

Abstract

Let $G = (V, E)$ be a directed graph and $\ell: V \rightarrow [k] := \{1, \dots, k\}$ a level assignment such that $\ell(u) < \ell(v)$ for all directed edges $(u, v) \in E$. A level planar drawing of G is a drawing of G where each vertex v is mapped to a unique point on the horizontal line ℓ_i with y -coordinate $\ell(v)$, and each edge is drawn as a y -monotone curve between its endpoints such that no two curves cross in their interior. In the problem CONSTRAINED LEVEL PLANARITY (CLP for short), we are further given a partial ordering \prec_i of $V_i := \ell^{-1}(i)$ for $i \in [k]$, and we seek a level planar drawing where the order of the vertices on ℓ_i is a linear extension of \prec_i . A special case of this is the problem PARTIAL LEVEL PLANARITY (PLP for short), where we are asked to extend a given level-planar drawing \mathcal{H} of a subgraph $H \subseteq G$ to a complete drawing \mathcal{G} of G without modifying the given drawing, i.e., the restriction of \mathcal{G} to H must coincide with \mathcal{H} . We give a simple polynomial-time algorithm with running time $\mathcal{O}(n^5)$ for CLP of single-source graphs that is based on a simplified version of an existing level-planarity testing algorithm for single-source graphs. We introduce a modified type of PQ-tree data structure that is capable of efficiently handling the arising constraints to improve the running time to $\mathcal{O}(n + k\ell)$, where ℓ is the size of the constraints. We complement this result by showing that PLP is NP-complete even in very restricted cases. In particular, PLP remains NP-complete even when G is a subdivision of a triconnected planar graph with bounded degree.