Abstract

We design a new, fast algorithm for agnostically learning univariate probability distributions
whose densities are well-approximated by piecewise polynomial functions. Let f be the density
function of an arbitrary univariate distribution, and suppose that f is OPT-close in L;-distance to
an unknown piecewise polynomial function with ¢ interval pieces and degree d. For any v > 0, our
algorithm draws n = O, (t(d + 1)/€?) samples from f, runs in time O(n), and with probability at
least 9/10 outputs an O~ (t)-piecewise degree-d hypothesis h that is (34++)-OPT +e close to f. Our
approximation factor almost matches the best known information—theoretic (but computationally
inefficient) upper bound of 3. Our general algorithm yields (nearly) sample-optimal and nearly-
linear time estimators for a wide range of structured distribution families over both continuous and
discrete domains in a unified way. For most of our applications, these are the first sample-optimal
and nearly-linear time estimators in the literature. As a consequence, our work resolves the sample
and computational complexities of a broad class of inference tasks via a single “meta-algorithm”.
Moreover, we demonstrate that our algorithm performs well in experiments. Our algorithm consists
of three levels: (i) At the top level, we employ an iterative greedy algorithm for finding a good
partition of the real line into the pieces of a piecewise polynomial. (ii) For each piece, we show that
the sub-problem of finding a good polynomial fit on the current interval can be solved efficiently
with a separation oracle method. (iii) We reduce the task of finding a separating hyperplane to
a combinatorial problem and design a nearly-linear algorithm for this problem. Combining these
three procedures gives a density estimation algorithm with the claimed guarantees.



