

Abstract

The goal of a hub-based distance labeling scheme for a network $G = (V, E)$ is to assign a small subset $S(u) \subseteq S$ to each node $u \in V$, in such a way that for any pair of nodes u, v , the intersection of hub sets $S(u) \cap S(v)$ contains a node on the shortest uv -path. The existence of small hub sets, and consequently efficient shortest path processing algorithms, for road networks is an empirical observation. A theoretical explanation for this phenomenon was proposed by Abraham et al. (SODA 2010) through a network parameter they called *highway dimension* h , which captures the size of a hitting set for a collection of shortest paths of length at least r intersecting a given ball of radius $2r$. In this work, we revisit this explanation, introducing a more tractable (and directly comparable) parameter based solely on the structure of shortest-path spanning trees, which we call *skeleton dimension* k . We show that skeleton dimension admits an intuitive definition for both directed and undirected graphs, provides a way of computing labels more efficiently than by using highway dimension, and leads to comparable or stronger theoretical bounds on hub set size.