
Abstract

Dictionaries remain the most well studied class of data structures. A dictionary supports
insertions, deletions, membership queries, and usually successor, predecessor, and extract-min.
In a RAM, all such operations take O(logN) time on N elements. Dictionaries are often cross-
referenced as follows. Consider a set of tuples {〈ai, bi, ci . . .〉}. A database might include more than
one dictionary on such a set, for example, one indexed on the a’s, another on the b’s, and so on.
Once again, in a RAM, inserting into a set of L cross-referenced dictionaries takes O(L logN) time,
as does deleting. The situation is more interesting in external memory. On a Disk Access Machine
(DAM), B-trees achieve O(logB N) I/Os for insertions and deletions on a single dictionary and K-
element range queries take optimal O(logB N +K/B) I/Os. These bounds are also achievable by a
B-tree on cross-referenced dictionaries, with a slowdown of an L factor on insertion and deletions. In
recent years, both the theory and practice of external-memory dictionaries has been revolutionized
by write-optimization techniques. A dictionary is write optimized if it is close to a B-tree for
query time while beating B-trees on insertions. The best (and optimal) dictionaries achieve a

substantially improved insertion and deletion cost of O(
log1+Bε N

B1−ε ), 0 ≤ ε ≤ 1, amortized I/Os on
a single dictionary while maintaining optimal O(log1+Bε N + K/B)-I/O range queries. Although
write optimization still helps for insertions into cross-referenced dictionaries, its value for deletions
would seem to be greatly reduced. A deletion into a cross-referenced dictionary only specifies a key
a. It seems to be necessary to look up the associated values b, c . . . in order to delete them from the
other dictionaries. This takes Ω(logB N) I/Os, well above the per-dictionary write-optimization

budget of O(
log1+Bε N

B1−ε ) I/Os. So the total deletion cost is O(logB N + L
log1+Bε N

B1−ε ) I/Os. In short,
for deletions, write optimization offers an advantage over B-trees in that L multiplies a lower order
term, but when L = 2, write optimization seems to offer no asymptotic advantage over B-trees.
That is, no known query-optimal solution for pairs of cross-referenced dictionaries seem to beat B-
trees for deletions. In this paper, we show a lower bound establishing that a pair of cross-referenced
dictionaries that are optimal for range queries and that supports deletions cannot match the write
optimization bound available to insert-only dictionaries. This result thus establishes a limit to the
applicability of write-optimization techniques on which many new databases and file systems are
based.

1


