
Abstract

Suffix tree (and the closely related suffix array) are fundamental structures capturing all sub-
strings of a given text essentially by storing all its suffixes in the lexicographical order. In some
applications, such as sparse text indexing, we work with a subset of b interesting suffixes, which
are stored in the so-called sparse suffix tree. Because the size of this structure is Θ(b), it is natural
to seek a construction algorithm using only O(b) words of space assuming read-only random access
to the text. We design a linear-time Monte Carlo algorithm for this problem, hence resolving an
open question explicitly stated by Bille et al. [TALG 2016]. The best previously known algorithm
by I et al. [STACS 2014] works in O(n log b) time. As opposed to previous solutions, which were
based on the divide-and-conquer paradigm, our solution proceeds in n/b rounds. In the r-th round,
we consider all suffixes starting at positions congruent to r modulo n/b. By maintaining rolling
hashes, we can lexicographically sort all interesting suffixes starting at such positions, and then we
can merge them with the already considered suffixes. For efficient merging, we also need to answer
LCE queries efficiently (and in small space). By plugging in the structure of Bille et al. [CPM 2015]
we obtain O(n + b log b) time complexity. We improve this structure by a recursive application
of the so-called difference covers, which then implies a linear-time sparse suffix tree construction
algorithm. We complement our Monte Carlo algorithm with a deterministic verification procedure.
The verification takes O(n

√
log b) time, which improves upon the bound of O(n log b) obtained by I

et al. [STACS 2014]. This is obtained by first observing that the pruning done inside the previous
solution has a rather clean description using the notion of graph spanners with small multiplicative
stretch. Then, we are able to decrease the verification time by applying difference covers twice.
Combined with the Monte Carlo algorithm, this gives us an O(n

√
log b)-time and O(b)-space Las

Vegas algorithm.

1


