
λ(ℓ,x)∈{0,1}

∫ ℓmax

ℓmin

∫

Ω

{

α |∇xλ|+ ρ(ℓ, x) |∂ℓλ(ℓ, x)|
}

dxdℓ .

subject to

λ(ℓmin, x) = 1 , λ(ℓmax, x) = 0 , x ∈ Ω

Pock et al. 2010, Global Solutions of Variational Models with Convex
Regularization, SIAM J. Imaging Sci., 3(4), 1122–1145



Convex relaxation labeling function

min
u : Ω 7→R

∫

Ω
ρ(u(x), x) dx + α

∫

Ω
|∇u(x)| dx ,

Pock et al. proposed to represent u through binary function
λ : Ω× R 7→ {0, 1}

λ(x , ℓ) :=

{

1 , if u(x) > ℓ
0 , if u(x) ≤ ℓ

.

Problem was expressed in terms of λ as

min
λ(ℓ,x)∈{0,1}

∫ ℓmax

ℓmin

∫

Ω

{

α |∇xλ|+ ρ(ℓ, x) |∂ℓλ(ℓ, x)|
}

dxdℓ .

subject to

λ(ℓmin, x) = 1 , λ(ℓmax, x) = 0 , x ∈ Ω

Pock et al. 2010, Global Solutions of Variational Models with Convex
Regularization, SIAM J. Imaging Sci., 3(4), 1122–1145



Convex relaxation labeling function

min
u : Ω 7→R

∫

Ω
ρ(u(x), x) dx + α

∫

Ω
|∇u(x)| dx ,

Pock et al. proposed to represent u through binary function
λ : Ω× R 7→ {0, 1}

λ(x , ℓ) :=

{

1 , if u(x) > ℓ
0 , if u(x) ≤ ℓ

.

Problem was expressed in terms of λ as

min
λ(ℓ,x)∈[0,1]

∫ ℓmax

ℓmin

∫

Ω

{

α |∇xλ|+ ρ(ℓ, x) |∂ℓλ(ℓ, x)|
}

dxdℓ .

subject to

λ(ℓmin, x) = 1 , λ(ℓmax, x) = 0 , x ∈ Ω

Pock et al. 2010, Global Solutions of Variational Models with Convex
Regularization, SIAM J. Imaging Sci., 3(4), 1122–1145



Convex relaxation labeling function

Discrete labels

min
u : Ω 7→{1,...,n}

∫

Ω
ρ(u(x), x) dx + α

∫

Ω
|∇u(x)| dx ,

Can be written as

min
{λi}

n−1
i=1 : Ω 7→{0,1}

n
∑

i=1

∫

Ω
(λi−1 − λi ) ρ(ℓi , x) dx + α

n−1
∑

i=1

∫

Ω
|∇λi | dx

1 = λ0(x) ≥ λ1(x) ≥ λ2(x) ≥ ... ≥ λn−1(x) ≥ λn(x) = 0 ∀ x ∈ Ω.

u related to λ by

u =

n
∑

i=1

(λi−1 − λi )ℓi

Hochbaum 02, Darbon 06, Chambolle 05, Pock 09



Convex relaxation labeling function

Discrete labels

min
u : Ω 7→{1,...,n}

∫

Ω
ρ(u(x), x) dx + α

∫

Ω
|∇u(x)| dx ,

Convex relaxation

min
{λi}

n−1
i=1 : Ω 7→[0,1]

n
∑

i=1

∫

Ω
(λi−1 − λi ) ρ(ℓi , x) dx + α

n−1
∑

i=1

∫

Ω
|∇λi | dx

1 = λ0(x) ≥ λ1(x) ≥ λ2(x) ≥ ... ≥ λn−1(x) ≥ λn(x) = 0 ∀ x ∈ Ω.

u related to λ by

u =
n

∑

i=1

(λi−1 − λi )ℓi



Graph cut minimization labeling function (recall)

min
u : Ω 7→{1,...,n}

∑

p∈V

ρ(up , p) + α
∑

(p,q)∈N⊂V×V

|up − uq| .

Minimal cut on graph ↔ minimizer of energy

1D illustration: Example of cut Corresponding labeling



Corresponding discrete max-flow problem

sup
p,q

∫

Ω
p1(x) dx

|qi(x)|1 =
∣

∣q1i
∣

∣+
∣

∣q2i
∣

∣ ≤ α for x ∈ Ω , i = 1, . . . , n − 1

pi(x) ≤ ρ(ℓi , x) for x ∈ Ω , i = 1, . . . , n
(

div qi − pi + pi+1

)

(x) = 0 for x ∈ Ω , i = 1, . . . , n − 1

qi · n = 0 on ∂Ω , i = 1, . . . , n − 1 .

◮ 1D illustration



Continuous max-flow problem

sup
p,q

∫

Ω
p1(x) dx

|qi (x)|2 =

√

∣

∣q1i
∣

∣

2
+

∣

∣q2i
∣

∣

2
≤ α for x ∈ Ω , i = 1, . . . , n − 1

pi(x) ≤ ρ(ℓi , x) for x ∈ Ω , i = 1, . . . , n
(

div qi − pi + pi+1

)

(x) = 0 for x ∈ Ω , i = 1, . . . , n − 1

qi · n = 0 on ∂Ω , i = 1, . . . , n − 1 .

◮ 1D illustration

Bae et al.: A Fast Continuous Max-Flow Approach to Non-Convex
Multi-Labeling Problems, LNCS 8293, pg. 134-154, 2014



Continuous max-flow problem

sup
p,q

∫

Ω
p1(x) dx

|qi(x)|2 =

√

∣

∣q1i
∣

∣

2
+

∣

∣q2i
∣

∣

2
≤ α for x ∈ Ω , i = 1, . . . , n − 1

pi (x) ≤ ρ(ℓi , x)for x ∈ Ω , i = 1, . . . , n
(

div qi − pi + pi+1

)

(x) = 0 for x ∈ Ω , i = 1, . . . , n − 1

qi · n = 0 on ∂Ω , i = 1, . . . , n − 1 .

Lagrange multipliers λi for flow conservation constraints results in

inf
λ
sup
p,q

∫

Ω

{

p1 +

n−1
∑

i=1

λi

(

div qi − pi + pi+1

)}

dx

pi (x) ≤ ρ(ℓi , x) , |qi (x)|2 ≤ α x ∈ Ω



Continuous max-flow problem

sup
p,q

∫

Ω
p1(x) dx

|qi (x)|2 =

√

∣

∣q1i
∣

∣

2
+

∣

∣q2i
∣

∣

2
≤ α for x ∈ Ω , i = 1, . . . , n − 1

pi(x) ≤ ρ(ℓi , x) for x ∈ Ω , i = 1, . . . , n
(

div qi − pi + pi+1

)

(x) = 0 for x ∈ Ω , i = 1, . . . , n − 1

qi · n = 0 on ∂Ω , i = 1, . . . , n − 1 .

Rearranged primal-dual formulation

inf
λ
sup
p,q

n
∑

i=1

∫

Ω
(λi−1 − λi )pi dx +

n−1
∑

i=1

∫

Ω
λi div qi dx

pi(x) ≤ ρ(ℓi , x) , |qi (x)|2 ≤ α x ∈ Ω



Continuous max-flow problem

Rearranged primal-dual formulation (repeat)

inf
λ
sup
p,q

n
∑

i=1

∫

Ω
(λi−1 − λi )pi dx +

n−1
∑

i=1

∫

Ω
λi div qi dx

pi(x) ≤ ρ(ℓi , x) , |qi (x)|2 ≤ α x ∈ Ω

Leads back to primal formulation

min
{λi}

n−1
i=1 : Ω 7→{0,1}

n
∑

i=1

∫

Ω
(λi−1 − λi ) ρ(ℓi , x) dx + α

n−1
∑

i=1

∫

Ω
|∇λi | dx

1 = λ0(x) ≥ λ1(x) ≥ λ2(x) ≥ ... ≥ λn−1(x) ≥ λn(x) = 0 ∀ x ∈ Ω.



Augmented Lagrangian algorithm

Lc(p, q, λ) :=

∫

Ω
p1+

n−1
∑

i=1

λi(div pi+pi+1−pi )−
c

2
| div pi+pi+1−pi |

2 dx ,

Init. p1, q1 and λ1, let k , i = 1. For k = 1, ...

◮ For each layer i = 1 . . . n solve

qk+1
i := arg max

‖q‖
∞
≤α

Lc((p̃
k+1
i≤j , p

k
i>j), (q

k+1
j<i , qi , q

k
j>i), λ

k)

pk+1
i := arg max

pi (x)≤ρ(ℓi ,x)∀x∈Ω
Lc((p

k+1
j<i , pi , p

k
j>i ), (q

k+1
j≤i , q

k
j>i ), λ

k) ,

◮ Update multipliers λi , i = 1, . . . , n − 1, by

λk+1
i = λk

i − c (div qk+1
i − pk+1

i + pk+1
i+1 ) ;



Stereo reconstruction application
Given two images IL and IR taken from slightly different viewpoints

Want to reconstruct ”depth” u by minimizing

min
u : Ω 7→{1,...,16}

∫

Ω
ρ(u(x), x) dx + α

∫

Ω
|∇u| ,

ρ(u, x) =
3

∑

j=1

|I jL(x)− I jR(x + (u, 0)T )|.



Stereo reconstruction application

graph cut 4 neighbors graph cut 8 neighbors

Pock et al. Continuous max-flow

Figure:



Stereo reconstruction application

ε < 10−4
ε < 10−5

ε < 10−6

Primal-dual Max-flow Primal-dual Max-flow Primal-dual Max-flow

14305 920 (× 5) > 30000 1310 (× 5) > 30000 1635 (× 5)

Table: Iteration counts for stereo experiment. Number of iterations to
reach an energy precision of 10−4, 10−5 and 10−6.

ε = E i
−E∗

E∗
, E i is energy at iteration i and E

∗ is energy of final solution.



Convex relaxations for other related NP-hard problems

Will derive convex relaxations for

◮ Total curve length (Potts’ regularization term)

◮ ℓ0 of gradient

◮ joint minimization over regions and region parameters in
segmentation

◮ non-submodular data terms



Convex relaxations for total curvelength (Potts’ regularizer)

◮ Chambolle et al. 2012/2009, A Convex Approach to Minimal
Partitions, SIAM J. Imaging Sci., 5(4), 1113–1158.

◮ Bae and Tai, Efficient Global Minimization Methods for Image
Segmentation Models with Four Regions, Journal of
Mathematical Imaging and Vision, 2014

◮ Simplex constrained relaxation (Zach et al. 08, Lellmann et
al. 09, Bae et al. 09/11) was covered in previous talk



Convex relaxations for total curvelength (Potts’ regularizer)

min
{λi}

n−1
i=1

sup
{qi}

n−1
i=1

n
∑

i=1

∫

Ω
(λi−1 − λi) ρ(ℓi , x) dx + α

n−1
∑

i=1

∫

Ω
λi div qi dx

s.t. 1 = λ0(x) ≥ λ1(x) ≥ λ2(x) ≥ ... ≥ λn−1(x) ≥ λn(x) = 0 x ∈ Ω.

|qi |∞ ≤ 1 , i = 1, ..., n

Pock et al 09,12 proposed to avoid multiple countings of
boundaries by optimize over the convex set

q(x) ∈
{

q ∈ R
n×N | |

i2
∑

i=i1

qi | ≤ α ;

∀ (i1, i2) , 1 ≤ i1 ≤ i2 ≤ n − 1
}

, x ∈ Ω

and relax binary constraint by λi (x) ∈ [0, 1], x ∈ Ω , i = 1, ..., n
◮ Advantage: tighest relaxation for Potts’ model
◮ Disadvantage: number of contraints grow quadratically in

number of regions

Chambolle et al. 2012/2009, A Convex Approach to Minimal Partitions,
SIAM J. Imaging Sci., 5(4), 1113–1158.



Convex relaxations for total curvelength (Potts’ regularizer)
Potts model in terms of overlapping binary functions

min
φ1,φ2

sup
|q1|,|q2|≤1

α

∫

Ω
φ1 div q1dx + α

∫

Ω
φ2 div q2 dx ,

+

∫

Ω
φ1(x)C 1

t (x) + φ2(x)C 2
t (x) dx

+

∫

Ω
max{φ1(x)−φ2(x), 0}C 12(x) dx−

∫

Ω
min{φ1(x)−φ2(x), 0}C 21(x) dx

+

∫

Ω
(1− φ1(x))C 1

s (x) + (1− φ2(x))C 2
s (x) dx

such that φ1(x), φ2(x) ∈ [0, 1] ∀x ∈ Ω

◮ Convex relaxation of Potts model by adding additional dual
constraints

|q1(x) + q2(x)| ≤ 1, |q1(x) − q2(x)| ≤ 1, ∀x ∈ Ω

Bae and Tai, Efficient Global Minimization Methods for Image
Segmentation Models with Four Regions, Journal of Mathematical Imaging and
Vision, 2014



Convex relaxations for total curvelength (Potts’ regularizer)
Example of other regularization term
Constraint set that disfavors interphases between region 1 and
region 4

|q1(x)| ≤ α, |q2(x)| ≤ α, |q1(x) + q2(x)| ≤ 1, ∀x ∈ Ω



Convex relaxations for total curvelength (Potts’ regularizer)

Different representations of partitions in terms of functions

◮ 1) Vector function: u(x) = (u1(x), ..., un(x)) = ei for x ∈ Ωi

◮ 2) Labeling function: ℓ(x) = i for all x ∈ Ωi

◮ 3) Intersection of m = log2(n) binary functions φ1, ...φm

x ∈ Ω1 iff u(x) = e1 ℓ(x) = 1 φ1(x) = 1, φ2(x) = 0

x ∈ Ω2 iff u(x) = e2 ℓ(x) = 2 φ1(x) = 1, φ2(x) = 1

x ∈ Ω3 iff u(x) = e3 ℓ(x) = 3 φ1(x) = 0, φ2(x) = 0

x ∈ Ω4 iff u(x) = e4 ℓ(x) = 4 φ1(x) = 0, φ2(x) = 1

Table: Representation of 4 regions.



Convex relaxations for total curvelength (Potts’ regularizer)

◮ Relaxation over unit simplex (Zach et al. 08, Lellmann et al.
09, Bae et al. 09/11)

ui(x) = IΩi
(x) :=

{

1, x ∈ Ωi

0, x /∈ Ωi
, i = 1, . . . , n

◮ Problem can be expressed as

min
ui (x)∈{0,1}

n
∑

i=1

∫

Ω
ui (x)fi (x) dx + α

n
∑

i=1

∫

Ω
|∇ui | dx ,

s.t.
n

∑

i=1

ui (x) = 1 , ui (x) ∈ {0, 1} ∀x ∈ Ω, i = 1, ..., n

◮ Convex relaxation: ui (x) ∈ [0, 1] ∀x ∈ Ω, i = 1, ..., n
◮ If computed solution is binary: also global minimum
◮ else: convert into binary by rounding schemes (not generally

exact)



Image reconstruction with sparse gradients

◮ Piecewise constant Mumford-Shah model

inf
Γ,I∈X

lim
λ→∞

∫

Ω
|I (x) − I 0(x)|βdx + λ

∫

Ω\Γ
|∇I |2dx + α

∫

Γ
ds.

◮ Can also be expressed as a partition problem where the
number of regions n is unknown.

min
n

min
{Ωi}ni=1

min
{µi}ni=1∈X

n
∑

i=1

∫

Ωi

|µi − I 0(x)|βdx + α

n
∑

i=1

∫

∂Ωi

ds

where I (x) = µi for all x ∈ Ωi , i = 1, ..., n.

◮ Discrete version can be formulated as

min
I∈X

||I − I 0||β2 + α||∇I ||0

◮ The set of gray values X can be continuous X = [0, 1], or
discretized X = {ℓ1, ..., ℓL} e.g. X = {0, 1/L, 2/L, ..., 1}



Image reconstruction with sparse gradients

◮ PC Mumford-Shah model with X = {ℓ1, ..., ℓL}

inf
Γ,I∈X

lim
λ→∞

∫

Ω
|I (x) − I 0(x)|βdx + λ

∫

Ω\Γ
|∇I |2dx + α

∫

Γ
ds.

◮ Reformulated problem

min
u

L
∑

i=1

∫

Ω
ui (x)|I

0(x)− ℓi |
β + α |∇ui | dx

subject to L
∑

i=1

ui(x) = 1 , ∀x ∈ Ω

ui (x) ∈ {0, 1} , ∀x ∈ Ω, i = 1, ..., L

Theorem: Given a minimizer u∗. Define I =
∑L

i=1 ℓiu
∗
i , then I is a

global minimizer to the quantized piecewise constant
Mumford-Shah model with X = {ℓ1, ..., ℓL}.



Image reconstruction with sparse gradients

◮ PC Mumford-Shah model with X = {ℓ1, ..., ℓL}

inf
Γ,I∈X

lim
λ→∞

∫

Ω
|I (x) − I 0(x)|βdx + λ

∫

Ω\Γ
|∇I |2dx + α

∫

Γ
ds.

◮ Reformulated problem

min
u

L
∑

i=1

∫

Ω
ui (x)|I

0(x)− ℓi |
β + α |∇ui | dx

subject to L
∑

i=1

ui(x) = 1 , ∀x ∈ Ω

ui(x) ∈ [0, 1] , ∀x ∈ Ω, i = 1, ..., L

Theorem: Given a minimizer u∗. Define I =
∑L

i=1 ℓiu
∗
i , then I is a

global minimizer to the quantized piecewise constant
Mumford-Shah model with X = {ℓ1, ..., ℓL}.



Image reconstruction with sparse gradients



Image reconstruction with sparse gradients

Left: ℓ1 relaxation (total variation), Right: New convex relaxation.
Bottom: Set of pixels with non-zero gradient ∇I . Set of gray

values quantized to X = {0, 1, ...., 255}.



Image reconstruction with sparse gradients

Left: total variation (ℓ1 relaxation), Right: New relaxation.
Bottom: Set of pixels with non-zero gradient ∇I . Set of gray

values quantized to X = {0, 1, ...., 255}.



Convex relaxation for parametric image segmentation

◮ We are interested in problem

min
{Ωi}ni=1,{µi}ni=1∈X

n
∑

i=1

∫

Ωi

|I 0(x)− µi |
β dx + α

n
∑

i=1

∫

∂Ωi

ds,

such that ∪n
i=1 Ωi = Ω, ∩n

i=1Ωi = ∅

◮ Equivalent formulation

min
ui (x)∈{0,1}

min
µi∈X

n
∑

i=1

∫

Ω
ui(x)|I

0(x)−µi |
β dx +α

n
∑

i=1

∫

Ω
|∇ui | dx .

such that
n

∑

i=1

ui (x) = 1, ∀x ∈ Ω

◮ We assume X is discrete X = {ℓ1, ..., ℓL}

◮ For instance X = {1, ..., 255} or X = {0, 1/L, 2/L, ..., 1}



Convex relaxation for parametric image segmentation

Related work with parameters:

◮ Alternating minimization w.r.t. parameters and regions: no
guarantee of global minimizers

◮ Darbon 07, Lempitsky 08, Strandmark 09 considered n = 2
and avoided checking all L2 combinations

◮ Brown et al. 2011: optimization of binary function defined
over space of O(L2 · |Ω|) dimensions for n = 2

Our work:

◮ Size of convex problem grows linearly in L, i.e. as O(L · |Ω|),
and can handle any number of regions n, known or unknown.



Convex relaxation for parametric image segmentation

Reformulation as minimal binary function over Ω× X

◮ For each discrete gray value ℓi define a binary function
ui : Ω 7→ {0, 1}, i = 1, ..., L

◮ Define minimization problem

min
u

L
∑

i=1

∫

Ω
ui (x)|I

0(x)− ℓi |
β + α |∇ui | dx

subject to L
∑

i=1

ui(x) = 1 , ∀x ∈ Ω

L
∑

i=1

sup
x∈Ω

ui (x) ≤ n

ui (x) ∈ {0, 1} , ∀x ∈ Ω, i = 1, ..., L



Convex relaxation for parametric image segmentation

min
u

L
∑

i=1

∫

Ω
ui (x)|I

0(x)− ℓi |
β + α |∇ui | dx

subject to L
∑

i=1

ui(x) = 1 , ∀x ∈ Ω

L
∑

i=1

sup
x∈Ω

ui (x) ≤ n

ui (x) ∈ {0, 1} , ∀x ∈ Ω, i = 1, ..., L

Theorem: Given an optimizer u∗. Let n∗ be the number of indices
i for which u∗i 6≡ 0. Define the set of indices {ij}

n∗

j=1 ⊂ {1, ..., L}

such that u∗ij 6≡ 0. Then {u∗ij}
n∗

j=1, {ℓij }
n∗

j=1 is a global optimizer to

the original problem. I =
∑L

i=1 ℓiui is an optimal piecewise
constant function.



Convex relaxation for parametric image segmentation

min
u

L
∑

i=1

∫

Ω
ui (x)|I

0(x)− ℓi |
β + α |∇ui | dx

subject to L
∑

i=1

ui(x) = 1 , ∀x ∈ Ω

L
∑

i=1

sup
x∈Ω

ui (x) ≤ n

ui(x) ∈ [0, 1] , ∀x ∈ Ω, i = 1, ..., L

Theorem: Given an optimizer u∗. Let n∗ be the number of indices
i for which u∗i 6≡ 0. Define the set of indices {ij}

n∗

j=1 ⊂ {1, ..., L}

such that u∗ij 6≡ 0. Then {u∗ij}
n∗

j=1, {ℓij }
n∗

j=1 is a global optimizer to

the original problem. I =
∑L

i=1 ℓiui is an optimal piecewise
constant function.



Convex relaxation for parametric image segmentation

a b

c d

(a) Input image. (b) convex relaxation L1 data term |I 0(x)− µi |,
(c) convex relaxation L2 data term |I 0(x)− µi |

2, (d) piecewise
constant Mumford-Shah model.



Convex relaxation for parametric image segmentation

a b c

(a) Input image. (b) convex relaxation L2 data term |I 0(x) − µi |
2,

(c) piecewise constant Mumford-Shah model.



Convex relaxation for parametric image segmentation

a b c d

(a) Input. (b)-(c) Convex relaxation with: (b) n = 4, (c) n = 2.
(d) Convex relaxation of piecewise constant Mumford-Shah model.



Max-flow based algorithm

min
u

L
∑

i=1

∫

Ω
ui (x)|I

0(x)− ℓi |
β + α |∇ui | dx

subject to L
∑

i=1

ui(x) = 1 , ∀x ∈ Ω

L
∑

i=1

sup
x∈Ω

ui (x) ≤ n

ui(x) ∈ [0, 1] , ∀x ∈ Ω, i = 1, ..., L



Max-flow based algorithm

◮ Let γ be lagrange multiplier for the constraint

L
∑

i=1

max
x∈Ω

ui(x) − n = 0.

◮ Lagrangian formulation

max
γ

min
u

L(u, γ)

=

L
∑

i=1

∫

Ω
ui (x)|I

0(x)− ℓi |
β +α |∇ui | dx+γ(

L
∑

i=1

max
x∈Ω

ui(x)−n)

s.t.

L
∑

i=1

ui (x) = 1, ui(x) ≥ 0 ∀x ∈ Ω, i = 1, ..., L, γ ≥ 0



Max-flow based algorithm

max
γ

min
u

L(u, γ)

=

L
∑

i=1

∫

Ω
ui (x)|I

0(x)− ℓi |
β + α |∇ui | dx + γ(

L
∑

i=1

max
x∈Ω

ui(x) − n)

s.t. {
L

∑

i=1

ui(x) = 1, ui (x) ≥ 0, i = 1, ..., L} = ∆+ ∀x ∈ Ω, γ ≥ 0

1. uk+1 = argmin
u

L(u, γk), s.t. u(x) ∈ ∆+ ∀ x ∈ Ω

2. γk+1 = max(0, γk + c(

L
∑

i=1

max
x∈Ω

uk+1
i (x)− n))



Max-flow based algorithm

max
γ

min
u

L(u, γ)

=

L
∑

i=1

∫

Ω
ui (x)|I

0(x)− ℓi |
β + α |∇ui | dx + γ(

L
∑

i=1

max
x∈Ω

ui(x) − n)

s.t. {
L

∑

i=1

ui(x) = 1, ui (x) ≥ 0, i = 1, ..., L} = ∆+ ∀x ∈ Ω, γ ≥ 0

1. uk+1 = argmin
u

L(u, γk), s.t. u(x) ∈ ∆+ ∀ x ∈ Ω

2. γk+1 = max(0, γk + c(

L
∑

i=1

max
x∈Ω

uk+1
i (x)− n))

◮ 1. has form of image segmentation model with label cost prior
(Zhu and Yuille 96)

min
n

min
{Ωi}ni=1

n
∑

i=1

∫

Ωi

fi(I
0(x)) dx +

n
∑

i=1

α

∫

∂Ωi

ds + γ · n,



Max-flow based algorithm

min
u

L
∑

i=1

∫

Ω
ui(x)|I

0(x) − ℓi |
β dx + α |∇ui | dx + γ

n
∑

i=1

max
x∈Ω

ui(x)

such that
L

∑

i=1

ui(x) = 1, ui(x) ∈ [0, 1], ∀x ∈ Ω, i = 1, ..., L

Primal-dual formulation in case γ > 0

sup
ps ,p,q

inf
u

∫

Ω
ps dx +

L
∑

i=1

∫

Ω
ui (div qi − ps + pi − ri) dx

}

pi (x) ≤ fi (x) , |qi (x)| ≤ α,

∫

Ω
|ri (x)| dx ≤ γ ; i = 1 . . . L

Augmented Lagrangian functional

∫

Ω
ps dx +

n
∑

i=1

〈ui , div qi − ps + pi − ri 〉−
c

2

n
∑

i=1

‖div qi − ps + pi − ri‖
2



Max-flow based algorithm

Augmented Lagrangian Method (ADMM):
Initialize p0s , p

0
i , q

0, r0 and φ0. For k = 0, 1, ...

qk+1
i := arg max

‖qi‖∞≤α
−
c

2

∥

∥

∥
div qi + pki (x)− pks (x)− rki (x)− uki (x)/c

∥

∥

∥

2

pk+1
i := arg max

pi (x)≤ρ(ℓi ,x)

−
c

2

∥

∥

∥
pi + div qk+1

i (x)− pks (x)− rki (x)− uki (x)/c
∥

∥

∥

2

rk+1
i := arg max

ri (x)∈R
γ

i

−
c

2

∥

∥

∥
ri − div qk+1

i (x) + pks (x)− pki (x) + uki (x)/c
∥

∥

∥

2

pk+1
s := argmax

ps

∫

Ω
ps dx

−
c

2

n
∑

i=1

∥

∥

∥
ps − pk+1

i (x)− div qk+1
i (x) + rk+1

i (x) + uki (x)/c
∥

∥

∥

2

uk+1
i = uki − c (div qk+1

i − pk+1
s + pk+1

i − rk+1
i )



Convex relaxation non-submodular data term

◮ Convex relaxation if E (x) or F (x) are negative for some x ∈ Ω

min
φ1,φ2

α

∫

Ω
|∇φ1|+ α

∫

Ω
|∇φ2|

∫

Ω
(1−φ1(x))C (x)+(1−φ2(x))D(x)+φ1(x)A(x)+φ2(x)B(x) dx

+

∫

Ω
{max{φ1−φ2, 0}max(E , 0)−min{φ1−φ2, 0}max(F , 0)}(x) dx















A(x) + B(x) = f2(x)
C (x) + D(x) = f3(x)
A(x) + E (x) +D(x) = f1(x)
B(x) + F (x) + C (x) = f4(x)

◮ Minimize over convex constraint φ1, φ2 ∈ [0, 1].

◮ Theorem: Binary solution obtained by thresholding φ1, φ2 at
any level t ∈ (0, 1] is a global minimizer over φ1, φ2 ∈ {0, 1}
under conditions which can be checked after computation.



Convex relaxation non-submodular data term

inf
φ1,φ2

sup
ps ,pt ,p12,q

∫

Ω
(1− φ1(x))p1s (x) + (1− φ2(x))p2s (x) dx

+

∫

Ω
φ1(x)p1t (x) + φ2(x)p2t (x) dx +

∫

Ω
(φ1(x)− φ2(x))p12(x) dx

+

∫

Ω
φ1(x) div q1(x) dx +

∫

Ω
φ2(x) div q2(x) dx .

p1s (x) ≤ C (x), p2s (x) ≤ D(x), p1t (x) ≤ A(x), p2t ≤ B(x),

−F (x) ≤ p12(x) ≤ E (x), |q1(x)|2, ≤ α, |q2(x)|2 ≤ α, ∀x ∈ Ω.

◮ Minimize over convex constraint φ1, φ2 ∈ [0, 1].
◮ Theorem: Binary solution obtained by thresholding φ1, φ2 at

any level t ∈ (0, 1] is a global minimum over φ1, φ2 ∈ {0, 1}
provided

(A − p1t )(x) + (D − p2s )(x) ≥ −E (x), ∀x ∈ Ω

(B − p2t )(x) + (C − p1s )(x) ≥ −F (x), ∀x ∈ Ω,



Convex relaxation non-submodular data term



Summary

Exact minimization

◮ Focused on two approaches for multiphase problems with
global optimality guarantee.

◮ Both could be formulated as max-flow/min-cut problems on a
graph in discrete setting.

◮ Both could be exactly formulated as convex problems in
continuous setting. Dual problems could be formulated as
continuous max-flow problems.

Approximate minimization

◮ Presented convex relaxations for broader set of non-convex
problems.

◮ Included Potts’ model and joint optimization of regions and
region parameters.

◮ Dual problems were formulated as max-flow, but now there
may be a duality gap to original problems
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