

Abstract

We investigate the complexity of computing approximate Nash equilibria in anonymous games. Our main algorithmic result is the following: For any n -player anonymous game with a bounded number of strategies and any constant $\delta > 0$, an $O(1/n^{1-\delta})$ -approximate Nash equilibrium can be computed in polynomial time. Complementing this positive result, we show that if there exists any constant $\delta > 0$ such that an $O(1/n^{1+\delta})$ -approximate equilibrium can be computed in polynomial time, then there is a fully polynomial-time approximation scheme (FPTAS) for this problem. We also present a faster algorithm that, for any n -player k -strategy anonymous game, runs in time $\tilde{O}((n+k)kn^k)$ and computes an $\tilde{O}(n^{-1/3}k^{11/3})$ -approximate equilibrium. This algorithm follows from the existence of simple approximate equilibria of anonymous games, where each player plays one strategy with probability $1-\delta$, for some small δ , and plays uniformly at random with probability δ . Our approach exploits the connection between Nash equilibria in anonymous games and Poisson multinomial distributions (PMDs). Specifically, we prove a new probabilistic lemma establishing the following: Two PMDs, with large variance in each direction, whose first few moments are approximately matching are close in total variation distance. Our structural result strengthens previous work by providing a smooth tradeoff between the variance bound and the number of matching moments.