

## Abstract

Many known optimal NP-hardness of approximation results are reductions from a problem called **LABEL-COVER**. The input is a bipartite graph  $G = (L, R, E)$  and each edge  $e = (x, y) \in E$  carries a projection  $\pi_e$  that maps labels to  $x$  to labels to  $y$ . The objective is to find a labeling of the vertices that satisfies as many of the projections as possible. It is believed that the best approximation ratio efficiently achievable for **LABEL-COVER** is of the form  $N^{-c}$  where  $N = nk$ ,  $n$  is the number of vertices,  $k$  is the number of labels, and  $0 < c < 1$  is *some* constant. Inspired by a framework originally developed for **DENSEST  $k$ -SUBGRAPH**, we propose a “log density threshold” for the approximability of Label-Cover. Specifically, we suggest the possibility that the Label-Cover approximation problem undergoes a computational phase transition at the same threshold at which local algorithms for its random counterpart fail. This threshold is  $N^{3-2\sqrt{2}} \approx N^{-0.17}$ . We then design, for any  $\varepsilon > 0$ , a polynomial-time approximation algorithm for *semi-random* **LABEL-COVER** whose approximation ratio is  $N^{3-2\sqrt{2}+\varepsilon}$ . In our semi-random model, the input graph is random (or even just expanding), and the projections on the edges are arbitrary. For *worst-case* **LABEL-COVER** we show a polynomial-time algorithm whose approximation ratio is roughly  $N^{-0.233}$ . The previous best efficient approximation ratio was  $N^{-0.25}$ . We present some evidence towards an  $N^{-c}$  threshold by constructing integrality gaps for  $N^{\Omega(1)}$  rounds of the Sum-of-squares/Lasserre hierarchy of the natural relaxation of Label Cover. For general 2CSP the “log density threshold” is  $N^{-0.25}$ , and we give a polynomial-time algorithm in the semi-random model whose approximation ratio is  $N^{-0.25+\varepsilon}$  for any  $\varepsilon > 0$ .