

Abstract

The *Ulam distance* between two permutations of length n is the minimum number of insertions and deletions needed to transform one sequence into the other. Equivalently, the Ulam distance d is n minus the length of the longest common subsequence (LCS) between the permutations. Our main result is an algorithm, that for any fixed $\varepsilon > 0$, provides a $(1 + \varepsilon)$ -multiplicative approximation for d in $\tilde{O}_\varepsilon(n/d + \sqrt{n})$ time, which has been shown to be optimal up to polylogarithmic factors. This is the first sublinear time algorithm (provided that $d = (\log n)^{\omega(1)}$) that obtains arbitrarily good multiplicative approximations to the Ulam distance. The previous best bound is an $O(1)$ -approximation (with a large constant) by (A. Andoni and H. L. Nguyen, *Near-Optimal Sublinear Time Algorithms for Ulam Distance*, Proceedings of the 21st Symposium on Discrete Algorithms (SODA), 76–86, 2010) with the same running time bound (ignoring polylogarithmic factors).

The improvement in the approximation factor from $O(1)$ to $(1 + \varepsilon)$ allows for significantly more powerful sublinear algorithms. For example, for any fixed $\delta > 0$, we can get additive δn approximations for the LCS between permutations in $\tilde{O}_\delta(\sqrt{n})$ time. Previous sublinear algorithms require δ to be at least $1 - 1/C$, where C is the approximation factor, which is close to 1 when C is large. Our algorithm is obtained by abstracting the basic algorithmic framework of (A. Andoni and H.L. Nguyen, *ibid.*) and combining it with the sublinear approximations for the longest increasing subsequence by (M. Saks and C. Seshadhri, *Estimating the longest increasing sequence in polylogarithmic time*, Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), 458–467, 2010).